Equilibrium and Forces: from Aristotle to Lagrange
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany
SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany The Flemish mathematician, physicist and engineer SIMON STEVIN is one of the lesser-known personalities in the history of science. However, his work has left many traces. We do not even know his exact date of birth and death; his birthplace was Bruges; where he died is uncertain: either Leiden or the Hague. Raised in the Calvinist tradition, he grew up in Flanders, became an accountant and cashier for a trading firm in Antwerp, travelled for several years through Poland, Prussia and Norway until he took a job at the tax office in Bruges in 1577. Around this time, the 17 provinces of the Netherlands, which also include the area of present-day Belgium, Luxembourg and parts of northern France, belong to the Spanish dominion. Large parts of the population, especially in the northern provinces, converted to the Calvinist faith. In 1567 King PHILIP II OF SPAIN appointed the DUKE OF ALBA as governor. When ALBA carried out a punitive expedition against the Protestants, a war began which only ended in 1648 with the Peace Treaty of Münster (partial treaty of the Peace of Westphalia). In 1579 the Protestant provinces in the north of the Netherlands united to form the Union of Utrecht and declared their independence as the Republic of the United Netherlands; they elected WILLIAM THE SILENT or WILLIAM OF ORANGE as regent. As the political situation came to a head, SIMON STEVIN's life situation also changed: although he was already 33 years old, he still attended a Latin school and then took up studies at the newly founded University of Leiden. -
The Mechanical Problems in the Corpus of Aristotle
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Classics and Religious Studies Department Classics and Religious Studies July 2007 The Mechanical Problems in the Corpus of Aristotle Thomas Nelson Winter University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/classicsfacpub Part of the Classics Commons Winter, Thomas Nelson, "The Mechanical Problems in the Corpus of Aristotle" (2007). Faculty Publications, Classics and Religious Studies Department. 68. https://digitalcommons.unl.edu/classicsfacpub/68 This Article is brought to you for free and open access by the Classics and Religious Studies at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Classics and Religious Studies Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Th e Mechanical Problems in the Corpus of Aristotle Th omas N. Winter Lincoln, Nebraska • 2007 Translator’s Preface. Who Wrote the Mechanical Problems in the Aristotelian Corpus? When I was translating the Mechanical Problems, which I did from the TLG Greek text, I was still in the fundamentalist authorship mode: that it survives in the corpus of Aristotle was then for me prima facie Th is paper will: evidence that Aristotle was the author. And at many places I found in- 1) off er the plainest evidence yet that it is not Aristotle, and — 1 dications that the date of the work was apt for Aristotle. But eventually, 2) name an author. I saw a join in Vitruvius, as in the brief summary below, “Who Wrote Th at it is not Aristotle does not, so far, rest on evidence. -
1 Peter Mclaughlin the Question of the Authenticity of the Mechanical
Draft: occasionally updated Peter McLaughlin The Question of the Authenticity of the Mechanical Problems Sept. 30, 2013 Until the nineteenth century there was little doubt among scholars as to the authenticity of the Aristotelian Mechanical Problems. There were some doubters among the Renaissance humanists, but theirs were general doubts about the authenticity of a large class of writings, 1 not doubts based on the individual characteristics of this particular work. Some Humanists distrusted any text that hadn’t been passed by the Arabs to the Latin West in the High Middle Ages. However, by the end of the 18th century after Euler and Lagrange, the Mechanical Problems had ceased to be read as part of science and had become the object of history of science; and there the reading of the text becomes quite different from the Renaissance 2 readings. In his Histoire des mathématiques J.E. Montucla (1797) dismisses the Mechanical Problems with such epithets as “entirely false,” “completely ridiculous,” and “puerile.” William Whewell remarks in the History of the Inductive Sciences3 that “in scarcely any one instance are the answers, which Aristotle gives to his questions, of any value.” Neither of them, however, cast doubt on the authenticity of the work. Abraham Kaestner’s Geschichte der Mathematik (1796–1800) mentions doubts – but does not share them.4 Serious doubts about the authenticity of the Mechanical Problems as an individual work seem to be more a consequence of the disciplinary constitution of classical philology, particularly in nineteenth-century Germany. Some time between about 1830 and 1870, the opinion of most philologists shifted from acceptance to denial of the authenticity of the 5 Mechanical Problems. -
Simon Stevin
II THE PRINCIPAL WORKS OF SIMON STEVIN E D IT E D BY ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES M. G. J. MINNAERT, A. PANNEKOEK A M ST E R D A M C. V. SW ETS & Z E IT L IN G E R J m THE PRINCIPAL WORKS OF SIMON STEVIN VOLUME II MATHEMATICS E D IT E D BY D. J. STRUIK PROFESSOR AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE (MASS.) A M S T E R D A M C. V. SW ETS & Z E IT L IN G E R 1958 The edition of this volume II of the principal works of SIMON STEVIN devoted to his mathematical publications, has been rendered possible through the financial aid of the Koninklijke. Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Science) Printed by Jan de Lange, Deventer, Holland The following edition of the Principal Works of SIMON STEVIN has been brought about at the initiative of the Physics Section of the Koninklijke Nederlandse Akademie van Weten schappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members: ERNST CRONE, Chairman of the Netherlands Maritime Museum, Amsterdam E. J. DIJKSTERHUIS, Professor of the History of Science at the Universities of Leiden and Utrecht R. J. FORBES, Professor of the History of Science at the Municipal University of Amsterdam M. G. J. M INNAERT, Professor of Astronomy at the University of Utrecht A. PANNEKOEK, Former Professor of Astronomy at the Municipal University of Amsterdam The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C. -
Geometry and Mathematical Symbolism of the 16Th Century Viewed Through a Construction Problem
THE TEACHING OF MATHEMATICS 2016, Vol. XIX, 1, pp. 32–40 GEOMETRY AND MATHEMATICAL SYMBOLISM OF THE 16TH CENTURY VIEWED THROUGH A CONSTRUCTION PROBLEM Milana Dabi´c Abstract. This paper represents a construction problem from Problematum geometricorum IV written by Simon Stevin from Bruges in 1583. The problem is used for illustrating the geometry practice and mathematical language in the 16th century. The large impact of Euclid and Archimedes can be noted. In one part of the construction, Stevin expressed the need for using numbers for greater clarity. Hence, the link with the work of Descartes and the further geometry development is pointed out. MathEduc Subject Classification: A35 MSC Subject Classification: 97A30 Key words and phrases: 16th century mathematics; mathematical symbolism; Simon Stevin; construction problems 1. Introduction From the times of Ancient Greece until the 16th century there was no signif- icant geometrical contribution that would expand the existing geometrical knowl- edge. Only in the second half of the 16th century we can find geometry works of Simon Stevin from Bruges (1548–1620). It is believed that his influence was neglected in the history of mathematics and that his name should be mentioned together with the name of his contemporary Galileo Galilei, from whom Stevin was a whole generation older (16 years) [8]. It is considered that Stevin, as a predecessor of Descartes, prepared a path for introducing correspondence between numbers and points on the line by studying the 10th book of Euclid’s Elements and translating it to numbers [9]. Besides his work on the Problematum geometricorum libri V, he wrote Tomus secundus de geometriae praxi (in 1605) which is: ::: different from the Problemata geometrica and inferior to it; it is also a collection of geometrical problems but it is not arranged as logically as the former; it was chiefly made to complete the Prince’s geometrical training [6, p. -
Simon Stevin, Polymaths and Polymathy in the Early Modern Period
introduction Simon Stevin, Polymaths and Polymathy in the Early Modern Period Karel Davids, Fokko Jan Dijksterhuis, Rienk Vermij and Ida Stamhuis Simon Stevin (1548– 1620) was a slightly older contemporary of Galileo, and can in many respects be considered his Dutch counterpart: a scholar who opened up new, mathematical, ways of studying the world. As such, he has rightly tak- en his place in the annals of early modern science. But Stevin was more than a clever theoretician; he was also an exponent of a new approach to knowledge in the early modern period, when established ways of understanding the world had been thrown into doubt. Ignoring these broader aspects, as has commonly been done, risks failing to grasp his full significance. Stevin remains badly un- derstood, in many respects, and this volume is thus an attempt to understand him better by placing his work in this broader context. In his approach to a wide range of topics, Stevin presents a case – and a very interesting one – of a more general trend in early modern learning, when knowledge was often produced by ‘polymaths’ rather than specialists. Ana- lyzing his situation is therefore not only important as a means of assessing his aims and motives, but also leads to a better understanding of European intellectual history in general. Such a study will shed light on changes in mathematics and natural philosophy in the early modern period, and it will also contribute to a better understanding of the transformation of European learning. Starting with Stevin, this collective volume aims to analyze the transforma- tion of the European ideal of knowledge in the early modern period by com- paring Stevin with similar multi- talented individuals (‘polymaths’) in the Low Countries and other European countries, and by examining the relations be- tween the multiple strands of Stevin’s thinking, writing and other activities. -
The Beginnings of Formal Logic: Deduction in Aristotle's Topics Vs
Phronesis 60 (�0�5) �67-309 brill.com/phro The Beginnings of Formal Logic: Deduction in Aristotle’s Topics vs. Prior Analytics Marko Malink Department of Philosophy, New York University, 5 Washington Place, New York, NY 10003. USA [email protected] Abstract It is widely agreed that Aristotle’s Prior Analytics, but not the Topics, marks the begin- ning of formal logic. There is less agreement as to why this is so. What are the distinctive features in virtue of which Aristotle’s discussion of deductions (syllogismoi) qualifies as formal logic in the one treatise but not in the other? To answer this question, I argue that in the Prior Analytics—unlike in the Topics—Aristotle is concerned to make fully explicit all the premisses that are necessary to derive the conclusion in a given deduction. Keywords formal logic – deduction – syllogismos – premiss – Prior Analytics – Topics 1 Introduction It is widely agreed that Aristotle’s Prior Analytics marks the beginning of formal logic.1 Aristotle’s main concern in this treatise is with deductions (syllogismoi). Deductions also play an important role in the Topics, which was written before the Prior Analytics.2 The two treatises start from the same definition of what 1 See e.g. Cornford 1935, 264; Russell 1946, 219; Ross 1949, 29; Bocheński 1956, 74; Allen 2001, 13; Ebert and Nortmann 2007, 106-7; Striker 2009, p. xi. 2 While the chronological order of Aristotle’s works cannot be determined with any certainty, scholars agree that the Topics was written before the Prior Analytics; see Brandis 1835, 252-9; Ross 1939, 251-2; Bocheński 1956, 49-51; Kneale and Kneale 1962, 23-4; Brunschwig 1967, © koninklijke brill nv, leiden, ���5 | doi �0.��63/�5685�84-��34��86 268 Malink a deduction is (stated in the first chapter of each). -
The Mathematical Anti-Atomism of Plato's Timaeus
The mathematical anti-atomism of Plato’s Timaeus Luc Brisson, Salomon Ofman To cite this version: Luc Brisson, Salomon Ofman. The mathematical anti-atomism of Plato’s Timaeus. Ancient Philoso- phy, Philosophy Documentation Center, In press. hal-02923266 HAL Id: hal-02923266 https://hal.archives-ouvertes.fr/hal-02923266 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The mathematical anti-atomism of Plato’s Timaeus Luc Brisson Salomon Ofman Centre Jean Pépin CNRS-Institut mathématique de Jussieu- CNRS-UMR 8230 Paris Rive Gauche École normale supérieure Sorbonne Université Paris Sciences Lettres Paris Université Abstract. In Plato’s eponymous dialogue, Timaeus, the main character presents the universe as an almost perfect sphere filled by tiny invisible particles having the form of four regular polyhedrons. At first glance, such a construction may seem close to an atomic theory. However, one does not find any text in Antiquity tying Timaeus’ cosmology to the atomists, and Aristotle made a clear distinction between Plato and the latter. Despite the cosmology in the Timaeus is so far apart from the one of the atomists, Plato is commonly presented in contemporary literature as some sort of atomist, sometimes as supporting a so-called form of ‘mathematical atomism’. -
Simon Stevin - Wikipedia
Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin Simon Stevin Simon Stevin (Dutch: [ˈsimɔn ˈsteːvɪn]; 1548–1620), Simon Stevin sometimes called Stevinus, was a Flemish mathematician, physicist and military engineer. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated various mathematical terms into Dutch, making it one of the few European languages in which the word for mathematics, wiskunde (wis and kunde, i.e., "the knowledge of what is certain"), was not a loanword from Greek but a calque via Latin. Contents Biography Simon Stevin's travels Simon Stevin in the Netherlands Born c. 1548 Discoveries and inventions Bruges, Belgium Hydraulic engineering — management of Died 1620 waterways (aged 71–72) Philosophy of science Alma mater Leiden University Geometry, physics and trigonometry Music theory Occupation Mathematician, Bookkeeping engineer Decimal fractions Known for Decimal Mathematics fractions[a] Neologisms Trivia Publications References Further reading External links Biography Very little is known with certainty about Stevin's life and what we know is mostly inferred from other recorded facts.[1] The exact birth date and the date and place of his death are uncertain. It is assumed he was born in Bruges since he enrolled at Leiden University under 1 von 11 16.09.19, 20:45 Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin the name Simon Stevinus Brugensis (meaning "Simon Stevin from Bruges"). His name is usually written as Stevin, but some documents regarding his father use the spelling Stevijn (pronunciation [ˈsti:vaɪn]). This is a normal spelling shift in 16th-century Dutch.[2] He was born around the year 1548 to unmarried parents, Anthonis (Anton) Stevin and Catelyne van der Poort. -
The Engineer and the Philosopher Reflections on the Culture and Economy of Mechanics in Court Society
chapter 1 The Engineer and the Philosopher Reflections on the Culture and Economy of Mechanics in Court Society Pietro Daniel Omodeo Throughout his life, Simon Stevin was proud of his status as an ‘ingenieur’.1 By contrast, his Italian contemporary, Giovanni Battista Benedetti, would have considered the title ‘ingegnere’ to be a denigration of his status as a ‘patri- cian’ and ‘court philosopher’.2 Yet, the work, interests and methods of these two men were so close that such a divergence of identities presents the social historian of science with a curious puzzle. What accounts for the remarkable difference in the intellectual positioning of these two protagonists of Renais- sance science? An inquiry into the social and epistemological intersections and interrelationships between the activities of the early modern engineer and the philosopher, who worked on similar mathematical, physical and techno- logical problems, promises to be a fruitful means of pinpointing the individual and contextual differences between this Dutch proto- scientist and his Italian counterpart. In addition, it may also help to highlight the processes underlying the hierarchization of knowledge and division of intellectual labor that char- acterized the emergence of modern science. Above all else, the problem in question relates to a practical-theoretical form of polymathy – the technical versatility (or polytechny) typical of so- called ‘scientist- engineers’ – and its relation to higher forms of legitimate scholarship, especially the literary and artistic culture of the Renaissance courts. In the case of practical mathematics, a new class of practitioners, proud of their professional skills, emerged out of the context of competing republics and small states troubled by constant political and economic turmoil, rival- ry and conflict. -
Idealization and Galileo's Proto-Inertial Principle
Idealization and Galileo’s Proto-Inertial Principle Maarten Van Dyck* Galileo proposed what has been called a proto-inertial principle, according to which a body in horizontal motion will conserve its motion. This statement is only true in coun- terfactual circumstances where no impediments are present. This article analyzes how Galileo could have been justified in ascribing definite properties to this idealized motion. This analysis is then used to better understand the relation of Galileo’s proto-inertial principle to the classical inertial principle. 1. Introduction. Galileo Galilei assumed that a body in horizontal motion will conserve its motion indefinitely. He used this idea to explain the para- bolic shape of a body projected from a horizontal table, and it is crucially related to his use of relativity arguments to defuse objections to the possi- bility of a moving earth. In both roles it functions similarly to an inertial prin- ciple, but there are also some crucial factors that put it at a distance (for some earlier discussions and further references, see Coffa [1968], Chalmers [1993], Hooper [1998], and esp. Roux [2006]). Most importantly, because the notion of the “horizontal” is underspecified if not related to a broader spatial frame- work, Galileo’s own writings seem to use the idea in a way in which the rel- evant motion is both rectilinear and circular (for a recent discussion, see Miller [2014], 110–46). Even if interpreted as rectilinear, the restriction to horizontal motion is highly significant— Galileo never came to terms with the case of a body projected along an oblique direction, such as a typical cannon ball (see Damerow et al. -
Aristotle on Knowledge, Nous and the Problems of Necessary Truth
Binghamton University The Open Repository @ Binghamton (The ORB) The Society for Ancient Greek Philosophy Newsletter 12-28-2001 Aristotle on Knowledge, Nous and the Problems of Necessary Truth Thomas Kiefer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://orb.binghamton.edu/sagp Part of the Ancient History, Greek and Roman through Late Antiquity Commons, Ancient Philosophy Commons, and the History of Philosophy Commons Recommended Citation Kiefer, Thomas, "Aristotle on Knowledge, Nous and the Problems of Necessary Truth" (2001). The Society for Ancient Greek Philosophy Newsletter. 341. https://orb.binghamton.edu/sagp/341 This Article is brought to you for free and open access by The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in The Society for Ancient Greek Philosophy Newsletter by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact [email protected]. Aristotle on Knowledge, Nous and the Problems of Necessary Truth Thomas Kiefer University of Nebraska-Lincoln SAGP Session at the Eastern APA 28 December 2001 Aristotle on Knonvledge, Nous and the Problems of Necessary Truth Introduction. Traditional interpretationsDe take Anima III.5 (DA III.5.430a20-25) to be about different human cognitive functions,* 1 or the immortality of the "productive intellect", taken either as the immortal part of the human mind or as God. I argue, however, that different problems are at issue here, problems concerning our knowledge of necessary truths: First, in section 1, I show hownous is for Aristotle the solution to the famous regress dilemma raised in 3 Posterior Analytics 1.3, and in section 2, that knowledgeepistêmê ( ) and nous have necessary truths as their subject matter, and are, moreover,the same as this subject matter.