IODP Expedition 305 Preliminary Report

Total Page:16

File Type:pdf, Size:1020Kb

IODP Expedition 305 Preliminary Report Integrated Ocean Drilling Program Expedition 305 Preliminary Report Oceanic Core Complex Formation, Atlantis Massif Oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation 8 January–2 March 2005 Expedition Scientific Party PUBLISHER’S NOTES Material in this publication may be copied without restraint for library, abstract service, educational, or personal research purposes; however, this source should be appropriately acknowledged. Citation: Expedition Scientific Party, 2005. Oceanic core complex formation, Atlantis Massif—oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Prel. Rept., 305. http://iodp.tamu.edu/publications/PR/305PR/305PR.PDF. Distribution: Electronic copies of this series may be obtained from the Integrated Ocean Drilling Program (IODP) Publication Services homepage on the World Wide Web at iodp.tamu.edu/publications. This publication was prepared by the Integrated Ocean Drilling Program U.S. Implementing Organization (IODP-USIO): Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, and Texas A&M University, as an account of work performed under the international Integrated Ocean Drilling Program, which is managed by IODP Management International (IODP-MI), Inc. Funding for the program is provided by the following agencies: European Consortium for Ocean Research Drilling (ECORD) Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan Ministry of Science and Technology (MOST), People’s Republic of China U.S. National Science Foundation (NSF) DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, IODP Management International, Inc., Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, Texas A&M University, or Texas A&M Research Foundation. April 2005 Expedition 305 Preliminary Report The following scientists and personnel were aboard the JOIDES Resolution for Expeditions 304 and 305 of the Integrated Ocean Drilling Program. Expedition Scientific Party Donna Blackman Yasuhiko Ohara Co-Chief Scientist Co-Chief Scientist Scripps Institution of Oceanography Ocean Research Laboratory University of California, San Diego Hydrographic and Oceanographic Department 9500 Gilman Drive of Japan La Jolla CA 92093-0225 5-3-1 Tsukiji, Chuo-ku USA Tokyo 104-0045 [email protected] Japan Work: (858) 534-8813 [email protected] Fax: (858) 534-5332 Work: (81) 3-3541-4387 Fax: (81) 3-3541-3870 Benoit Ildefonse Co-Chief Scientist D. Jay Miller Laboratoire de Tectonophysique Expedition Project Manager/Staff Scientist Université Montpellier II Integrated Ocean Drilling Program CC49 Texas A&M University 34095 Montpellier 1000 Discovery Drive France College Station TX 77845-9547 [email protected] USA Work: (33) 46714-3818 [email protected] Fax: (33) 46714-3603 Work: (979) 845-2197 Fax: (979) 845-0876 Barbara E. John Co-Chief Scientist Christopher J. MacLeod Department of Geology and Geophysics Shore-based Contributor University of Wyoming School of Earth, Ocean and Planetary Sciences 1000 East University Avenue Cardiff University Department 3006 Main Building, Park Place Laramie WY 82071 Cardiff CF10 3YE USA United Kingdom [email protected] [email protected] Work: (307) 766-4232 Work: (44) 29-208-74332 Fax: (307) 766-6679 Fax: (44) 29-208-74326 Expedition 305 Scientific Party Heike Delius Natsue Abe Logging Staff Scientist Igneous Petrologist Department of Geology Deep Sea Research Department University of Leicester Japan Marine Science and Technology Center University Road 2-15 Natsushima-cho Leicester LE1 7RH Yokosuka, Kanagawa 237-0061 United Kingdom Japan [email protected] [email protected] Phone: (44) 116-252-3634 Work: (81) 46-867-9329 Fax: (44) 116-252-3918 Fax: (81) 46-867-9315 3 Expedition 305 Preliminary Report James S. Beard Angela Halfpenny Metamorphic Petrologist Structural Geologist Department of Earth Sciences Department of Earth and Ocean Studies Virginia Museum of Natural History University of Liverpool 1001 Douglas Avenue 4 Brownlow Street Martinsville VA 24112 Liverpool, Merseyside L69 3GP USA United Kingdom [email protected] [email protected] Work: (276) 666-8611 Work: (44) 151-794-5174 Fax: (276) 632-6487 Fax: (44) 151-794-5196 Daniele Brunelli Heidi-Elisabeth Hansen Igneous Petrologist Igneous Petrologist Laboratoire Pierre Süe–DRECAM Department of Earth Science CNRS University of Bergen, Norway 91191 Yvette Cedex Allegaten 41 France Bergen [email protected] Norway Work: (33) 1-6908-9522 [email protected] Fax: (33) 1-6908-6923 Work: (47) 5531 3949 Adélie G. Delacour Amber C. Harris Metamorphic Petrologist Physical Properties Specialist Institut für Mineralogie und Petrographie Graduate School of Oceanography Eidgenössische Technische Hochschule–Zentrum University of Rhode Island Sonnegstrasse 5 Narragansett RI 02882 Zürich 8092 USA Switzerland [email protected] [email protected] Work: (401) 241-6874 Work: (41) 1 632 7823 Akihiro Tamura Hasebe Fax: (41) 1 632 1088 Igneous Petrologist Javier Escartin Department of Earth Sciences Structural Geologist Kanazawa University Marine Geosciences Kakuma, Kanazawa 920-1192 Université Pierre et Marie Curie Japan Case 89 IPGP [email protected] 4 Place Jussieu Work: (81) 76 264 5723 75252 Paris Fax: (81) 76 264 5746 France Eric Hellebrand [email protected] Igneous Petrologist Work: (33) 1-4427-4601 Abteilung Geochemie Fax: (33) 1-4427-9969 Max-Planck-Institüt für Chemie Patricia B. Fryer Postfach 3060 Metamorphic Petrologist 55020 Mainz School of Ocean and Earth Science and Technology Germany University of Hawaii at Manoa [email protected] 1680 East-West Road Work: (49) 6131-305220 Honolulu HI 96822 Fax: (49) 6131-371051 USA [email protected] Work: (808) 956-3146 Fax: (808) 956-6322 4 Expedition 305 Preliminary Report Satoko Ishimaru Katsuyoshi Michibayashi Igneous Petrologist Structural Geologist Division of Environmental Science and Engineering Institute of Geosciences Kanazawa University Shizuoka University Graduate School of Natural Science and Faculty of Science Technology 836 Oya Kakuma, Kanazawa 920-1192 Shizuoka 422-8529 Japan Japan [email protected] [email protected] Work: (81) 76-264-5723 Work: (81) 54-238-4788 Fax: (81) 76-264-5746 Fax: (81) 54-238-0491 Kevin T.M. Johnson Toshio Nozaka Igneous Petrologist Metamorphic Petrologist Department of Geology and Geophysics/SOEST Department of Earth Sciences University of Hawaii and Manoa Okayama University 1680 East-West Road 3-1-1 Tsushima-naka Post 606B Okayama 700-8530 Honolulu HI 96822 Japan USA [email protected] [email protected] Work: (81) 86-251-7883 Work: (808) 956-3444 Fax: (81) 86-251-7895 Fax: (808) 956-5512 Martin Rosner Garry D. Karner Geochemist Physical Properties Specialist Department of Marine Chemistry and Lamont-Doherty Earth Observatory Geochemistry of Columbia University Woods Hole Oceanographic Institution PO Box 1000, 61 Route 9W Clark Building, MS 23 Palisades NY 10964 Woods Hole MA 02543 USA USA [email protected] [email protected] Work: (845) 365-8355 Work: (508) 289-2699 Fax: (845) 365-8156 Fax: (508) 457-2193 Margaret Linek Guenter Suhr Logging Trainee Structural Geologist Angeandte Geophysik Mineralogisch-Petrographisches Institut Rheinisch-Westfälischen Technischen Hochschule Universität Köln Aachen Zülpicher Strasse 49b RW Technische Hochschule 50674 Köln Lochnerstrasse 4-20 Germany 52064 Aachen [email protected] Germany Work: (49) 221-470-3196 [email protected] Fax: (40) 221-470-5199 Work: (49) 241-809-4832 Masako Tominaga Fax: (49) 241-809-2132 Paleomagnetist Olivia U. Mason Department of Oceanography Microbiologist Texas A&M University College of Oceanography 3F Oceanography Building Oregon State University 3146 TAMU Giovannoni Laboratory College Station TX 77843-3146 104 COAS Administration Building USA Corvallis OR 97331-5503 [email protected] USA Work: (979) 845-7211 [email protected] Fax: (979) 845-6331 Work: (503) 939-1035 5 Expedition 305 Preliminary Report Toru Yamasaki Xixi Zhao Geochemist Paleomagnetist Department of Earth and Planetary Sciences Center for Study of Imaging and Dynamics Hokkaido University of the Earth Graduate School of Science Institute of Geophysics and Planetary Physics N 10, W 8 University of California, Santa Cruz Sapporo, Hokkaido 060-0810 Earth and Marine Sciences Building Japan 1156 High Street [email protected] Santa Cruz CA 95064 Work: (81) 11 716 2111, ext. 4655 USA Fax: (81) 11 746 0394 [email protected] Work: (831) 459-4847 Fax: (831) 459-3074 Expedition 304 Scientific Party Florence Einaudi Muriel Andreani Logging Staff Scientist Metamorphic Petrologist Laboratoire de Geophysique et D’hydrodynamique Laboratoire de Geosciences Marines Université Montpellier II, ISTEEM CNRS UMR 7097 Case Courrier 56 Institut de Physique du Globe de Paris 34095 Montpellier Cedex 5 4 Place Jussieu—Case 89 France 75252 Paris Cedex 5 [email protected] France Work: (33) 4-67-14-93-09 [email protected] Fax: (33) 4-67-14-93-08
Recommended publications
  • Geophysical Signatures of Oceanic Core Complexes
    Geophys. J. Int. (2009) 178, 593–613 doi: 10.1111/j.1365-246X.2009.04184.x REVIEW ARTICLE Geophysical signatures of oceanic core complexes Donna K. Blackman,1 J. Pablo Canales2 and Alistair Harding1 1Scripps Institution of Oceanography, UCSD La Jolla, CA, USA. E-mail: [email protected] 2Woods Hole Oceanographic Institution, Woods Hole, MA, USA Accepted 2009 March 16. Received 2009 February 15; in original form 2008 July 25 SUMMARY Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between mag- matism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent GJI Geodesy, potential field and applied geophysics of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified.
    [Show full text]
  • Enhanced Mantle Upwelling/Melting Caused Segment Propagation, Oceanic Across the Ridge Crest of the TAMMAR Segment
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Enhanced Mantle Upwelling/Melting Caused Segment 10.1002/2017JB014273 Propagation, Oceanic Core Complex Die Off, Key Points: and the Death of a Transform Fault: • Seismic data confirm ridge propagation induced by increased The Mid-Atlantic Ridge at 21.5°N melt supply due to increased fertility or upwelling of the asthenosphere A. Dannowski1 , J. P. Morgan2, I. Grevemeyer1 , and C. R. Ranero3,4 • Source of melt supply is migrating, ended a transform fault, and possibly 1GEOMAR/Helmholtz-Centre for Ocean Research Kiel, Kiel, Germany, 2Earth Sciences Department, Royal Holloway stopped OCC formation 3 • The growth direction of the enhanced University of London, London, UK, Barcelona Centre for Subsurface Imaging, Institut de Ciencias del Mar, Barcelona, Spain, 4 melt supply region is influenced by ICREA, Barcelona, Spain the distance to “colder” mantle zones Abstract Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic Correspondence to: A. Dannowski, processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The [email protected] TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°250N and 22°N is a magmatically active segment. At ~4.5 Ma this segment started to propagate south, causing the termination of the transform fault Citation: at 21°400N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the Dannowski, A., Morgan, J. P., south. Here a segment center with a high magmatic budget has replaced a transform fault region with Grevemeyer, I., & Ranero, C.
    [Show full text]
  • Geomorphology of the Bushveld Complex
    Cademo Lab. Xeo16xico de Laxe Coruña. 1997. Vol. 22, pp. 209-227 Geomorphology of the Bushveld Complex Geomorfología del Complejo de Bushveld LAGEAT,Y. This paper deals wich che differenc relacion becween scruccure and lichology in che geomorphology of che Bushveld Complexo The final resules demonscrace chac, even so differenc scale ofsize, widerfor che epirogenic-cecconic movements and smaller for che lichology, che cwo faccors need co be considered for a beccer underscanding ofche landscape evolucion ofche area. Key words: ulerabasic and basic rocks, Bushveld Complex, scruccural geomorphology, lichological differences. LAGEAT, Y. (Universicé Blaise Pascaland UPRES-A 6042 (CNRS). Clermont-Ferrand (France) 210 Lageat, Y. CAD. LAB. XEOL. LAXE 22 (997) INTRODUCTION subdued topography. So, being concerned with the relationships between scenery and In spiteofthestrong emphasisonclimatic structure, the study wil1 consider two topics in French geomorphology since the different but complementary topics: fifties, research dealing with structural differential erosion and regional evolution landforms developed in crystalline shields ofa shield area (Y. LAGEAT, 1989). pioneered by the late Professor P. Birot has been upheld. In numerous regional monographs, widely distributed between GEOLOGICAL POTENTIAL theArcticCircleand theTropicofCapricorn, special attention has been devoted to the A presentation of the geology of the relationships between landforms and Bushveld Complex is essential to any geological structure, with the purpose to understanding of its surface morphology. distinguish between the direct control of Ranging in composition from ultrabasic ro recent faulting and the response of acid, it outcrops largely within a region contrasting rock units todifferential erosiono covered bya characteristicvegetation termed This ambiguity may be easily overcome in «Bushveld».
    [Show full text]
  • The Nain Anorthosite Project, Labrador: Field
    THE NAIN ANORTHOSITE PROJECT, LABRADOR: FIELD REPORT 1971 S. A. MORSE I EDITOR R. V. PITS I ULAK CONTRIBUTION NO. 9 GEOLOGY DEPARTMENT UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS L THE NAIN ANORTHOSITE PROJECT, LABRADOR: FIElD REPORT 1971 S. A. Morse, Editor Final Report under NSF Grants GA-21386 and GA-27134 to Franklin and Marshall College: "Evolution of Anorthosite and Related Crustal Rocks in Coastal Labrador", and "Facility for Crustal Studies in Coastal Labrador." S. A. Morse, Principal Investigator (now at U.Mass/Amherst) Dirk de Waard, Syracuse Associate Investigators E. P. Wheeler 2nd, Cornell Other contributors: Research Assistants: J. H. Berg, U. Mass/Amherst C. D. Brauer, Vassar G. A. Plananaky, Harvard F. Finley, Syracuse C. C. Rubins, Syracuse T. H. Folkomer, Franklin & Marshall B.G.J. Upton, Edinburgh D. Russell, Syracuse Charles Woodward, Syracuse J. A. Speer, Virginia Polytechnic Contribution No. 9 Amherst, Massachusetts Geology Department December, 1971 Uni~ersity of Massachusetts L I - CONTENTS INTRODUCTION •••••••••.•••••.•••••••••• ......................... 1 GEOLOGIC~ REPORT. • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 9 General Statement ••••••• 9 Collateral Studies •• 12 Eastern Con tact Zone . .....................................•.... 15 Country rocks of the anorthosite massif and anorthosite contacts in the Ford Harbour Region (de Waard) ••••••••••••••••••••• 15 Intrusive contact relations in the outer is lands (Wlleele r) ....................................
    [Show full text]
  • 62237 Troctolitic Anorthosite 62.4 Grams
    62237 Troctolitic Anorthosite 62.4 grams Figure 1: Photo of 62237. NASA S72-41797 (B&W), NASA S72-38959 (color). Cube is 1 cm. Introduction 62237 and 62236 are chalky white rocks that were Warren and Wasson (1977) concluded that 62237 is collected together along with 62235 and incidental soil, “chemically pristine”, because it was lacking in from the rim of Buster Crater, station 2, Apollo 16 meteoritic siderophiles. (figure 2), where they were found half buried in the regolith (Sutton 1981). The mineral chemistry of these 62237 has been crushed to form a cataclastic texture, rocks is similar and indicates that they belong to the but, in places, the original coarse-grained igneous suite of lunar plutonic rocks termed ferroan anorthosite texture can be discerned by relic clasts (figure 3). (James 1980). Mineralogy Olivine: Olivine (Fo ) crystals up to 3 mm in size Petrography 59-61 Dymek et al. (1975) concluded that 62237 was a slowly are reported in 62237 by Dymek et al. (1975). Warren cooled plutonic lunar rock (figure 1). The mineralogy and Wasson (1977) and Bersch et al. (1991) also of 62237 is that of a ferroan anorthosite with fairly provided analyses of olivine in 62237. Dymek et al. abundant (~20%) mafic minerals (figure 5). noted that olivine in 62237 was extremely depleted in Ca. Lunar Sample Compendium C Meyer 2011 Figure 2: Location of 62237. Pyroxene: Dymek et al. (1975) and Bersch et al. (1991) determined the composition of pyroxene in 62237 (figure 4). Plagioclase: Plagioclase in 62237 is An95-99 and contains only small amount of minor elements (Dymek et al.
    [Show full text]
  • Nickel Content of an Alaskan Basic Rock
    If yon do not need this publication after it has served your purpose, please return it to the Geological Survey, using the official mailing label at the end UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 897 D NICKEL CONTENT OF AN ALASKAN BASIC ROCK BY JOHN C. REED Mineral resources of Alaska, 1936 (Pages 263-268) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1939 ?For sale by the Superintendent of Documents, Washington, D. C. ....... Price 5 cent! CONTENTS Page- Abstract__----------__...__-_--_--__--___-._--_._..__.____ 265 Location and general features.__--_--_------__-_-__---_-_--___-_-___ 263 Petrographic studies-______-_-__---_--_-----___---_--_-__-____-____ 265- Chemical analyses----___-_-__-_-_--__-_---_-____-_____-___________ 267 Conclusions_ _ ___-_________________-_____-_--_-____-___--___----__ 268- ILLUSTRATION Page FIGURE 11. Index map showing location of nickel-bearing sill on Admiralty Island.. ....... ______________--..________ 264 NICKEL CONTENT OF AN ALASKAN BASIC ROCK By JOHN C. REED ABSTRACT A nickel-bearing sill, about 126 feet thick, lies in a thick sequence of greenstone schists, graphitic phyllites, and quartzites near the north end of Admiralty Island not far from Juneau, Alaska. Petrographic measurements show that volumetrically the rock is made up of about 62.07 percent labradprite, 34.22 percent olivine, 2.42 percent pyroxene, 0.79 percent pyrrhotite, 0.21 percent magnetite, 0.14 percent chalcopyrite, and 0.06 percent pentlandite.
    [Show full text]
  • Role of Late Jurassic Intra-Oceanic Structural Inheritance in the Alpine Tectonic Evolution of the Monviso Meta-Ophiolite Complex (Western Alps)
    Geol. Mag. 155 (2), 2018, pp. 233–249. c Cambridge University Press 2017 233 doi:10.1017/S0016756817000553 Role of Late Jurassic intra-oceanic structural inheritance in the Alpine tectonic evolution of the Monviso meta-ophiolite Complex (Western Alps) ∗ ∗ ∗ GIANNI BALESTRO , ANDREA FESTA †, ALESSANDRO BORGHI , ∗ ∗ DANIELE CASTELLI , MARCO GATTIGLIO & PAOLA TARTAROTTI‡ ∗ Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso, 35, 10125 – Torino, Italy ‡Dipartimento di Scienze della Terra, Università di Milano, Via Mangiagalli, 34, 20133 – Milano, Italy (Received 31 October 2016; accepted 2 June 2017; first published online 17 July 2017) Abstract – The eclogite-facies Monviso meta-ophiolite Complex in the Western Alps represents a well-preserved fragment of oceanic lithosphere and related Upper Jurassic – Lower Cretaceous sed- imentary covers. This meta-ophiolite sequence records the evolution of an oceanic core complex formed by mantle exhumation along an intra-oceanic detachment fault (the Baracun Shear Zone), re- lated to the opening of the Ligurian–Piedmont oceanic basin (Alpine Tethys). On the basis of detailed geological mapping, and structural, stratigraphic and petrological observations, we propose a new interpretation for the tectonostratigraphic architecture of the Monviso meta-ophiolite Complex, and discuss the role played by structural inheritance in its formation. We document that subduction- and exhumation-related Alpine tectonics were strongly influenced by the inherited Jurassic intra-oceanic tectonosedimentary physiography. The latter, although strongly deformed during a major Alpine stage of non-cylindrical W-verging folding and faulting along exhumation-related Alpine shear zones (i.e. the Granero–Casteldelfino and Villanova–Armoine shear zones), was not completely dismembered into different tectonic units or subduction-related mélanges as suggested in previous interpretations.
    [Show full text]
  • Fluid Evolution in an Oceanic Core Complex: a Fluid Inclusion Study from IODP Hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge
    This is a repository copy of Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80181/ Version: Published Version Article: Castelain, T, McCaig, AM and Cliff, RA (2014) Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 15 (4). 1193 - 1214. ISSN 1525-2027 https://doi.org/10.1002/2013GC004975 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Fluid evolution in an Oceanic Core Complex: A fluid inclusion 10.1002/2013GC004975 study from IODP hole U1309 D—Atlantis Massif, 30N, Key Points: Mid-Atlantic Ridge The TAG model is a good analog for fluid evolution at Atlantis Massif Teddy Castelain1, Andrew M.
    [Show full text]
  • Fossil Oceanic Core Complexes in the Alps. New Field, Geochemical And
    Decrausaz et al. Swiss J Geosci (2021) 114:3 https://doi.org/10.1186/s00015-020-00380-4 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Fossil oceanic core complexes in the Alps. New feld, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’Hérens, Western Alps, Switzerland) Thierry Decrausaz1,2* , Othmar Müntener1, Paola Manzotti3, Romain Lafay2 and Carl Spandler4 Abstract Exhumation of basement rocks on the seafoor is a worldwide feature along passive continental margins and (ultra-) slow-spreading environments, documented by dredging, drilling or direct observations by diving expeditions. Com- plementary observations from exhumed ophiolites in the Alps allow for a better understanding of the underlying processes. The Aiguilles Rouges ophiolitic units (Val d’Hérens, Switzerland) are composed of kilometre-scale remnants of laterally segmented oceanic lithosphere only weakly afected by Alpine metamorphism (greenschist facies, Raman thermometry on graphite: 370–380 °C) and deformation. Geometries and basement-cover sequences comparable to the ones recognized in actual (ultra-) slow-spreading environments were observed, involving exhumed serpentinized and carbonatized peridotites, gabbros, pillow basalts and tectono-sedimentary cover rocks. One remarkable feature is the presence of a kilometric gabbroic complex displaying preserved magmatic minerals, textures and crosscutting relationships between the host gabbro and intruding diabase, hornblende-bearing dikelets or plagiogranite. The bulk major and trace element chemistry of mafc rocks is typical of N-MORB magmatism (Ce N/YbN: 0.42–1.15). This is supported by in-situ isotopic signatures of magmatic zircons (εHf 13 0.6) and apatites (εNd 8.5 0.8), determined for gabbros and plagiogranites.
    [Show full text]
  • Integrated Ocean Drilling Program Expedition 312 Preliminary Report (Including Expedition 309 Accomplishments)
    Integrated Ocean Drilling Program Expedition 312 Preliminary Report (including Expedition 309 accomplishments) Superfast Spreading Rate Crust 3 A complete in situ section of upper oceanic crust formed at a superfast spreading rate 28 October–28 December 2005 Expedition 309 and 312 Scientists PUBLISHER’S NOTES Material in this publication may be copied without restraint for library, abstract service, educational, or personal research purposes; however, this source should be appropriately acknowledged. Citation: Expedition 309 and 312 Scientists, 2006. Superfast spreading rate crust 3: a complete in situ section of upper oceanic crust formed at a superfast spreading rate. IODP Prel. Rept., 312. doi:10:2204/ iodp.pr.312.2006 Distribution: Electronic copies of this series may be obtained from the Integrated Ocean Drilling Program (IODP) Publication Services homepage on the World Wide Web at iodp.tamu.edu/publications. This publication was prepared by the Integrated Ocean Drilling Program U.S. Implementing Organization (IODP-USIO): Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, and Texas A&M University, as an account of work performed under the international Integrated Ocean Drilling Program, which is managed by IODP Management International (IODP-MI), Inc. Funding for the program is provided by the following agencies: European Consortium for Ocean Research Drilling (ECORD) Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan Ministry of Science and Technology (MOST), People’s Republic of China U.S. National Science Foundation (NSF) DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, IODP Management International, Inc., Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, Texas A&M University, or Texas A&M Research Foundation.
    [Show full text]
  • Babbitt Se.Indd
    Prepared and Published with the Support of MISCELLANEOUS MAP SERIES THE U.S. GEOLOGICAL SURVEY AS PART OF THE 2004 STATE GEOLOGIC MAPPING PROGRAM ELEMENT (STATEMAP) MAP M-162 MINNESOTA GEOLOGICAL SURVEY OF THE NATIONAL GEOLOGIC MAPPING PROGRAM Bedrock Geology, Babbitt SE Quadrangle Harvey Thorleifson, Director �� ��� BEDROCK GEOLOGY OF THE BABBITT SOUTHEAST QUADRANGLE, ��� �� ��� ��� �� �� �� �� ST. LOUIS AND LAKE COUNTIES, MINNESOTA �� �� �� ��� �� By �� ��� �� ��� ��� �� �� James D. Miller, Jr. �� �� �� �� ��� 2005 �� �� ��� �� ��� �� �� ��� ������������������������ MAP SYMBOLS ����������� Geologic contact—Approximately located by outcrop control. ��� ��������� �� ��� ��������� Geologic contact—Poorly located by rare outcrop, topography, and/or ����������� �� ��� ����� geophysical data. ��������� �� ��� Fault—Inferred, based on geologic offset, topography, local structures, ��� �� ������� ��� ��� ����� and/or geophysical data. ��� ��� ������ ��� ��� ���������� Fault—Speculative, based on geophysical data and/or topography. ��� ��������� ������ Attitude of inclined sedimentary or volcanic bedding ��� ������� � ���������� �� �� Attitude of inclined igneous layering ��� ��� ��� ������ ��������� ��������������� Attitude of igneous foliation (inclined, horizontal) �� ��� Trend of igneous fabric ��� ��� ��� ��� ������������� Attitude of inclined bedding-parallel joint set ��� ��� ������ Attitude of vertical mineralized joint ��� �� �� �� Attitude of inclined felsic dike ��� ��� ��� Area of bedrock outcrop �� �� ��� ��� ����������� Drill hole
    [Show full text]
  • Implications for the Rheological Behavior of Oceanic Detachment Faults
    Article Volume 14, Number 8 28 August 2013 doi: 10.1002/ggge.20184 ISSN: 1525-2027 Mylonitic deformation at the Kane oceanic core complex: Implications for the rheological behavior of oceanic detachment faults Lars N. Hansen Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California, 94305, USA ([email protected]) Michael J. Cheadle, Barbara E. John, and Susan M. Swapp Department of Geology and Geophysics, University of Wyoming, Wyoming, USA Henry J. B. Dick, Brian E. Tucholke, and Maurice A. Tivey Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA [1] The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23300N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a 450 m thick zone of high-temperature mylonitization overprinted by a 200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of 7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT).
    [Show full text]