Appraising Aquaculture: the ZALA Park Fish Cultivation and Makoba Integrated Mariculture Pond System

Total Page:16

File Type:pdf, Size:1020Kb

Appraising Aquaculture: the ZALA Park Fish Cultivation and Makoba Integrated Mariculture Pond System Appraising Aquaculture: The ZALA Park Fish Cultivation and Makoba Integrated Mariculture Pond System Item Type Working Paper Authors Ngazy, Z.M. Citation Informal meeting for Urban Environmental accounting Trieste, Italy 22nd – 24th April 2004 Download date 29/09/2021 18:04:31 Link to Item http://hdl.handle.net/1834/837 Appraising Aquaculture: The ZALA Park Fish Cultivation and Makoba Integrated Mariculture Pond System Z. M. Ngazy State University of Zanzibar Planning Section P. O. Box 146 ZANZIBAR –TANZANIA E-mail: [email protected] [email protected] Informal meeting for Urban Environmental accounting Trieste, Italy 22nd – 24th April 2004 ABSTRACT This paper gives results of the preliminary socio-economic survey conducted in two coastal villages of Zanzibar where coastal aquaculture was still on experimental stage to look for possibilities and potentials for creating a means to supplement the declining fish catch from the wild and poverty reduction in coastal villages of Mungoni (ZALA Park) and Makoba. The sites were previously used for burying coconut husks for rope making and salt pans respectively. Specifically, the paper asses market condition for fish in villages and hotels looking at the local community fish requirements and their perception towards establishment of coastal aquaculture in Zanzibar. Finally it highlights the Cost Benefit Analysis of the ZALA Park fish pond project. Questionnaire survey was conducted to a random sample of 74 households in Makoba and Mungoni (ZALA Park) villages as well as to 15 hotels along the east coast of the Zanzibar island. Also, informal individual interviews with stake holders and observation was carried out during the same period. Preliminary findings revealed higher proportion for males than female household members suggesting more dependence on fishing activities. Majority of interviewees were optimistic about fish farming activities in Zanzibar. Market for cultivated species existed both in hotels and the households in the sense that villagers’ requirement for cultivated fish was estimated on average to be 21 kgs per household per month and hoteliers demand whole year round seemed to be quite considerable during high tourist seasons. Financial analysis for ZALA Park fish culturing indicate the project is viable at 12% discount rate. 2 1. Introduction Coastal aquaculture production is increasingly becoming popular in Zanzibar as a means of making the ends meet for the daily lives of the coastal communities who mostly depend on marine ecosystem for subsistence and income. The move came about after successful endeavor for seaweed culture that was commercially initiated in 1989, following not less than a decade of experiments that proved it to be transferable to local communities in Zanzibar. The aftermath of the seaweed farming was a significant improvement to household economies in respective villages and exportation of Seaweed. Most coastal aquaculture development has already taken place in Asia, Europe and South America whereas relatively modest production has been achieved in Africa (Ronnback et al 2002). Initiatives for small scale aquaculture on finfish and mollusk are progressing in Zanzibar but little has so far been made to identify the social, economic and environmental impact. Scientific experiments on aquaculture of some species of fish and mollusk are carried out on the sustainability and viability. Nevertheless, knowledge and awareness of the trade off between economic and environmental impacts as well as economic and social impact of such undertaking is a key information for the policy making bodies in Zanzibar and a guidance to the would be investors in coastal aquaculture activity in future. This paper presents results from a preliminary socio-economic survey in two fishing villages in Zanzibar where coastal aquaculture for fin fish is being experimented. Focus is on financial appraisal of the Zanzibar Land Animal (ZALA) Park fish pond at Mungoni and the socio-economic aspects for both Mungoni and Makoba village where Integrated Mariculture Pond System (IMPS) at Mafufuni. The paper consists of five main parts; the first and second part introduces and gives an overview on fish culturing initiatives in Zanzibar with the historical background of the two project sites and the expected socio- economic benefits with respect to establishment of aquaculture for fish. It also touches on the theoretical background of the Costs Benefit Analysis (CBA) of the ZALA Park aquaculture project paving a way to explore the opportunity costs of the sites. Third part provides sections on methodology used in the study that leaded to results on social and 3 economic analysis in the fourth part. The last part ends with conclusion and recommendations for further study. 2. Overview Fishing in Zanzibar however artisanal is an industry that makes a significant contribution to the national economy both in terms of income and employment generation in other supporting sectors. Also it is an important supplement for animal protein to majority of people in the islands of Zanzibar where meat from livestock is relatively more expensive. On the other hand, fisheries sector has been observed to give a significant support to the growing tourism industry in Zanzibar through its supply to hotels and recreational park areas. Increasing population and the use of destructive fishing gears among other factors have made the fish catch to decline overtime, hence increasing demand that is satisfied by the cost of unaffordable prices for delicious and highly demanded species. Moreover, fishermen have been observed to spend relatively more time in fishing and therefore reduced time for other economic activities and leisure that could improve their household’s welfare. Such problems called for several proposals for aquaculture to be undertaken in Zanzibar however still at a small scale. Main intention is to cover the gap of excess demand by having fish supply during off seasons, thus satisfying demand in households, hotels and elsewhere. Aquaculture though regarded as a lucrative endeavor in terms of income and supply of animal protein to majority of population worldwide. It involves investment of natural, financial, and time resource committed to produce financial gains that might be at the cost of the societal welfare. Ronnback et al (2002) underscore that aquaculture activities often utilize common property resource such as land, water and mangrove areas this contribute greatly to social equity. Consideration therefore, has to be given to the cost or negative externality that others are going to suffer by using mangrove land for other projects. Otherwise, a Pareto improvement in social welfare should be sought where some people are made better off by the project without making others worse (Georgiou et al 1997). In line with the above, survey have been conducted in the villages to assess local communities perceptions on Mangrove land use for coastal aquaculture for fish, 4 current fish marketing system and demand for targeted cultivated species in Zanzibar as well as the financial viability of culturing fish. 2.1 Historical Background The ZALA Park fishpond is a local community initiative located in Mungoni village 25 km away south west of Zanzibar town. The Pond is owned by a group of five people who manage an educational park for the local community and tourists. A wall with a gate is constructed on a mangrove that was excavated to allow control of tidal fluctuations due to its access to the sea. Approximately the 10002 m pond that has been enclosed by a wall should be capable of producing 1000 kg of mullets (Mkizi) per year that would be harvested during scarcity periods when there is less catch from the wild or during high tourist season when demand for fish rise. The ZALA Park is Zoological for some specimens of local animals that are native to Zanzibar islands and works to promote an ecological preservation, environmental education to students who visits the park for environmental education and researchers. Tentative plan for the group is to construct restaurant in the Park area that could carter for tourists, students and local people visiting the area. The restaurant will form a forward linkage by having its supply from the fish pond and in turn will provide catering services to visitors who prefer to spend some time in the park. On the other hand the fish pond is getting its supply of fingerlings from the sea. The fish pond area was formerly used by a group of twenty female villagers who individually used the area to process coconut husks for rope making. The activity that involves clearing the mangrove roots to get an area for burying the husks that are let to rot under ground (in vyao1) for nine months before they are exhumed for further processing. The pond area has been used for processing coconut husk since time immemorial, the rights to undertake the activity in the area has been passed over from one generation to another. The activity is indigenous supplementing women’s meager income and form one of the few activities that women can perform in the village to generate some income. In principle, mangrove area is communally owned however the 1 A ditch used to bury coconut husks for processing 5 vyao for coconut husk are owned privately mainly because of individual efforts and time allocated in preparation and the husk are continuously being replaced after every maturity period. Conversely, the Makoba ponds are IMPS owned by the local government and were formerly used for salt production which later became unprofitable and therefore abandoned. After a very long idle period the pans were converted to integrated fish farming ponds a technique that was simulated from Israel and adapted to local conditions in Zanzibar. Basically decision to establish fish cultivation came about as a measure to utilize the area productively and to demonstrate prototype IMPS within the environmental, socio-economic and technological conditions that prevails in Zanzibar and to enhance research capabilities for development of coastal aquaculture.
Recommended publications
  • The Role of a Fish Pond in Optimizing Nutrient Flows in Integrated Agriculture-Aquaculture Farming Systems
    The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Promotor: Prof. Dr. J.A.J. Verreth Hoogleraar Aquacultuur en Visserij Wageningen Universiteit Co-promotor: Dr. M.C.J. Verdegem Universitair Docent, Leerstoelgroep Aquacultuur en Visserij Wageningen Universiteit Promotiecommissie: Prof. Dr. Ir. A.J. van der Zijpp Wageningen Universiteit Dr. M. Ana Milstein Fish and Aquaculture Research Station, Israel Prof. Dr. R. Ruben Radboud Universiteit Nijmegen Prof. Dr. Nguyen Anh Tuan Can Tho University, Vietnam Dit onderzoek is uitgevoerd binnen de onderzoeksschool Wageningen Institute of Animal Sciences (WIAS) The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J.Kropff, in het openbaar te verdedigen op woensdag 3 oktober 2007 des namiddags te vier uur in de Aula Nhan, D.K., 2007. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems. PhD Thesis, Wageningen University, The Netherlands ISBN: 978-90-8504-739-1 Contents Chapter 1 General introduction 1 Chapter 2 Integrated freshwater aquaculture, crop and livestock production in 9 the Mekong Delta, Vietnam: determinants and the role of the pond Chapter 3 Food inputs, water quality and nutrient accumulation in integrated 37 pond systems: a multivariate approach Chapter 4 Water and nutrient budgets of ponds in integrated agriculture- 67 aquaculture systems in the Mekong Delta, Vietnam Chapter 5 Economic and nutrient discharge tradeoffs of excreta-fed 93 aquaculture in the Mekong Delta, Vietnam Chapter 6 General discussion 121 References 133 Summary (English) 145 Summary (Dutch) 149 Summary (Vietnamese) 153 Acknowledgements 157 Training and Supervision Plan 159 Curriculum vitae 160 List of publications 161 Chapter 1 General introduction Chapter 1 1.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Water Quality Guidelines for the Management of Pond Fish Culture
    International Journal of Environment Sciences Vol. 5 No.INTERNATIONAL 2 (July-December, 2019) JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 6, 2013 Received:© Copyright 14th May by 2019the authors Revised: - Licensee 30th June IPA 2019- Under Accepted: Creative 15th Commons July 2019 license 3.0 Research article ISSN 0976 – 4402 Water quality guidelines for the management of pond fish culture Anita Bhatnagar, Pooja Devi Department of Zoology, Kurukshetra University, Kurukshetra, India-136119 [email protected] doi: 10.6088/ijes.2013030600019 ABSTRACT The Optimum fish production is totally dependent on the physical, chemical and biological qualities of water to most of the extent. Hence, successful pond management requires an understanding of water quality. Water quality is determined by variables like temperature, transparency, turbidity, water colour, carbon dioxide, pH, alkalinity, hardness, unionised ammonia, nitrite, nitrate, primary productivity, BOD, plankton population etc. In the present chapter water quality management principles in fish culture have been reviewed to make aware the fish culturist and environmentalist about the important water quality factors that influence health of a pond and are required in optimum values to increase the fish yields to meet the growing demands of present day scenario of the world, when the food resources are in a state of depletion and the population pressure is increasing on these resources. Keywords: Assessment and Monitoring, Culture, Fish productivity, Parameters, Water quality 1. Introduction Fish is an inexpensive source of protein and an important cash crop in many regions of world and water is the physical support in which they carry out their life functions such as feeding, swimming, breeding, digestion and excretion (Bronmark and Hansson, 2005).
    [Show full text]
  • Fish Culture in Brackish Water
    Fish Culture in Brackish Water. Item Type Journal Contribution Authors Nzioka, R.M. Download date 01/10/2021 17:26:10 Link to Item http://hdl.handle.net/1834/7089 POST KENYA v.5 no. 2 May-August 1980 FISH CULTURE IN BRACKISH WATER R. M. Nzioka, Ketrya Marine and Fisheries Research Institute Introduction loose initial structure of the mud changes as moisture Brackish water is a mixture of fresh and salty water is diminished by evaporation and transpiration. The which usually occurs in estuaries, and has a salinity process of drying out results in the shrinking of the soil usually of between 15 and 30 per thousand, depending wItil it attains the proper physical character of pond on rainfall and freshwater run-off. barrier. Even though ponds very close to the shore are Some fish species like mullets are able to survive filled with undiluted seawater the great amount of rain­ in this environment. Most of the Mugi/idae shoal swim water trapped in the ponds during the monsoons, makes in or near the surface of the water and may be seen it not possible for salinity values equal or higher than jumping repeatedly in estuaries usually in the evenings. those of seawater to occur in the ponds at any time M. cepha/us and Liza aurata are potential species for other than during prolonged periods of drought. culture. These species occur in vast numbers and have very firm flesh of excellent flavour. They spawn in the Aquaculture tropics mostly from September to October. During this period they migrate away from estuaries.
    [Show full text]
  • Understanding Your Fish Pond Water Analsysis Report
    Cooperative Aquaculture/Fisheries Extension Program University of Arkansas at Pine Bluff Understanding Your Fish Pond Water Analysis Report Nathan M. Stone Figure 1 Extension Fisheries Water Analysis Report: Fish Specialist (Example) Hugh K. Thomforde pH - - - - - - - - - - - - - - - - - - - - - - - - - - -7.24 Extension Aquaculture Some sportfish and aquaculture Electrical Conductivity - - -205 mSiemens/cm Specialist pond owners choose to submit water Alkalinity, Total - - - - - 100.00 mg/l as CaCO3 samples to the University of Hardness, Total - - - - -103.80 mg/l as CaCO3 Arkansas Cooperative Extension CO (Carbonate) - - - - - 0.09 mg/l as CaCO Service for analysis. The water 3 3 samples are mailed to the Water HCO3 (Bicarbonate) - - 99.90 mg/l as CaCO3 Quality Laboratory, Arkansas Water Fe (Iron) - - - - - - - - - - - - - - - - - - -0.05 mg/l Resources Center, University of Mn (Manganese) - - - - - - - - - - - - -0.01 mg/l Arkansas at Fayetteville. The labora­ F (Fluoride) - - - - - - - - - - - - - - - - -0.15 mg/l tory tests the water and sends the Cl (Chloride) - - - - - - - - - - - - - - - - -3.13 mg/l results back. Below are some guide­ lines for interpreting those results. SO4 (Sulfate) - - - - - - - - - - - - - - - - 3.21 mg/l These guidelines describe how to NO3 (Nitrate) - - - - - - - - - - - - - - - - 0.04 mg/l interpret results for both surface NO3-N (Nitrate-Nitrogen) - - - - - - - 0.01 mg/l waters and ground waters. Surface NH -N (Ammonia-Nitrogen) - - - - - 0.11 mg/l waters are those exposed to the air 3 and sunlight, such as streams, ponds, NO2-N (Nitrite-Nitrogen) - - - - - - - - 0.00 mg/l reservoirs and lakes. Ground waters PO4 (Phosphate) - - - - - - - - - - - - - 0.06 mg/l are waters from wells or springs tapping underground aquifers and are often devoid of dissolved oxygen. These waters may also contain high levelsInterpreting of dissolved Results gasses or iron.
    [Show full text]
  • Information About the Habitat Use of Salines and Fish Ponds by Wintering
    Informationabout the habitatuse of salinesand fish pondsby winteringwaders in CadizBay, southwest Spain A. Perez-Hurtado & F. Hortas Perez-Hurtado,A. & Hortas,F. 1991. Informationabout the habitat use of salinesand fish ponds bywintering waders in CadizBay, southwest Spain. WaderStudy Group Bull. 66: 48-53. CadizBay, recently declared as a NaturalPark, is an importantarea for wintering waders in Spain. In the lastfew years mudflats and salines in Cadiz Bay have been claimed for human activities with adverseimpacts on their shorebird populations. Thus, the importance to shorebirdsof thesalines andfish ponds adjacent to theBay could be increasingif they are usedas alternativefeeding areas. In generalthe birds used the salines and fish ponds both for feeding and roosting: some 66% of wadersin salinesat lowtide were feeding. However,not all the birdsused the differenthabitats in thesame way or at thesame state of tide. Someimplications of the usemade by waders of these areasto theirenergetic requirements, morphological adaptations and prey availability are discussed. A. Perez-Hurtado& F. Hodas,Laboratorio de BiologiaMarina, Apto. de Fisiologiay Biologia Animal,Facultad de Biologia,Universidad de Sevilla,Aptdo 1095, E-41080, Spain. INTRODUCTION Thewetlands of CadizBay (between 36ø23'N, 6ø08'W and 36ø37'N,6ø15'W, southwest Spain) extend over 18,000 ha, sall•es la tapa andinclude many different and productivehabitats; intertidal mudflats,salines, fish ponds, lagoons and semi-natural salt marshes(Figure 1). Thesesupport a largenumber of winter-
    [Show full text]
  • Treatment of Fishpond Water by Recirculating Horizontal and Vertical
    Aquaculture 313 (2011) 57–64 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics Dennis Konnerup a,⁎, Ngo Thuy Diem Trang b, Hans Brix a a Department of Biological Sciences, Plant Biology, Aarhus University, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark b Department of Environmental Science, College of Environment and Natural Resources, Can Tho University, 3/2 Street, Can Tho City, Vietnam article info abstract Article history: Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent Received 10 June 2010 discharge of polluted water into rivers which results in eutrophication and degradation of receiving water Received in revised form 16 December 2010 bodies. There is therefore a need to develop improved aquaculture systems which have a more efficient use of Accepted 16 December 2010 water and less environmental impact. The aim of this study was to assess the suitability of using constructed Available online 7 January 2011 wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis niloticus) and common carp Keywords: fl Aquaculture wastewater (Cyprinus carpio) was recirculated through horizontal and vertical ow CWs. The CWs were able to keep a N −1 b −1 b −1 − b −1 Canna good water quality with DO ( 1 mg/l ), BOD ( 30 mg l ), TAN ( 1mgl ) and NO2 ( 0.07 mg l )at Common carp acceptable concentrations for growth of the fish.
    [Show full text]
  • Evaluating Benefits of Mangroves on Fish Pond Production and Protection in Ajuy, Panay Island, the Philippines
    Evaluating Benefits of Mangroves on Fish Pond Production and Protection in Ajuy, Panay Island, the Philippines Natalie Jaworska September 2010 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science and the Diploma of Imperial College London. 1 Success will be had on the day my grandchildren walk with me through these habitats, understanding their importance, appreciating their diversity, and captivated by their magic (Primavera, J. H. 2005) 2 DECLARATION OF OWN WORK I declare that this thesis (insert full title) …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… is entirely my own work and that where material could be construed as the work of others, it is fully cited and referenced, and/or with appropriate acknowledgement given. Signature …………………………………………………….. Name of student …………………………………………….. (please print) Name of Supervisor …………………………………………. 3 Contents 1.0 Introduction ............................................................................................................................. 10 1.1 Aims and Objectives ........................................................................................................... 11 1.1.1 Aims .............................................................................................................................. 11 1.1.2 Objectives ....................................................................................................................
    [Show full text]
  • Twenty-Six Species of Ducks Are Found in the Coastal and Inland Waters Of
    Guide Sheet No. AL646A - 1 Migratory Shorebird Habitat Management Alabama Guide Sheet No. AL646A Definition and Overview margins and buttonbush or emergent waterweeds, can provide excellent habitat. They generally Over 30 species of shorebirds migrate through contain streams that ensure water flows during late Alabama each year. They feed in shallow standing summer and early fall. water and mud flats in the inland waters of Alabama during migration. Appendix A lists twenty of the Installing a Clemson Beaver Pond Leveler will allow more commonly encountered shorebirds which may land managers to control water levels in these areas. benefit from land management. This guide sheet will This device has a swivel elbow on the rear riser pipe assist landowners who want to manage habitat for that allows the land manager to draw water down in these shorebirds. small increments. Habitat Management Existing Fish Ponds Ponds that are to be used as dual purpose ponds for Areas such as beaver ponds, marshes, coastal flats, managing fish and shorebirds have many inherent natural and man-made shallow water ponds, and problems that must be overcome to be successful. other wetlands serve as habitat and food sources. A minimum of 5 to 6 feet of water are required at Habitat management consists of retaining and the deep end of a fish pond in order for normal managing suitable feeding areas for shorebird oxygen levels to be achieved during the summer species. The production of late summer and fall months. Levels below this depth will have problems food is especially important, since this is a time with fish dieoff due to oxygen depletion.
    [Show full text]
  • A Guide to Building and Managing Private Fish Ponds in Montana
    A Guide to Building and Managing Private Fish Ponds in Montana July 2006 Fisheries Division This guide was originally prepared by George Holton, retired Chief Fisheries Biologist and Assistant Administrator of the Fisheries Division. It was revised in 1994 by Joe Urbani and Associates, Inc. and again in 2006 by Sally Schrank under contract with Montana Fish, Wildlife & Parks. Numerous department biologists contributed to earlier versions and participated in this latest revision. TABLE OF CONTENTS Page INTRODUCTION.................................................................................................................1 OVERVIEW ...................................................................................................................... 1-2 I. PLANNING A NEW FISH POND ......................................................................................3 Legal Requirements...............................................................................................................3 Water Quantity 4 Water Quality.........................................................................................................................5 Watershed Analysis...............................................................................................................6 Soil Analysis..........................................................................................................................6 Overview................................................................................................................................6
    [Show full text]
  • Between Fish Production and Mangrove Conservation
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 10, ISSUE 01, JANUARY 2021 ISSN 2277-8616 Silvoaquaculture: Between Fish Production And Mangrove Conservation Muarif, Yudi Wahyudin, Dewi Merdekawati, Mulyana, Fia Sri Mumpuni Abstract: Silvoaquaculture is brackish water fishponds combined by mangrove cultivation and it’s the best approach for mangrove conservation. Purpose of this study, to determine production performance, economic value, and ecology of mangroves in silvoaquaculture ponds and how to develop it. The study areas are located in Indramayu district, Indonesia. Mangrove ecological data were obtained using a quadratic survey method, and data of fish production and economic value collected by questionnaires. Data analysis uses a statistical test and descriptive (qualitative) approach. There are three type of silvoaquaculture pond i.e Empang Parit, Komplangan, and Kao-kao. Fishery production in silvoaquaculture ponds includes milkfish and shrimp production. Mangroves in silvoaquaculture ponds will provide good support for fish and daily shrimp production in ponds. Total production of milkfish reached 1688.89 (kg/Ha/year) and daily shrimp 505 (kg/Ha/year) with economic value of 44,938,571 (IDR/Ha/year). Good ecological mangrove seen in Empang parit and Komplangan Pond. Kao-kao pond produce high milkfish and daily shrimp, but bad for status ecological mangrove. Mangrove support for fish business and production in silvoaquaculture ponds includes safe pond from the wind, tide, wave, and treatment of water quality from pollutants, additional feed from plankton, and supply nutrients to pond. Each type of silvoaquaculture pond has different advantages and disadvantages and it’s considered to development of silvoaquaculture pond. Index Terms: - coastal, ecology, economic, mangroves, milkfish, nutrient, pond.
    [Show full text]
  • A Review of Aquaculture in Hawaii and Its Potential Environmental Impacts
    A REVIEW OF AQUACULTURE IN HAWAII AND ITS POTENTIAL ENVIRONMENTAL IMPACTS A THESIS SUBMITTED TO THE GLOBAL ENVIRONMENTAL SCIENCE UNDERGRADUATE DIVISION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN GLOBAL ENVIRONMENTAL SCIENCE DECEMBER 2009 By Cecil B. Bernhard Thesis Advisor L. Neil Frazer I certify that I have read this thesis and that, in my opinion, it is satisfactory in scope and quality as a thesis for the degree of Bachelor of Science in Global Environmental Science THESIS ADVISOR _________________________________ L. Neil Frazer Department of Geology & Geophysics ii ACKNOWLEDGEMENTS I would like to thank everyone who helped me on the project, especially Dr. L. Neil Frazer. Also I would like to thank all of my teachers for helping me, I have learned so much. Cecil Bernhard December 2009 iii ABSTRACT Hawaii has a long history of aquaculture. Before Europeans arrived in the Hawaiian Islands, Hawaiian people already had advanced forms of aquaculture with the use of fish ponds. These fish ponds were a symbol of power and society for the Hawaiian people. In modern Hawaii, fish ponds have been supplemented to some extent by industrial methods develop since the 1960s. These advancements have led to new technologies such as sea cage aquaculture of economically important carnivorous fin fish. The ecological impacts of these new technologies are potentially dangerous. Negative environmental impacts from aquaculture could damage the Hawaiian economy which relies on a healthy ocean for tourism and fisheries. A return to pre-contact principles of aquaculture could eliminate environmental impacts as well as imports needed by modern aquaculture.
    [Show full text]