Metabolism Matters Know Your Metabolism and Control Your Weight

Total Page:16

File Type:pdf, Size:1020Kb

Metabolism Matters Know Your Metabolism and Control Your Weight Metabolism Matters Know your metabolism and control your weight. Your metabolism tells you how many calories you need to lose, gain or maintain weight. Tracking metabolism gives you the missing information needed to reach your goal. Metabolism accounts for 75-95% of the calories your body burns. Metabolism matters. Knowing your metabolism can prevent the yo-yo pattern of weight gain after initial weight-loss, help you find the most effective exercise program and provides a more complete picture of health. Basal Metabolic Rate Testing Your basal metabolic rate (BMR) is the amount of energy your body burns at rest. This changes with age, stress, activity levels, diet, pregnancy, illness, medications and other factors. Knowing your personal BMR provides a more complete picture of your energy needs. Most clinics utilize calculations for estimating metabolism and energy needs however these calculations are just estimations and not personalized for you. The Mankato Clinic utilizes a Breezing device which measures the consumed oxygen rate and produced carbon dioxide rate through Breezing gives you the precise metabolic information you need indirect calorimetry, the gold-standard method recommended to reach your weight goals. by the Academy of Nutrition and Dietetics, the World Health Organization and others. Information on how to learn your BMR on back side. � mankatoclinic.com THERE ARE TWO OPTIONS FOR OBTAINING YOUR BMR THROUGH MANKATO CLINIC: Option 1: Option 2: Personalized Action Plan BMR Testing Only Meet with a registered dietitian to obtain your BMR and A nurse will administer your basal metabolic rate test and to work together to calculate your total energy needs provide you with the results. This option does not include based on your daily physical activity and weight goals. The total energy needs based on physical activity and weight dietitian will work with you to create a personalized meal goals or a personalized meal plan. plan specific to your needs while also providing behavioral Cost: $25.00 each time measured change coaching. The BMR measurement is not covered by insurance and will be paid at time of measurement. Many insurance plans cover the cost of registered dietitian visits. Please check with your insurance plan to see if your insurance will cover the visit. At your visit the dietitian will determine if having your BMR measured is right for you. Cost: $20.00 for initial measurement The BMR measurement is not covered by insurance and will be paid at time of measurement. To schedule an appointment please call the Before the Measurement: Diabetes and Nutrition Center at 507-389-8572. • Measurements are best done first thing in the morning, fasting. • Drinking water before the measurement is fine, but avoid drinking coffee, tea, milk or other beverages at least four hours before the measurement. • Wait at least four hours after moderate exercise; at least 12 hours after strenuous exercise. � mankatoclinic.com .
Recommended publications
  • Simple Experiment Confirming the Negative Temperature Dependence of Gravity Force
    SIMPLE EXPERIMENT CONFIRMING THE NEGATIVE TEMPERATURE DEPENDENCE OF GRAVITY FORCE Alexander L. Dmitriev St-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverksky Prospect, St-Petersburg, 197101, Russia Results of weighing of the tight vessel containing a thermo-isolated copper sample heated by a tungstic spiral are submitted. The increase of temperature of a sample with masse of 28 g for about 10 0 С causes a reduction of its apparent weight for 0.7 mg. The basic sources of measurement errors are briefly considered, the expediency of researches of temperature dependence of gravity is recognized. Key words: gravity force, weight, temperature, gravity mass. PACS: 04.80-y. Introduction The question on influence of temperature of bodies on the force of their gravitational interaction was already raised from the times when the law of gravitation was formulated. The first exact experiments in this area were carried out at the end of XIXth - the beginning of XXth century with the purpose of checking the consequences of various electromagnetic theories of gravitation (Mi, Weber, Morozov) according to which the force of a gravitational attraction of bodies is increased with the growth of their absolute temperature [1-3]. That period of experimental researches was completed in 1923 by the publication of Shaw and Davy’s work who concluded that the temperature dependence of gravitation forces does not exceed relative value of 2⋅10 −6 K −1 and can be is equal to zero [4]. Actually, as shown in [5], those authors confidently registered the negative temperature dependence of gravitation force.
    [Show full text]
  • The History of Carbon Monoxide Intoxication
    medicina Review The History of Carbon Monoxide Intoxication Ioannis-Fivos Megas 1 , Justus P. Beier 2 and Gerrit Grieb 1,2,* 1 Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany; fi[email protected] 2 Burn Center, Department of Plastic Surgery and Hand Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany; [email protected] * Correspondence: [email protected] Abstract: Intoxication with carbon monoxide in organisms needing oxygen has probably existed on Earth as long as fire and its smoke. What was observed in antiquity and the Middle Ages, and usually ended fatally, was first successfully treated in the last century. Since then, diagnostics and treatments have undergone exciting developments, in particular specific treatments such as hyperbaric oxygen therapy. In this review, different historic aspects of the etiology, diagnosis and treatment of carbon monoxide intoxication are described and discussed. Keywords: carbon monoxide; CO intoxication; COHb; inhalation injury 1. Introduction and Overview Intoxication with carbon monoxide in organisms needing oxygen for survival has probably existed on Earth as long as fire and its smoke. Whenever the respiratory tract of living beings comes into contact with the smoke from a flame, CO intoxication and/or in- Citation: Megas, I.-F.; Beier, J.P.; halation injury may take place. Although the therapeutic potential of carbon monoxide has Grieb, G. The History of Carbon also been increasingly studied in recent history [1], the toxic effects historically dominate a Monoxide Intoxication. Medicina 2021, 57, 400. https://doi.org/10.3390/ much longer period of time. medicina57050400 As a colorless, odorless and tasteless gas, CO is produced by the incomplete combus- tion of hydrocarbons and poses an invisible danger.
    [Show full text]
  • Weight and Lifestyle Inventory (Wali)
    WEIGHT AND LIFESTYLE INVENTORY (Bariatric Surgery Version) © 2015 Thomas A. Wadden, Ph.D. and Gary D. Foster, Ph.D. 1 The Weight and Lifestyle Inventory (WALI) is designed to obtain information about your weight and dieting histories, your eating and exercise habits, and your relationships with family and friends. Please complete the questionnaire carefully and make your best guess when unsure of the answer. You will have an opportunity to review your answers with a member of our professional staff. Please allow 30-60 minutes to complete this questionnaire. Your answers will help us better identify problem areas and plan your treatment accordingly. The information you provide will become part of your medical record at Penn Medicine and may be shared with members of our treatment team. Thank you for taking the time to complete this questionnaire. SECTION A: IDENTIFYING INFORMATION ______________________________________________________________________________ 1 Name _________________________ __________ _______lbs. ________ft. ______inches 2 Date of Birth 3 Age 4 Weight 5 Height ______________________________________________________________________________ 6 Address ____________________ ________________________ ______________________/_______ yrs. 7 Phone: Cell 8 Phone: Home 9 Occupation/# of yrs. at job __________________________ 10 Today’s Date 11 Highest year of school completed: (Check one.) □ 6 □ 7 □ 8 □ 9 □ 10 □ 11 □ 12 □ 13 □ 14 □ 15 □ 16 □ Masters □ Doctorate Middle School High School College 12 Race (Check all that apply): □ American Indian □ Asian □ African American/Black □ Pacific Islander □White □ Other: ______________ 13 Are you Latino, Hispanic, or of Spanish origin? □ Yes □ No SECTION B: WEIGHT HISTORY 1. At what age were you first overweight by 10 lbs. or more? _______ yrs. old 2. What has been your highest weight after age 21? _______ lbs.
    [Show full text]
  • Arenicola Marina During Low Tide
    MARINE ECOLOGY PROGRESS SERIES Published June 15 Mar Ecol Prog Ser Sulfide stress and tolerance in the lugworm Arenicola marina during low tide Susanne Volkel, Kerstin Hauschild, Manfred K. Grieshaber Institut fiir Zoologie, Lehrstuhl fur Tierphysiologie, Heinrich-Heine-Universitat, Universitatsstr. 1, D-40225 Dusseldorf, Germany ABSTRACT: In the present study environmental sulfide concentrations in the vicinity of and within burrows of the lugworm Arenicola marina during tidal exposure are presented. Sulfide concentrations in the pore water of the sediment ranged from 0.4 to 252 pM. During 4 h of tidal exposure no significant changes of pore water sulfide concentrations were observed. Up to 32 pM sulfide were measured in the water of lugworm burrows. During 4 h of low tide the percentage of burrows containing sulfide increased from 20 to 50% in July and from 36 to 77% in October A significant increase of median sulfide concentrations from 0 to 14.5 pM was observed after 5 h of emersion. Sulfide and thiosulfate concentrations in the coelomic fluid and succinate, alanopine and strombine levels in the body wall musculature of freshly caught A. marina were measured. During 4 h of tidal exposure in July the percentage of lugworms containing sulfide and maximal sulfide concentrations increased from 17 % and 5.4 pM to 62% and 150 pM, respectively. A significant increase of median sulfide concentrations was observed after 2 and 3 h of emersion. In October, changes of sulfide concentrations were less pronounced. Median thiosulfate concentrations were 18 to 32 FM in July and 7 to 12 ~.IMin October No significant changes were observed during tidal exposure.
    [Show full text]
  • Biotransformation: Basic Concepts (1)
    Chapter 5 Absorption, Distribution, Metabolism, and Elimination of Toxics Biotransformation: Basic Concepts (1) • Renal excretion of chemicals Biotransformation: Basic Concepts (2) • Biological basis for xenobiotic metabolism: – To convert lipid-soluble, non-polar, non-excretable forms of chemicals to water-soluble, polar forms that are excretable in bile and urine. – The transformation process may take place as a result of the interaction of the toxic substance with enzymes found primarily in the cell endoplasmic reticulum, cytoplasm, and mitochondria. – The liver is the primary organ where biotransformation occurs. Biotransformation: Basic Concepts (3) Biotransformation: Basic Concepts (4) • Interaction with these enzymes may change the toxicant to either a less or a more toxic form. • Generally, biotransformation occurs in two phases. – Phase I involves catabolic reactions that break down the toxicant into various components. • Catabolic reactions include oxidation, reduction, and hydrolysis. – Oxidation occurs when a molecule combines with oxygen, loses hydrogen, or loses one or more electrons. – Reduction occurs when a molecule combines with hydrogen, loses oxygen, or gains one or more electrons. – Hydrolysis is the process in which a chemical compound is split into smaller molecules by reacting with water. • In most cases these reactions make the chemical less toxic, more water soluble, and easier to excrete. Biotransformation: Basic Concepts (5) – Phase II reactions involves the binding of molecules to either the original toxic molecule or the toxic molecule metabolite derived from the Phase I reactions. The final product is usually water soluble and, therefore, easier to excrete from the body. • Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (such as glycine, taurine, and glutamic acid).
    [Show full text]
  • Anomalies in Coral Reef Community Metabolism and Their Potential Importance in the Reef CO2 Source-Sink Debate
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6566–6569, May 1998 Population Biology Anomalies in coral reef community metabolism and their potential importance in the reef CO2 source-sink debate JOHN R. M. CHISHOLM* AND DAVID J. BARNES Australian Institute of Marine Science, Private Mail Bag No. 3, Mail Centre, Townsville, Queensland 4810, Australia Communicated by Andrew A. Benson, University of California, San Diego, CA, March 20, 1998 (received for review September 23, 1997) ABSTRACT It is not certain whether coral reefs are ratio of photosynthesis to respiration on unperturbed reefs sources of or sinks for atmospheric CO2. Air–sea exchange of over 24 h is considered to be close to unity (10). CO2 over reefs has been measured directly and inferred from In March 1996, we made an expedition to Lizard Island, changes in the seawater carbonate equilibrium. Such mea- northern Great Barrier Reef, Australia (Fig. 1), to measure surements have provided conflicting results. We provide changes in the O2 concentration and pH of seawater flowing community metabolic data that indicate that large changes in across a 300-m section of the reef flat by using a floating CO2 concentration can occur in coral reef waters via biogeo- instrument package (11–14). Measurements were made in chemical processes not directly associated with photosynthe- March when tides permitted the instrument package to float sis, respiration, calcification, and CaCO3 dissolution. These freely over the reef flat, a short distance above the benthos. processes can significantly distort estimates of reef calcifica- On arriving at Lizard Island, we encountered environmental tion and net productivity and obscure the contribution of coral conditions that we had not anticipated.
    [Show full text]
  • The Effects of Warm and Cold Water Scuba Finning on Cardiorespiratory Responses and Energy Expenditure
    AN ABSTRACT OF THE THESISOF in Caron Lee Louise Shake for the degreeof Doctor of Philosophy Education presented on April 5, 1989. Scuba Finning on Title: The Effects of Warm and Cold Water Cardiorespiratory Responses and EnergyExpenditure Redacted for privacy Abstract approved: cardiorespiratory and energy This study was designed to determine finning at expenditure responses elicited byrecreational divers while and warm (29°C) water a submaximal intensity(35% max) in cold (18°C) to par- with and without wet suits. Male divers (15) volunteered exercise ticipate in five experimentalprocedures. A maximal graded in 29°C tethered finning test, two submaximal(30 min.) finning tests tests with and without wet suits, and twosubmaximal (30 min.) finning The variables in 18°C with and without wetsuits were performed. (VE), measured were: breathing frequency(BF), minute ventilation (RER), heart rate oxygen consumption (V02)respiratory exchange ratio (HR), and core temperature (CT). Caloric expenditure (kcal) was calculated from RER and V02. A Four-Way ANOVA andrepeated measures 0.05) Two-Way design was used to analyze the data. A significant (p < A significant (p < (suit x time) interaction wasrevealed for BF. 0.01) Three-Way (suit x temp. x time)interaction was revealed forVE, V02, RER, HR, and CT. An inverse relationship exists betweenBF and VE when comparing dives with and without suits. Diving in 18°C with suitselicited higher BF and lower VE than diving in 29°Cwithout suits. V02 increased significantly during threeof the four dives. Diving without suits elicited higher V02values though this was not significant in every case. Diving in a cold environmentelicited lower RER re- higher V02 and VE.
    [Show full text]
  • Ideal Gasses Is Known As the Ideal Gas Law
    ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .
    [Show full text]
  • Can't Catch My Breath! a Study of Metabolism in Fish. Subjects
    W&M ScholarWorks Reports 2017 Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/ Biology Grades: 6-8 Gail Schweiterman Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Science and Mathematics Education Commons Recommended Citation Schweiterman, G. (2017) Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/Biology Grades: 6-8. VA SEA 2017 Lesson Plans. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/V5414G This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Can’t catch my breath! A study of metabolism in fish Gail Schwieterman Virginia Institute of Marine Science Grade Level High School Subject area Biology, Environmental, or Marine Science This work is sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center. 1. Activity Title: Can’t Catch My Breath! A study of metabolism in fish 2. Focus: Metabolism (Ecological drivers); The Scientific Method (Formulating Hypothesis) 3. Grade Levels/ Subject: HS Biology, HS Marine Biology 4. VA Science Standard(s) addressed: BIO.1. The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and conducting investigations (including most Essential Understandings and nearly all Essential Knowledge and Skills) BIO.4a.
    [Show full text]
  • MAXIMUM METABOLISM FOOD METABOLISM PLAN the MAXIMUM Hreshold Spinach Salad: 1 Cup Spinach, 1/2 Cup Mixed 6 Oz
    THE MAXIMUM METABOLISM FOOD PLAN™ WEEK ONE SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY Breakfast 3/4 oz. multi-grain cereal 1/2 cup oatmeal 2 lite pancakes (4” diameter); use non-stick 1 slice of wheat toast; top with 1/2 cup 1 1/2 oz. low fat granola Apple cinnamon crepe: 1 wheat tortilla, Omelet: 3 egg whites, 1 cup mixed zucchini, 1/2 sliced banana or 3/4 cup sliced 1/2 tbs. raisins pan; top with 1/2 cup peaches or 1/2 banana nonfat cottage cheese and 1/2 sliced 1 cup nonfat milk 1/3 cup nonfat ricotta cheese, 1 apple green peppers, onions, and tomatoes, 12 oz. of water before breakfast strawberries 1/2 cup nonfat milk 1 tbs. reduced calorie syrup apple; sprinkle with 1 tsp. cinnamon 1/2 medium banana (sliced), 1 tsp. cinnamon, 1/2 tsp. vanilla 2 oz. reduced calorie cheese, and salsa 1/2 cup nonfat milk 1 medium apple 1/2 cup low fat maple yogurt extract; heat in skillet over low flame 1 slice wheat toast 1/2 cup nonfat milk 1 tsp. butter Mid-Morning Snack 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 1/2 bagel 1/2 cup nonfat yogurt 1/2 cup low fat cottage cheese 1 cup nonfat flavored yogurt with 1 tsp. 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 tbs. nonfat cream cheese 1/2 cup pineapple chunks sliced almonds 1 tbs.
    [Show full text]
  • Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
    Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs.
    [Show full text]
  • The Relation of Metabolic Rate to Body Weight and Organ Size
    Pediat.Res. 1: 185-195 (1967) Metabolism basal metabolic rate growth REVIEW kidney glomerular filtration rate body surface area body weight oxygen consumption organ growth The Relation of Metabolic Rate to Body Weight and Organ Size A Review M.A. HOLLIDAY[54J, D. POTTER, A.JARRAH and S.BEARG Department of Pediatrics, University of California, San Francisco Medical Center, San Francisco, California, and the Children's Hospital Medical Center, Oakland, California, USA Introduction Historical Background The relation of metabolic rate to body size has been a The measurement of metabolic rate was first achieved subject of continuing interest to physicians, especially by LAVOISIER in 1780. By 1839 enough measurements pediatricians. It has been learned that many quanti- had been accumulated among subjects of different tative functions vary during growth in relation to sizes that it was suggested in a paper read before the metabolic rate, rather than body size. Examples of Royal Academy of France (co-authored by a professor these are cardiac output, glomerular filtration rate, of mathematics and a professor of medicine and oxygen consumption and drug dose. This phenomenon science) that BMR did not increase as body weight may reflect a direct cause and effect relation or may be increased but, rather, as surface area increased [42]. a fortuitous parallel between the relatively slower in- In 1889, RICHET [38] observed that BMR/kg in rab- crease in metabolic rate compared to body size and the bits of varying size decreased as body weight increased; function in question. RUBNER [41] made a similar observation in dogs. Both The fact that a decrease in metabolism and many noted that relating BMR to surface area provided re- other measures of physiological function in relation to a sults that did not vary significantly with size.
    [Show full text]