<<

GEOLOGY, MINERALIZATION, AND GEOSTATISTICS OF THE MINNAMAX/BABBITT CU-NI DEPOSIT (LOCAL BOY AREA), MINNESOTA

PART II: MINERALIZATION AND GEOSTATISTICS

By

Mark J. Severson and Randal J. Barnes*

June 1991

Technical Report NRRI/TR-91/13b

Funded by Minnesota Technology, Incorporated (Formerly the Greater Minnesota Corporation)

Natural Resources Research Institute *Dept. of Civil & Mineral Engineering University of Minnesota, Duluth University of Minnesota 5013 Miller Trunk Highway 500 Pillsbury Drive S. E. Duluth, Minnesota 55811 Minneapolis, Minnesota 55455 ABSTRACT

The Minnamax/Babbitt Cu-Ni deposit, located within the Partridge River Troctolite Series

(PRTS) of the , northeastern Minnesota, contains both troctolite-hosted disseminated ore and footwall-hosted massive sulfide ore. This report pertains to the massive sulfide ore zone, which is restricted to a small portion of the deposit, and is referred to as the Local Boy area. Studies conducted in the Local Boy area include: 1) detailed geologic relogging of drill core;

2) sulfide petrography and microprobe analysis; 3) assaying for Pt, Pd, Au, and Ag in the high-grade

Cu ore zones; and 4) geostatistical analysis of the Cu-Ni ore (plus PGEs and precious metals).

Detailed relogging of 76 underground drill holes, along with pertinent surface drill holes, has been completed within the Local Boy area (from drifts B, C, and D). The data indicates the highly undulatory nature of the basal contact of the Duluth Complex with the footwall Virginia Formation.

Intrusive rocks of the Duluth Complex (Unit I of the PRTS) consist of augite troctolite, troctolite, and norite. All exhibit gradational contacts with each other, and all may occur at any stratigraphic position relative to the undulatory basal contact. However, norite is the most common rock type adjacent to sedimentary hornfels inclusions and at the basal contact due to contamination of the magma. The spatial configuration of the intrusive rocks indicates that Unit I was intruded as multiple pulses along bedding planes of the Virginia Formation.

The Virginia Formation hosts the majority of the massive sulfide ores that are present within hornfels inclusions positioned above the basal contact, and within the footwall rocks at and below the basal contact. Massive sulfide ore is not as common within the intrusive rocks, and when present, is generally associated with, or in close proximity to, hornfels inclusions. Ore/host rock textures are extremely varied, but all are indicative of structural control in the footwall rocks.

Overall, the massive sulfide ores are spatially distributed in a spotty manner in an east-west (EW)

i direction that corresponds to a major EW-trending anticline present within the footwall rocks. All these factors suggest that an immiscible sulfide melt was injected into structurally prepared footwall rocks along the anticlinal axis in a "vein-like" setting. At some later period, the footwall-hosted massive sulfide ore zone was re-intruded by multiple sills (which collectively make up a portion of

Unit I) along bedding planes of the Virginia Formation. The end result is a disjointed zone of mineralized inclusions and mineralized footwall rocks separated by "barren" intrusive rocks.

Sulfide textures indicate that the sulfides formed by cooling of a monosulfide solid solution

(MSS) followed by limited replacement at very low temperatures. Minerals contained within the sulfide ore are dominantly pyrrhotite, chalcopyrite, cubanite, and . Locally present are maucherite, sphalerite, bornite, talnakhite, mackinawite, and an unknown Cu-sulfide ("Cp"). Also present in minor amounts are native silver (primary and secondary), parkerite, chalcocite, covellite, godlevskite, violarite, magnetite, and zincian hercynite.

Although no discrete PGE minerals were identified, analytical results of the high-grade (>1%

Cu) massive sulfide ore confirms the presence of several anomalous PGE values. These spot values are mainly confined to an EW-trending zone that also roughly corresponds to the EW-trending anticline. Maximum values obtained within the Local Boy massive sulfide ores include: Pd =

11,100 ppb; Pt = 8,300 ppb; Au = 10,900 ppb; and Ag = 34 ppm.

Native silver (primary) was found within several maucherite grains in this investigation, and

PGE mineral inclusions have previously been found in maucherite (Ryan and Weiblen, 1984).

Generally, the drill holes that contain the anomalous PGE values also contain the native silver- bearing maucherite; whereas, homogeneous maucherite is more characteristic of drill holes with little to no anomalous PGE values. This suggests that PGEs were scavenged from the sulfide melt by early-formed maucherite, and thus the PGEs are related to a primary (magmatic) process.

ii However, a hydrothermal origin for the PGEs is also indicated. Anomalous PGE values are commonly associated with Cl-drop encrusted massive sulfide drill core. The spatial distribution of the Cl-drop encrusted drill core also coincides with the EW-trending anticline. Presence of the Cl- drops indicates that the rocks of the Local Boy area were invaded by Cl-bearing solutions that may have been capable of transporting and concentrating PGEs.

Therefore, both primary/magmatic (sulfides injected into a "vein-like" setting) and later secondary/hydrothermal processes appear to have been factors in controlling PGE distribution in the

Local Boy area. However, it is difficult to separate the primary and secondary processes. This is due to the coincidence of several features within the EW-trending zone, which include: 1) anticline in the footwall rocks; 2) overall massive sulfide spatial distribution; 3) spatial distribution of anomalous PGE values; and 4) spatial distribution of Cl-drop encrusted core. Reactivation of structures that controlled the initial "vein-like" massive sulfide distribution could have been responsible for channeling later hydrothermal solutions.

Geostatistical analysis of the underground drill holes (Drifts B, C, and D), and pertinent surface drill holes, yields five main conclusions: 1) the top of the Biwabik Iron-formation (BIF) is a critical datum, with the higher grade Cu-material located between 100 and 400 feet above the BIF

(mainly within the Virginia Formation near the basal contact); 2) inter-variable correlations between

Cu and Ni are high, indicating that selective mining of Cu and Ni is physically possible; but, selection on ore grade Cu and Ni will not necessarily capture all the ore grade PGEs and other precious metals; 3) the available drilling gives a spacial range of geologic influence of about 150 feet; 4) potentially economic ore reserves do exist in the Local Boy area; and 5) the property is under-valued due to the inclusion of many "barren" (unassayed) intervals into the compositing process. A coarse block model, and in situ geologic reserves, are presented for the Local Boy area.

iii TABLE OF CONTENTS

LIST OF FIGURES...... vii

LIST OF PLATES...... xi

LIST OF TABLES...... xii

LIST OF APPENDICES ...... xiv

INTRODUCTION ...... 1 BACKGROUND ...... 1 PRESENT INVESTIGATION ...... 1 ACKNOWLEDGEMENTS ...... 2

UNDERGROUND GEOLOGY ...... 4 INTRODUCTION ...... 4 ROCK DESCRIPTIONS...... 6 Unit I ...... 6 Virginia Formation ...... 8 Biwabik Iron-Formation ...... 11 NATURE OF THE BASAL CONTACT...... 11 FOOTWALL STRUCTURES IN THE LOCAL BOY AREA...... 12

SULFIDE PETROLOGY ...... 18 INTRODUCTION ...... 18 SULFIDE MINERALOGY...... 21 Pyrrhotite ...... 22 Pentlandite...... 25 Chalcopyrite ...... 35 Cubanite...... 37 Talnakhite ...... 37 "Chalcopyrite" ...... 38 Bornite...... 41 Chalcocite ...... 44 Sphalerite...... 44 Mackinawite...... 45 Maucherite...... 46 Godlevskite ...... 50 Parkerite...... 50 OTHER MINERALS...... 51 Native Silver ...... 51 OXIDE MINERALOGY...... 51 Zincian Hercynite ...... 51 Magnetite ...... 53

iv CHLORINE DROPS/ENCRUSTATIONS...... 54

PLATINUM GROUP ELEMENTS ...... 57 INTRODUCTION ...... 57 RESULTS AND DISTRIBUTION ...... 57 PLATINUM GROUP MINERALS...... 60 Diagnostic Ore Minerals Indicative of PGE-bearing Zones ...... 61

ORIGIN OF SULFIDE MINERALIZATION...... 64 PARAGENETIC SEQUENCE ...... 64 DISCUSSION ...... 67

GEOSTATISTICS...... 70 INTRODUCTION ...... 70 QUANTITATIVE AND QUALITATIVE DATA SOURCES ...... 71 DRILLING STATISTICS...... 71 COMPOSITING OF ASSAYS ...... 73 Top of the Biwabik Iron-Formation...... 73 Vertical Compositing ...... 74 SUMMARY STATISTICS...... 76 Composite Summary Statistics - Surface Holes ...... 76 Composite Summary Statistics - Underground Holes ...... 78 Composite Summary Statistics - Combined Holes ...... 78 Inter-variable Correlations...... 81 SPATIAL STATISTICS AND GEOLOGIC CONTINUITY ...... 82 Variograms for Copper and Nickel ...... 82 Variograms for Au, Pd, Pt, and Ag ...... 85 Geology Revised ...... 88 STATISTICAL FOCUS ON Cu AND Ni ...... 88 Graphical Statistics and Distributional Models...... 88 Grade/Tonnage Analysis ...... 91 Coarse Block Model for the Local Boy Area ...... 92 OBSERVATIONS AND CONCERNS ...... 94

SUMMARY AND CONCLUSIONS ...... 95 FUTURE CONCERNS...... 99

REFERENCES ...... 101

v LIST OF FIGURES

Figure 1. Generalized location of relogged underground drill holes in the Local Boy area...... 5

Figure 2. Undulatory nature of the basal contact ...... 11

Figure 3. Contoured top of the Biwabik Iron-Formation in the Local Boy area (data from both surface and underground drill holes) ...... 14

Figure 4. Contoured surface of the basal contact of the Duluth Complex in drifts C, D, and part of drift B in the Local Boy area ...... 15

Figure 5. Contoured surface of the top of the sill(?) unit (in Virginia Formation) within drifts C, D, and part of drift B in the Local Boy area...... 16

Figure 6. Distribution of the folded graphitic argillite horizon of the Virginia Formation within the Local Boy area ...... 17

Figure 7. Ternary plot (Cu-S-Fe) of sulfide mineral compositions...... 23

Figure 8a. Pyrrhotite(PO) with basket-weave troilite ...... 28

Figure 8b. Talnakhite(TAL)-chalcopyrite(CP) exsolution lamellae cross-cut by cubanite(CB) exsolution lamellae. Also pyrrhotite(po) and mackinawite(mk)...... 28

Figure 8c. Interstitial sulfide bleb with talnakhite(tal)-chalcopyrite(cp) exsolution lamellae, Pn2 Pentlandite(pn), and sphalerite star(sl)...... 28

Figure 8d. Chalcopyrite(CP) with sphalerite(SL) and Pn4 Pentlandite(pn)...... 28

Figure 9a. Interstitial sulfide bleb with talnakhite(TAL), bornite(BN), extremely fine-grained talnakhite-bornite intergrowth, Pn2 pentlandite(PN), and chalcocite(cc) as veinlets and partial rims...... 30

Figure 9b. "Spider-web" Pn3 pentlandite in cubanite(CB). Also pyrrhotite(PO) and mackinawite(MK)...... 30

Figure 9c. Chalcopyrite(CP) with godlevskite(gd) "cloud" ...... 30

Figure 9d. Native silver(Ag) and chalcopyrite(CP) within interstitial chlorite patch...... 30

vi Figure 10a. Maucherite(M) plate across talnakhite(TAL)-cubanite(CB) exsolution lamellae ...... 32

Figure 10b. Terminated maucherite(M) crystal with cubanite(CB) ...... 32

Figure 10c. Maucherite(M) "tadpole" within cubanite(CB) ...... 32

Figure 10d. Close-up of maucherite(M) grain of Fig. 10c ...... 32

Figure 11a. Maucherite(M) grain within talnakhite(tal) - cubanite(cb) exsolution lamellae ...... 34

Figure 11b. "Boudined" maucherite(M) plate within chalcopyrite(CP) ...... 34

Figure 11c. Semi-massive sulfide that is interstitial to silicate grains ...... 34

Figure 11d. As in Figure 11c---showing distribution of zincian hercynite(h) grains that are brown colored...... 34

Figure 12. Ternary plot (Ni-As-Co) of maucherite mineral compositions...... 49

Figure 13. Spinel compositional prism plot ...... 53

Figure 14a. Dominantly chalcopyrite(CP) with exsolution lamellae of cubanite(CB) and talnakhite(tal) in the upper-right corner; minor pyrrhotite(po) ...... 56

Figure 14b. Cubanite(CB) replaced by mackinawite(MK) in feathery zones adjacent to fractures ...... 56

Figure 14c. Backscatter image of Figure 14b...... 56

Figure 14d. As above (Fig. 14c), but showing distribution of chlorine--determined by element mapping with the electron microprobe...... 56

Figure 15. Paragenetic sequence--massive sulfide ore, Local Boy area...... 64

Figure 16. Preliminary distribution of unique sulfide and mineral occurrences in massive sulfide polished sections collected from the Local Boy area ...... 66

Figure 17. Histogram for the top of the Biwabik Iron-Formation in the Local Boy area...... 74

Figure 18. Experimental values for the top of the Biwabik Iron-Formation, Local Boy area...... 74

vii Figure 19. Experiment and fitted variogram model for the top of the Biwabik Iron-Formation, Local Boy area ...... 75

Figure 20. Interpolated model, using kriging, of the top of the Biwabik Iron- Formation in the Local Boy area...... 75

Figure 21. The four principal, three dimensional, logarithmic semi-variogram for the Cu from the combined surface and underground drilling 25-foot composites...... 83

Figure 22. The omni-directional, logarithmic semi-variogram for Cu from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model ...... 83

Figure 23. The four principal, three dimensional, logarithmic semi-variogram for Ni from the combined surface and underground drilling 25-foot composites...... 84

Figure 24. The omni-directional, logarithmic semi-variogram for Ni from the combined surface and underground drilling 25-foot composites, and the associated fitted spherical variogram model ...... 85

Figure 25. The omni-directional, logarithmic semi-variogram for Au from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model ...... 86

Figure 26. The omni-directional, logarithmic semi-variogram for Pd from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model ...... 86

Figure 27. The omni-directional, logarithmic semi-variogram for Pt from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model ...... 87

Figure 28. The omni-directional, logarithmic semi-variogram for Ag from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model ...... 87

Figure 29. Histogram of the combined surface and underground drilling 25-foot composites for Cu ...... 89

Figure 30. Histogram of the combined surface and underground drilling 25-foot composites for Ln(Cu)...... 89

Figure 31. Histogram of the combined surface and underground drilling 25-foot composites for Ni...... 90

viii Figure 32. Histogram of the combined surface and underground drilling 25-foot composites for Ln(Ni)...... 90

ix LIST OF PLATES

Plates I-X. Included in Part I.

Plates XI-XXVIII can be found in the expandable file folder included with this report.

Plate XI. Minnamax shaft area (Local Boy area) - surface drill holes, underground drill hole fans and drifts

Plate XII. Cross-sections of B drift fans

Plate XIII. Fan cross-sections of the southern C drift

Plate XIV. Fan cross-sections of the northern-most C drift

Plate XV. Cross-sections of D drift fans

Plate XVI. Minnamax shaft area - anomalous PGE values, Cl-drop distribution, area of PGE analyses

Plate XVII. Level 1 Cu coarse block model (0 to -50 feet)

Plate XVIII. Level 2 Cu coarse block model (-50 to -100 feet)

Plate XIX. Level 3 Cu coarse block model (-100 to -150 feet)

Plate XX. Level 4 Cu coarse block model (-150 to -200 feet)

Plate XXI. Level 5 Cu coarse block model (-200 to -250 feet)

Plate XXII. Level 6 Cu coarse block model (-250 to -300 feet)

Plate XXIII. Level 1 Ni coarse block model (0 to -50 feet)

Plate XXIV. Level 2 Ni coarse block model (-50 to -100 feet)

Plate XXV. Level 3 Ni coarse block model (-100 to -150 feet)

Plate XXVI. Level 4 Ni coarse block model (-150 to -200 feet)

Plate XXVII. Level 5 Ni coarse block model (-200 to -250 feet)

Plate XXVIII. Level 6 Ni coarse block model (-250 to -300 feet)

x LIST OF TABLES

Table 1. Sulfide mineral assemblages for the accompanying microprobe analyses ...... 24

Table 2. Pyrrhotite - mineral compositions ...... 26

Table 3. Pentlandite - mineral compositions...... 35

Table 4. Chalcopyrite - mineral compositions ...... 36

Table 5. Cubanite - mineral compositions...... 39

Table 6. Talnakhite - mineral compositions ...... 40

Table 7. "Chalcopyrite" - mineral compositions ...... 41

Table 8. Bornite - mineral compositions...... 43

Table 9. Bornite-chalcopyrite/talnakhite mixture ...... 43

Table 10. Sphalerite - mineral compositions...... 45

Table 11. Mackinawite - mineral compositions...... 46

Table 12. Maucherite - mineral compositions...... 48

Table 13. Godlevskite - mineral compositions ...... 50

Table 14. Zincian hercynite compositions (all analyses from sample B1-146, 1,873.5') ...... 52

Table 15. Summary statistics for the 25-foot composites generated from the surface drilling alone ...... 77

Table 16. Summary statistics for the log-transformed grades of the 25-foot composites generated from the surface drilling alone ...... 77

Table 17. Summary statistics for the 25-foot composites generated from the underground drilling alone ...... 79

Table 18. Summary statistics for the log-transformed grades of the 25-foot composites generated from the underground drilling alone ...... 79

xi Table 19. Summary statistics for the 25-foot composites generated from both the surface drilling and the underground drilling ...... 80

Table 20. Summary statistics for the log-transformed grades of the 25-foot composites generated from both the surface drilling and the underground drilling ...... 80

Table 21. Inter-variable correlations of all seven elements for the combined surface and underground 25-foot composites ...... 81

Table 22. Grade/tonnage data for Cu and Ni in Local Boy anomaly ...... 91

xii LIST OF APPENDICES

Appendix 1. Data File Information...... 105

Appendix 2. Data File Information...... 106

Appendix 3. Identification of Surface Holes Used in the Analysis ...... 108

Appendix 4. Identification of Underground Holes Used in the Analysis ...... 111

Appendix 5. Identified Down-the-Hole Survey Errors ...... 119

Appendix 6. Adjusted Down-the-Hole Survey Information ...... 122

Appendix 7. Ore Blocks for the Local Boy Area...... 142

Appendix 8. Relogged Underground Drill Holes ...... 209

Appendix 9. Pt, Pd, and Au Values Exceeding 500 ppb in the Local Boy Area ...... 211

xiii INTRODUCTION

BACKGROUND

This is the second part of a study relating to the geology and Cu-Ni-PGE-Au mineralization in the high-grade massive sulfide portion of the Minnamax deposit. This high-grade portion is referred to as the "Local Boy area" -- it is one of five subareas within the entire Minnamax deposit

(see Fig. 2, Part I). The results of this investigation are presented in two parts: Part I (Severson,

1991) includes descriptions pertaining to the general geology, igneous stratigraphy, igneous petrography, and whole rock chemistry; Part II includes descriptions pertaining to the basal massive sulfide mineralization, sulfide petrography, PGE analytical results, and geostatistical ore reserve analysis.

The main objective of this investigation is to assist Rhude and Fryberger, Inc. (R & F) in their evaluation of establishing a non-ferrous mine within the Local Boy area. The project is funded through the Greater Minnesota Corporation (GMC), which is a state-funded agency designated to promote the state's economic development.

PRESENT INVESTIGATION

This report is a summary of activities conducted from November, 1989, to June, 1991. To date, 61 surface drill holes (117,605 feet of core) and 76 underground drill holes (19,891 feet of core) have been relogged in detail from the Minnamax deposit area -- specifically the Local Boy area. A deposit-wide stratigraphy within the troctolitic rocks (Partridge River Troctolite Series or

PRTS) was encountered and has been described in Part I of this investigation.

Approximately 800 geochemical samples of previously analyzed (Cu, Ni, S) intervals were selected from the underground Local Boy drill holes to be analyzed for Pt, Pd, Au, and Ag. These

1 samples were selected specifically from the high-grade (>1% Cu) material that exhibited spatial continuity. Unfortunately, no lower grade material outside of >1% Cu material was sampled due to budget constraints, and thus a bias was introduced in the subsequent geostatistical analysis -- essentially the weakly mineralized Cu-Ni halo was ignored. This bias was considered before the sampling campaign was initiated; however, at that time, it was decided only the high-grade Cu material could be economically mined anyway. Thus, knowledge of the value of precious metals within the adjacent halo was of lesser importance and did not need to be sampled (a proper statement from a mining point of view, but incorrect in the exploration sense). PGE and precious metal results of the 791 samples, along with 275 additional analyses obtained from a R & F sampling program, have been entered into a data base that was used in the geostatistical analysis. The data base files that were used are discussed in Appendix 2 and are included on floppy diskettes in the back pockets of this report. This data base also includes all previously analyzed intervals (Cu, Ni, and S values only) from: 1) all the underground holes; 2) all underground drift samples; and 3) pertinent surface drill holes within the Local Boy area.

The data base described above was used to conduct a geostatistical ore reserve analysis.

Data completed to date include: grade/tonnage curves; grade/tonnage figures; intervariable correlations; and a block model interpolation of the Cu and Ni mineralization in 50 x 50 x 50 foot blocks that are collectively displayed for six different levels in the Local Boy area (Plates XVII-

XXVIII).

ACKNOWLEDGEMENTS

This project has been funded by the Greater Minnesota Corporation/Minnesota Technology,

Inc. Thanks are extended to Mr. Dan England and R & F personnel for geochemical analytical results and for their discussions pertaining to the Local Boy area. Drill core and corporate files

2 pertaining to the entire Minnamax deposit are stored at the Minnesota Department of Natural

Resources (MDNR) facility in Hibbing, Minnesota. Special thanks are extended to the MDNR core library staff for their constant aid in locating and copying the appropriate files. Copies of lithologic drill logs and analytical results (Cu, Ni, S) for each of the Minnamax drill holes (put down by both

Bear Creek and AMAX) are also on file at the NRRI. Discussions with Mr. Steven Hauck (NRRI),

Dr. Penelope Morton (University of Minnesota - Duluth), and Dr. Tuomo Alapieti (University of

Oulu, Finland) proved extremely valuable in deciphering the sulfide and oxide petrography of the

Local Boy area mineralization. Thanks are also extended to Ms. Linda Lindberg (NRRI) for entering all the geochemical data that was used in the geostatistical analysis, and for preparing the countless amount of thin sections, polished thin sections, and polished sections that were used in this investigation.

The writers are deeply indebted to Mr. Steven Hauck (NRRI) for his: help in coordinating this effort; endless proofreading of the manuscript; aid in handling/manipulating the data base; and criticisms, comments, and encouragements.

3 UNDERGROUND GEOLOGY

INTRODUCTION

The stratigraphy of the troctolitic rocks in the Minnamax deposit area (Minnamax) has been discussed in Part I of this investigation (Severson, 1991). At least seven major identifiable igneous units are present in the basal +3,000 feet of the Partridge River Troctolite Series (PRTS) and have been referred to as Units I through VII (from bottom to top). However, the rock types in the underground drill holes within the Local Boy area include only the bottom half of Unit I, as well as the footwall rocks -- the Middle Precambrian Virginia Formation and Biwabik Iron-Formation.

Detailed relogging of 76 underground drill holes (19,891 feet of core) from 15 drill hole fans within the Local Boy area was completed during the investigation period. The location of the drill hole fans relative to the underground drifts, and to pertinent surface drill holes, are portrayed in Plate

XI. Figure 1 shows the generalized area of relogged underground drill holes. Specific drill hole fans that were relogged include: B-1, B-1A, B-2, C-0, C-1, C-1A, C-2, C-2A, C-3, C-3A, C-4, D-1, D-2,

D-3, D-4, and D-5. Sixteen drill hole fans remain to be relogged in detail; however, some of these fans were spot-checked for major lithologic breaks. The initial selection of drill hole fans that were relogged was based on whether: 1) the fan was situated in an area that contained abundant anomalous PGE or Au values (>1 ppm) as indicated by the PGE sampling campaign conducted by the NRRI; or 2) the fan was situated in an area with abundant massive sulfide intersections. Several fans that met these criteria were not relogged due to insufficient time and include fans in the southernmost C drift and the eastern end of the B drift.

4 Figure 1. Generalized location of relogged underground drill holes in the Local Boy area.

The detailed geology of the relogged drill fans, along with the bottom portions of pertinent surface drill holes, are portrayed on Plates XII through XV. These cross-sections were prepared by using the AMAX ore-grade cross-sections (on file at the MDNR in Hibbing) as a base. In addition

5 to the geology, also portrayed on these cross-sections are high grade Cu zones (>3.0 %), anomalous

PGE and Au values (>800 ppb), and areas where Cl-rich drops coat the surface of the drill core.

ROCK DESCRIPTIONS

Unit I

Unit I is the lowermost troctolitic unit of the PRTS at Minnamax. It is generally about 1,000 feet thick in the Local Boy area; however, only the bottom 0-400 feet were intersected in the underground drill hole fans. In these drill holes, the basal portion of Unit I is characterized by a heterogeneous mixture of augite troctolite, troctolite, and norite. Grain size and modal percentages of minerals are highly variable, and all three rock types are gradational into each other. All three rock types are present at numerous stratigraphic levels with no consistent internal layering pattern.

The troctolite and augite troctolite rock types are described in Part I. Norite is generally present in close proximity to the basal contact or to hornfels inclusions and are described below.

Numerous inclusions of Virginia Formation hornfels are present within Unit I. They generally exhibit an increase in amount with depth, toward the footwall contact. Their configuration as sub-horizontal, raft-like inclusions indicates that Unit I was intruded along bedding planes of the

Virginia Formation (Plates III through IX in Part I).

Norite is common in the basal contact zone in the Local Boy area and generally decreases in volume with increased height above the basal contact. The development of norite is strongly related to interaction with the country rocks and subsequent contamination of the magma. Both norite and hornfelsed sediments are intricately intermixed in drill core. Norite is used herein to denote fine-grained to very fine-grained, -orthopyroxene-rich rocks of Unit I.

The norite is very similar to the adjacent hornfelsed sediments of the Virginia Formation, and often it is difficult to visually separate the two (both may be similar in mineralogy and grain size).

6 In fact, AMAX underground drill logs also convey this difficulty -- the terms "hornfelsed hybrid" and "hybrid hornfels" are used to lump the two rock types when they are complexly intermixed near the basal contact. In this investigation, the split surface of the drill core, rather than the rounded core surface, was used in determining lithologic rock types. On the split surface, the norite exhibits fine- grained plagioclase laths that are arranged in a decussate manner, whereas the hornfelsed sediments exhibit a uniform sugary (granoblastic) texture. Most of the "norite calls" were confirmed by thin section observations -- plagioclase laths (plag.), equant orthopyroxene (Opx), ± clinopyroxene (Cpx) and (Ol). Compounding the recognition difficulty of norite versus sedimentary hornfels is the presence of gradational contacts between the two rock types. Commonly, the two rock types can be recognized in a drill core box, but the exact lithologic break between the two can only be approximated to the nearest foot.

Matlack (1980) mapped several metadiabase intrusions in the underground drifts of Local

Boy. Matlack (1980, p. 32) noted that, "The metadiabase is difficult or impossible to distinguish from the pelitic hornfels in underground workings, except where plagioclase phenocrysts occur."

He reported that the plagioclase phenocrysts were randomly oriented, blocky laths up to 3 cm long.

During detailed relogging of the underground drill holes (this investigation), minor zones with blocky plagioclase phenocrysts were found to be associated with the norite rock type. In drill core, this porphyritic norite (similar to Matlack's "porphyritic metadiabase") is generally present adjacent to hornfels inclusions and grades into typical norite away from the inclusion. Thus, the

"metadiabase," etc. of Matlack (1980) was inferred to be specific areas where the norite could be mapped in the underground workings due to the presence of coarse plagioclase phenocrysts. Also, the general mineralogy of the "metadiabase" reported by Matlack (1980) was the same as the norite rock type of this study (Matlack reports: 43-55% plag., 18-43% Opx, and 0-23% Cpx). Therefore, the "metadiabase" was considered to be synonymous with the norite.

7 Matlack (1980) also reports the presence of to peridotite xenoliths in the underground workings of the A drift. No such xenoliths were noted in the relogged drill holes of this investigation (mainly because no drill holes from the A drift were relogged). Review of AMAX drill logs from the A drift underground holes indicated the presence of several coarse-grained peridotitic intersections to the north of the A drift. The AMAX descriptions of the peridotite zones are reminiscent of OUIs (Oxide-bearing Ultramafic Intrusions -- described in Part I).

Minor granitic veins were also reported in the underground workings (Matlack, 1980), but none were observed in the relogged drill holes of this investigation. Pegmatitic zones are present within the troctolitic rocks of Unit I near the basal contact, but they are volumetrically unimportant.

Virginia Formation

The Virginia Formation (Middle Precambrian) is the dominant footwall unit of the entire

Minnamax deposit. Rocks of the Virginia Formation are characterized by a sequence of well-bedded to massive-bedded, argillites, fine-grained graywackes, and siltstone, with minor interbeds of graphitic argillite, calc-silicate, chert, and rare marble. These rocks exhibit a granoblastic texture and contain variable amounts of plagioclase, orthopyroxene, cordierite, biotite, graphite, and minor quartz. Mineralogy varies due to the initial differences in bulk composition of the protolith. In general, rocks near the basal contact are well-bedded and/or cordierite-rich, while "massive-bedded graywacke" is the dominant rock type at the base of the Virginia Formation.

In thin section, the constituent minerals of the Virginia Formation exhibit a varied morphology that consists of:

Plagioclase - present as granular-polyhedral grains that locally grade into poikiloblastic grains, which in turn, grade into subhedral to euhedral laths that contain internal relict granoblastic grains.

8 Orthopyroxene - present as both equant grains (anhedral to subhedral) and poikiloblastic grains.

Cordierite - present only as fine-grained polyhedral grains.

Biotite - occurs as interstitial flakes/plates and as poikiloblastic grains.

Graphite - occurs as straight, slender flakes/plates interstitial to polyhedral plagioclase and cordierite grains; the flakes/plates are foliated in the graphitic argillites.

Ilmenite - very fine-grained subrounded to rounded (detrital?) grains.

The grain size of the minerals is also quite variable and a wide range of grain sizes and morphologies are often present in the same thin section. Overall, the grain size of the footwall rocks is fine-grained.

Within the Virginia Formation are several marker horizons that can be locally traced between drill holes with certainty. These marker horizons are shown on Plates XII through XV and include:

1) graphitic argillites; 2) a persistent chert-calc-silicate bed located about 5 feet above the base of the Virginia Formation (referred to as the c-cs unit); 3) a locally persistent 2-30 foot thick calc- silicate horizon with interbeds of chert and massive diopside (located about 250-350 above the base of the Virginia Formation); and 4) the sill(?) unit located near the base of the Virginia Formation.

Detailed descriptions of some of these marker beds are presented in Part I (Severson, 1991).

At least two graphitic argillite horizons are present in the Virginia Formation below the basal contact with the Duluth Complex. In addition, several graphitic argillite horizons are present in the large raft-like inclusions located above the basal contact. These graphitic argillites commonly pinch-out and then "reappear" at the same stratigraphic level in a more distant drill hole or group of drill holes. The two graphitic argillite horizons below the basal contact occur: 1) just above the sill(?) unit; and 2) approximately 50 feet above the sill(?) unit. The latter horizon is the most persistent and can be used to define small folds within the Virginia Formation, e.g., Plate XII - western most cross-section. In addition, the latter graphitic argillite is present between the D-2 and

9 C-2 drill fans (Plate XIV) were it can be correlated to a mapped fault zone in the underground drift.

It was initially mapped as a fault zone (AMAX corporate files; Matlack, 1980) due to its highly sheared and foliated nature.

The sill(?) unit of the Virginia Formation is also an excellent internal marker bed. It is present near the base of the Virginia Formation and is described in Part I. Interestingly, the massive sulfide mineralization is never present within or below the sill(?) unit, and even weakly mineralized zones (up to 10% sulfides in zones less than 1 foot thick) are rarely present below the sill(?) unit.

Both the sill(?) unit and the graphitic argillite horizons could be utilized as geologic controls in future geostatistical studies. However, the lateral persistence of these units, and their geologic control potential was recognized too late in this investigation. Hence, only the top of the Biwabik

Iron-Formation is used as a critical datum base in the geostatistical analysis in this investigation.

Biwabik Iron-Formation

The Biwabik Iron-Formation (BIF) underlies the Virginia Formation. Most of the surface drill holes in the Local Boy area were terminated in the upper 5-50 feet of the BIF. Prior to this investigation, the top of the BIF was the only definitive marker horizon to which the massive sulfide mineralization could be spatially compared. The BIF is also utilized as a critical datum in the geostatistical analysis of this investigation -- mineralized zones are cross correlated as being "so many" feet above the top of the BIF.

Specific internal members in the upper portion of the BIF are the A, B, and C submembers.

They are described in Part I.

NATURE OF THE BASAL CONTACT

10 The three-dimensional geometry of the basal contact is extremely complicated and highly undulatory in the Local Boy area. These basal contact gyrations can be defined in more detail at

Local Boy because the contact itself can be more carefully monitored in the close spaced underground drill holes. For instance, if one hole is drilled into the contact zone it may give the impression of numerous hornfels inclusions positioned above the contact (Fig. 2). However,

Figure 2. Undulatory nature of the basal contact. if the same hole is part of a five drill hole fan, the overall geology may show that the inclusions are actually still connected with the footwall -- the intervening intrusive rocks interfinger with the hornfels rather than enclose them. An example of this case is simplified in Figure 2.

Because Unit I may have been repeatedly intruded in a sill-like fashion along bedding planes of the Virginia Formation, this configuration is not too surprising. Each individual pulse, that collectively make up Unit I, may have spread laterally along the bedding planes for different distances. When the sills and their interfingering relation with the footwall rocks are viewed collectively, the resulting geometry of the basal contact is highly undulatory. This undulatory nature has been portrayed in the fan cross-sections on Plates XII through XV. However, the basal contact is most likely even more complex than displayed and thus should be considered as only a generalized representation. For example, some of the areas of the fan cross-sections are indicated

11 as being mostly norite; in reality however, these areas may contain a high proportion of footwall rock inclusions. A highly undulatory basal contact may also be present elsewhere in the Duluth

Complex, e.g., Bathtub area of the Minnamax deposit or the Dunka Road deposit (located to the immediate SW of Minnamax). However, the wide spaced nature of only surface drill holes, rather than underground drill fans, precludes such detailed observations.

FOOTWALL STRUCTURES IN THE LOCAL BOY AREA

Several investigators have recognized that pre-existing structural conditions in the footwall rocks strongly influenced the basal contact of the Duluth Complex (Mancuso and Dolence, 1970;

Watowich, 1978; Holst et al., 1986; Severson, 1988; Martineau, 1989). Major irregularities in the basal contact are generally related to folds in the underlying country rock indicating that intrusion proceeded more or less along bedding planes in the footwall rocks (Holst et al., 1986). This is readily expressed by a major east-west (EW)-trending trough and ridge in the basal contact at

Minnamax that coincides exactly with a syncline-anticline that is defined by the top of the BIF. The thickness of preserved Virginia Formation between the Duluth Complex (Complex) and BIF is variable due to the amount of material assimilated by the Complex.

The Local Boy area is also situated over this anticlinal ridge. The majority of massive sulfide ore zones (hosted by the Virginia Formation) are broadly coincident with the axis of the anticline. The contoured top of the BIF in the Local Boy area is shown in Figure 3. Similar anticline geometries are also present for the basal contact (Fig. 4) and contoured top of the sill(?) unit (Fig. 5). All the data indicate that an EW-trending anticline is the major structural feature present within the footwall rocks of the Local Boy area.

The spacing of the contours suggests that the anticline is asymmetrical -- steeper flank to the immediate south of the anticlinal crest. In addition, a highly sheared graphitic argillite horizon is

12 also present on the south flank of the anticline (Fig. 6). This same graphitic argillite was mapped in the underground workings as a fault zone due to its highly sheared, slickensided, and foliated nature. Also, fault zones in drill core, as well as recognizable fault offsets of correlative units, are most commonly present on the south flank of the anticline. Taken collectively, all these data suggest that additional structural features, in the form of increased faulting and shearing, are more important on the south flank of the anticline in the Local Boy area.

In summary, all the data suggest that pre-existing structures played an important role in the form of the base of the Complex and may also have been an important control in localizing sulfide mineralization. The presence of massive sulfide zones centered broadly along the axis of the anticline suggest that structural preparation was important in providing dilatant zones in the footwall rocks where massive sulfides could be injected. The south flank of the anticline appears to be an area were structural deformation was more intense. The age of this deformation is probably pre-

Duluth Complex emplacement, but some reactivation may have also taken place during intrusion of Unit I.

13 Figure 3. Contoured top of the Biwabik Iron-Formation in the Local Boy area (data from both surface and underground drill holes).

14 Figure 4. Contoured surface of the basal contact of the Duluth Complex in drifts C, D, and part of drift B in the Local Boy area.

15 Figure 5. Contoured surface of the top of the sill(?) unit (in Virginia Formation) within drifts C, D, and part of drift B in the Local Boy area.

16 Figure 6. Distribution of the folded graphitic argillite horizon of the Virginia Formation within the Local Boy area.

17 SULFIDE PETROLOGY

INTRODUCTION

Two major sulfide ore types are present in the Local Boy area: 1) disseminated sulfide ore - consisting of interstitial sulfides within the troctolitic rocks of Unit I; and 2) massive sulfide ore - characterized by a chaotic assemblage of semi-massive to massive sulfides at the basal contact. The lower grade disseminated ore accounts for approximately 70% of the sulfide volume, and the higher grade massive ore accounts for the remaining 30% volume of the Local Boy area. The majority of the sulfide descriptions in this report are for samples collected from the massive sulfide ores (170 polished sections).

Only a cursory examination of the troctolite-hosted disseminated sulfide ore was attempted in this investigation (57 polished sections with 1-3% sulfides). Four textural sulfide categories, similar to those described by Weiblen and Morey (1976), occur in the Local Boy area and include:

1) sulfides interstitial to the plagioclase framework; 2) minute sulfide specks included within plagioclase and Cpx; 3) sulfides intergrown with silicates (Opx and amphibole); and 4) hairline sulfide veinlets that cut the silicate phases. The first textural category is the dominant sulfide texture

(>95%) of the troctolite-hosted disseminated ore in the Local Boy area. The fourth category is fairly common (<5%), and the other textural categories occur rarely. The main sulfide minerals present in the disseminated ore include: pyrrhotite (hexagonal), chalcopyrite, cubanite, and pentlandite.

Other sulfides and ore minerals in lesser amounts include: talnakhite, bornite, sphalerite, mackinawite, maucherite, violarite, parkerite, and native copper. The same sulfide assemblage is present within the massive sulfide ore. Cubanite to chalcopyrite ratios average 2 to 1 (but are 6 to

1 in the massive sulfide ore), and copper to nickel ratios average 4.3 to 1 in the disseminated ore and massive ore (Watowich, 1978).

18 The massive sulfide ore is hosted, in order of importance, by: 1) the Virginia Formation -- either within inclusions, at the basal contact, or within the footwall rocks below the basal contact;

2) norite -- the massive sulfide is often at a norite/hornfels contact or hornfels material is in close proximity; and 3) troctolite -- the overall drill fan geology indicates that hornfels inclusions are in close proximity, but were not intersected in the drill hole. Overall, the massive sulfide ores are distributed in a disjointed zone consisting of mineralized inclusions and mineralized footwall rocks separated by relatively "barren" intrusive rocks.

During relogging of drill holes, it was noticed that abundant massive sulfide intersections are common within and adjacent to hornfels inclusions, whereas the norite in contact with the hornfels is almost virtually barren of sulfides. This scenario may be repeated several times in a particular drill hole. However, not all norite intersections exhibit such a lack of sulfides and up to

10% interstitial sulfides may be present in approximately half of the norite intersections.

The massive sulfide ore is characterized by a wide variety of textures that are arranged in a seemingly chaotic manner throughout the footwall rocks. Internally, the massive sulfide ore exhibits features that indicate it has been injected into structurally prepared zones. These features, progressing from simple to more complex, include:

1) Hornfels with widely scattered chalcopyrite-filled hairline fractures that cut all the silicate grains.

2) Hornfels with <10% sulfides - sulfides are interstitial to the granoblastic texture.

3) Hornfels with 10-30% interstitial sulfides that look as though they were "flooded" into microbrecciated zones that coalesced into sulfide blebs (up to 2-3 cm). The sulfide blebs are connected to each other by curvilinear sulfide-filled hairline fractures that cut across silicate grains.

4) Hornfels with 10-40% sulfides present in blebs, ptygmatic lenses, and bifurcating lenses.

5) Semi-massive sulfides (30-60% sulfides) that contain internal patches of granoblastic silicate grains.

19 6) Massive sulfide (>60% sulfides) that locally contain isolated granoblastic silicate grains and widely scattered granoblastic patches.

7) Massive sulfide zones that contain <10% medium- to coarse-grained, subhedral to euhedral Opx, plagioclase, biotite, and occasionally olivine grains surrounded by the massive sulfide.

8) Late massive sulfide veins, of varying dimensions and orientations, that cut across all the above sulfide textures (these are particularly hard to recognize in drill core unless sharp contacts with the other sulfide types are present). Late veins are also present within the troctolite-hosted disseminated ore, but these are uncommon overall. Matlack (1980) reports that in the underground workings the veins are in sharp contact with the host lithologies and some of the veins cut the inclusions, but do not extend into the adjacent troctolitic rocks. He also reports that the veins are up to 3 feet thick.

Present in some drill holes is a gradational progression from disseminated sulfides (textures #1 and

#2) to massive sulfides (textures #7 and #8). However, in most drill holes these textures are complexly intermixed and numerous combinations of the above texture types are present in an overlaid and chaotic manner. There is no systematic variation in the types and amount of sulfide minerals present in each of the above eight categories.

In most cases, the massive sulfide ore intercepts are located within a definite zone that straddles the basal contact. This zone has a fairly well defined top and bottom that spans from 100 feet above to 100 feet below the basal contact. However, the massive sulfide horizons are not always at the same relative stratigraphic level relative to the undulatory basal contact. Therefore, there is no true predictability as to where massive sulfides will occur. For instance, massive sulfide may be present at only the basal contact in several drill holes; however, in nearby drill holes, massive sulfide may be totally lacking at the basal contact, but may be present either below or above the basal contact. For these reasons, no attempt was made to correlate, or join together, the individual massive sulfide intersections portrayed in the cross-sections that accompany this report.

In summary, the massive sulfide ore can only be generally predicted as being in close proximity to the basal contact.

20 Spatially, the vast majority of massive sulfide ore intersections are situated along the EW- trending anticline in the footwall rocks. A review of all the underground drill hole logs (relogged hole logs and AMAX logs) indicates that the massive sulfides are the most common along the anticlinal axis and along the north and south flanks of the anticline. This is also substantiated by a geostatistical coarse block model that indicates most of the high grade Cu-material is coincident with the axis and the south flank of the anticline (see Geostatistics Section).

There is no stratigraphic relationship of increasing pyrrhotite content with depth. Numerous cases occur where Cu-rich massive sulfides are the lowermost massive sulfide intersection in a particular drill hole. Pyrrhotite is generally the dominant sulfide in the massive sulfide intersections, but again, there are numerous exceptions. An attempt was made to compare the three dimensional distribution of pyrrhotite-rich (>50%) massive sulfide ore intersections. This comparison indicated that the pyrrhotite-rich zones are chaotically distributed, and often do not correlate between even close-spaced drill holes.

SULFIDE MINERALOGY

A total of 170 samples were collected from the massive sulfide ores in both surface and underground drill holes at the Local Boy area. For each sample, one polished thin section and two polished sections were prepared; one of the polished sections was submitted to the MDNR in

Hibbing, Minnesota. All three of the sections were petrographically described and compared to each other. In some instances, the percentages of a particular sulfide in a one section changed drastically relative to another section that was cut from the same sample heel -- only 1-2 mm away. This indicates that three-dimensional differences may be very locally pronounced, even within very minute distances. However, in most cases the sulfide mineralogy did not change drastically from section to section.

21 Electron microprobe analyses (S, Fe, Co, Cu, Ni, Zn, and As) were performed on most of the sulfide mineral types. Analyses were performed at the NRRI on an updated MAC 400 microprobe equipped with a Krisel automated package using pure element standards (Co, Ni), natural sulfide standards (pyrite, chalcopyrite, sphalerite), and synthetic standards (InAs). Operating conditions were 15k and 20 nanoamps. Native silver was also found in some of the samples and was confirmed by element mapping with a rastered electron beam. The distribution of Cl was also confirmed in the same manner.

The sulfide mineral compositions are plotted on Figure 7 (Cu-Fe-S ternary plot). They are compared to other sulfide compositions from the Duluth Complex. Sulfide mineral assemblages for the accompanying microprobe analyses are listed in Table 1.

Pyrrhotite - Fe1-XS

Pyrrhotite (Po) is generally the dominant sulfide and is characteristically hexagonal (non- magnetic). The pyrrhotite forms fine- to extremely coarse-grained crystals up to several centimeters across in drill core. Monoclinic pyrrhotite is present locally in the massive sulfides (very rare), but is common within the graphitic argillite horizons (syngenetic?).

Locally, the pyrrhotite contains wavy exsolution intergrowths of troilite that produce a basket weave texture (Fig. 8a). Internal small round cubanite blebs are commonly present within the larger pyrrhotite grains. Pentlandite flames are locally present, but are not very common.

Parallel parting planes are common in the massive pyrrhotite. The parting planes occur as sets that are not unidirectional -- several sets, each set with a different orientation, may be

22 Figure 7. Ternary plot (Cu-S-Fe) of sulfide mineral compositions.

23 Table 1. Sulfide mineral assemblages for the accompanying microprobe analyses

Sample # Sulf. Mineral Assemblage Description >1 ppm PGEs

B1-116 1686' Cp-Cb, Po, Mk, ZH Mass. sulf. (Cl drops) T B1-135 1652' Cp, Bn, Pn, Gd Hnfl w/ 5% sulf. T B1-136 1729.5' Cp-Cb, Pn, Po, Mk, M, Sl Hnfl & troct. w/ 35% sulf. T 1730.5' Cb-Cp, Pn, Po, M Norite w/ 40% sulf. T 1734' Cb-Cp, Po, Pn, Mk, M, (Sl) Mass. sulf. T 1740' Cb-Cp, Po, Pn, Mk, M, Sl Mass. sulf. — B1-146 1804.8' Cb-Cp, Po, Pn, Mk, M (Bn) Norite w/ sulf. veinlet — 1858' Cb, Po, Pn, (Mk), M Semi-mass. sulf. — B1-160 1419' Cp, Po Hnfl (monoclinic Po) — 10198 23' Cp-Tal-"Cp", Bn, Pn, Sl Mass. sulf. vein T 105' Tal-Cb, Sl, Pn, Po, M Mass. sulf. (Cl drops) ? 109' Tal-Cp, Bn, Pn, Sl, M, Ag Hnfl w/ 25% sulf. blebs ? 122.5' Tal-Cp, Bn, Po, Pn, Sl, M Norite w/ 5% interstitial sulf. T 128.6' Tal-Cp, Bn, Pn, Sl, Cc, M Norite w/ 25% sulf. T 136' Cb-Cp, Po, Pn, Mk, (Sl), (Bn), M, ZH Mass. sulf. (Cl drops) T 10216 119.7' "Cp", Sl, Bn, Pn, (Po), M, Gd, Ag Hnfl w/ "Cp" vein T 139' Tal-Cb-Cp, Bn, Pn, (Po), (ZH), Sl, M, P Mass. sulf. (Cl drops) T Abbreviations: Ag = native silver, Bn = bornite, Cb = cubanite, Cc = chalcocite, Cp = chalcopyrite, Gd = godlevskite, M = maucherite, Mk = mackinawite, P = parkerite, Pn = pentlandite, Po = pyrrhotite, Sl = sphalerite, Tal = talnakhite, ZH = zincian hercynite, ( ) = <1%, = probed mineral composition

24 grouped within a few inches of drill core. The parting planes often continue into adjacent chalcopyrite and pentlandite grains.

Textures that indicate pyrrhotite is early in the paragenetic sequence include: 1) curvilinear outer margins that are embayed by cubanite, chalcopyrite, and talnakhite; 2) extremely complicated, branching, outer margins that are embayed by cubanite, chalcopyrite, and talnakhite (large pyrrhotite grains may also be partially surrounded by consecutive pyrrhotite rings); and 3) pyrrhotite is present within cubanite, chalcopyrite, and talnakhite as islands that diminish in size outward from a larger central pyrrhotite grain (all in optical continuity).

Microprobe analyses for pyrrhotite are presented in Table 2. The composition of hexagonal

pyrrhotite ranges from Fe0.98S1.00 to Fe0.96S1.00; the composition of monoclinic pyrrhotite is Fe0.89S1.00.

Pyrrhotite compositions are plotted on Figure 7, which illustrates that both hexagonal and monoclinic pyrrhotite of this investigation are similar to previously analyzed pyrrhotite.

Pentlandite - (Fe,Ni)9S8

Pentlandite (Pn), the primary nickel ore mineral, occurs in a variety of forms. Rounded anhedral grains of pentlandite (Pn1), up to 7 mm across, are the most dominant. These round Pn1 grains are usually found within cubanite; and Pn1 is often weakly embayed by cubanite. Rarely do

Pn1 and pyrrhotite grains touch -- usually a thin rind of cubanite separates the two. When Pn1 grains and pyrrhotite are in contact with each other, the grain boundaries are generally sharp. Pn1 usually exhibits shrinkage cracks that are commonly infilled and replaced by cubanite, chalcopyrite, and talnakhite. More intense replacement of Pn1 results in islands and skeletal crystals of pentlandite in a chalcopyrite, cubanite, or talnakhite matrix. Commonly, pentlandite occurs as islands in cubanite that diminish in size outward from a larger Pn1 grain. Cubanite-chalcopyrite

25 exsolution lamellae commonly terminate against Pn1 grains. All the above textures indicate that most of the Pn1 formed after pyrrhotite, and before chalcopyrite-cubanite unmixing took place.

Mackinawite commonly partially replaces Pn1; violarite is observed only rarely.

Table 2. Pyrrhotite - mineral compositions

Drill Hole: B1-116 B1-136 B1-146 B1-160 Footage (ft.):1,686 1,734 1,858 1,419

S 37.48 36.54 36.75 39.55 Fe 64.22 60.95 62.64 61.38 Ni 0.02 0.14 0.19 0.58 Cu 0.11 0.13 0.16 0.00 Zn 0.19 0.00 0.00 0.24 As 0.84 1.04 0.66 0.00 Total 102.86 98.79 100.40 101.75

S 4.004 4.055 4.016 4.207 Fe 3.938 3.883 3.934 3.750 Ni 0.000 0.008 0.012 0.035 Cu 0.008 0.008 0.008 0.000 Zn 0.012 0.000 0.000 0.012 As 0.039 0.051 0.031 0.000 Total 8.000 8.004 8.000 8.004

The second most common type of pentlandite (Pn2) is as subrounded grains contained within small (<2 mm) bornite-chalcopyrite-rich interstitial sulfide blebs (Fig. 9a). Pn2 is not always present within the interstitial bornite-chalcopyrite bleb, but when present it is weakly embayed by the Cu-sulfides, indicating slightly earlier formation of the Pn2 pentlandite. Both Pn1 and Pn2 often occur in the same polished section. Pn2 is assumed to have formed at the same time as Pn1, but more detailed study is needed to accurately pinpoint the timing of Pn2 pentlandite formation.

26 Secondary pentlandite (Pn3) is also present in the massive sulfide ore. The textures exhibited by Pn3 are: 1) highly complex "spider web" texture within cubanite (Fig. 9b); 2) elongate lenses positioned at the contact of cubanite-chalcopyrite exsolution lamellae; and 3) randomly oriented needles of pentlandite positioned along the contact of cubanite-chalcopyrite exsolution lamellae. These textures indicate that Pn3 was formed at the time when cubanite-chalcopyrite unmixing took place.

A still later generation of secondary pentlandite (Pn4) is sporadically present within the massive sulfide ore. Pn4 is characterized by feathery pentlandite situated along fractures through cubanite and chalcopyrite (Fig. 8c).

Microprobe analyses of pentlandite are presented in Table 3, and are plotted on Figure 7.

Both Pn1 and Pn2 analyses compare well with previously analyzed pentlandite, but the secondary

Pn4 exhibits lower Ni contents and higher Cu contents than typical pentlandite. There are some differences between the Pn1 and Pn2 pentlandites; Pn2 exhibits lower Fe/S ratios and slightly higher Ni and Cu contents relative to Pn1. Secondary Pn3 pentlandite was not analyzed. The

composition ranges for pentlandite are: Pn1 = Fe4.47-4.80Ni3.82-4.03Co0.17-0.20S8, Pn2 = Fe3.51-4.28Ni3.81-

5.52Co0.06-0.19S8, and Pn4 = Fe4.35Ni3.41Co0.16S8.

27 Figure 8a. Pyrrhotite(PO) with basket-weave troilite. Figure 8c. Interstitial sulfide bleb with talnakhite(tal)- Cubanite(CB) with chalcopyrite(CP) and magnetite(mt) chalcopyrite(cp) exsolution lamallae, Pn2 pentlandite(pn), and lamellae. Sample B1-259, 1,822'. Bar is 1.0 mm. sphalerite star(sl). Note that sl star spans both tal and cp lamellae. Sample 10216, 139'. Bar is 1.0 mm.

Figure 8b. Talnakhite(TAL)-chalcopyrite(CP) exsolution Figure 8d. Chalcopyrite(CP) with sphalerite(SL) and Pn4 lamellae cross-cut by cubanite(CB) exsolution lamellae. Also pentlandite(pn). Note sphalerite nucleating on silicate grain. pyrrhotite(po) and mackinawite(mk). Sample B1-116, 1,668'. Sample 10198, 49'. Bar is 0.5 mm. Bar is 1.0 mm.

28 Photo page

28 This page left blank intentionally.

29 Figure 9a. Interstitial sulfide bleb with talnakhite(TAL), Figure 9c. Chalcopyrite(CP) with godlevskite(gd) "cloud." bornite(BN), extremely fine-grained talnakhite-bornite Sample 10216, 309.5'. Bar is 0.5 mm. intergrowth, Pn2 pentlandite(PN), and chalcocite(cc) as veinlets and partial rims. Sample 10198, 128.6'. Bar is 0.5 mm.

Figure 9b. "Spider-web" Pn3 pentlandite in cubanite(CB). Figure 9d. Native silver(Ag) and chalcopyrite(cp) within Also pyrrhotite(PO) and mackinawite(mk). Sample 10219, interstitial chlorite patch. Tarnished zone between large Ag and 264'. Bar is 1.0 mm. cp grain is "cp." Sphalerite and native copper also in this sample (10198, 39'). Bar is 1.0 mm.

30 Photo page

30 This page left blank intentionally.

31 Figure 10a. Maucherite(M) plate across talnakhite(TAL)- Figure 10c. Maucherite(M) "tadpole" within cubanite(CB). cubanite(CB) exsolution lamellae. Sphalerite(sl) present at Sample 10198, 109'. Bar is 1.0 mm. breaks in maucherite plate. Sample 10216, 139'. Bar is 1.0 mm.

Figure 10b. Terminated maucherite(M) crystal with Figure 10d. Close-up maucherite(M) grain of Fig. 10c. Note cubanite(CB). Sample B1-146, 1,804.8'. Bar is 0.5 mm. native silver(Ag) in irregular lensoidal cracks and as a fine myrmekitic intergrowth with maucherite. Photo is 0.27 mm across.

32 Photo page

32 This page left blank intentionally.

33 Figure 11a. Maucherite(M) grain within talnakhite(tal)- Figure 11c. Semi-massive sulfide that is interstitial to silicate cubanite(cb) exsolution lamellae. Note "shrinkage cracks" grains. Sulfide is mostly pyrrhotite(PO) with minor within maucherite. Also sphalerite(sl), nucleating on chalcopyrite and 10% euhedral zincian hercynite(h) grains. maucherite and parkerite(pk). Sample 10216, 139'. Bar is 0.5 Sample 10198, 132.5' Bar is 1.0 mm. mm.

Figure 11b. "Boudined" maucherite(M) plate within Figure 11d. As in Figure 11c--showing distribution of zincian chalcopyrite(CP). Sphalerite(sl) stars and blebs within hercynite(h) grains that are brown colored. Transmitted light. chalcopyrite and nucleating on maucherite. Sample 10198, 44.5'. Bar is 1.0 mm.

34 Photo page

34 Table 3. Pentlandite - mineral compositions

Drill Hole: B1-136 B1-136 B1-136 B1-146 10198 10198 10198 Footage (ft.):1,734 1,734 1,740 1,804.8 105 128.6 128.6

S 34.62 34.55 33.16 32.04 33.52 35.01 35.21 Fe 34.60 33.63 34.63 24.47 31.75 33.16 32.79 Co 1.35 1.58 1.50 1.36 1.23 0.55 0.50 Ni 30.23 31.84 29.95 40.48 26.14 31.24 30.75 Cu 0.00 0.00 0.00 0.14 7.38 0.96 1.02 As 0.29 0.00 0.35 0.41 0.46 0.00 0.68 Total 101.08 101.61 99.59 98.89 100.49 100.91 100.95

S 3.855 3.832 3.770 3.703 3.797 3.895 3.918 Fe 2.211 2.141 2.262 1.625 2.065 2.117 2.094 Co 0.082 0.094 0.094 0.086 0.076 0.035 0.031 Ni 1.840 1.930 1.859 2.555 1.618 1.898 1.867 Cu 0.000 0.000 0.000 0.008 0.422 0.055 0.059 As 0.012 0.000 0.016 0.020 0.022 0.000 0.031 Total 8.000 7.996 8.000 7.996 8.000 8.000 8.000

Chalcopyrite - CuFeS2

Chalcopyrite (Cp) is one of the main copper minerals in the massive sulfide ore. It occurs in a wide variety of forms that include: 1) massive sulfide grains up to several centimeters across in drill core (generally with exsolved cubanite and locally with exsolved talnakhite); 2) interstitial grains (<2 mm) of widely varying dimensions that often contain cubanite exsolution lamellae and/or bornite; 3) along biotite cleavage planes (minor); 4) symplectic intergrowths with Opx, amphibole, and chlorite; and 5) in curved hairline cracks through silicates that interconnect sulfide blebs -- minor cubanite and sphalerite are also present in the hairline cracks. Chalcopyrite, along with

35 cubanite and talnakhite, replaces pyrrhotite. Minor replacement of pentlandite by chalcopyrite and cubanite is also evident. In turn, the chalcopyrite is replaced by mackinawite, chalcocite, and possibly bornite.

Microprobe analyses of chalcopyrite are presented in Table 4 and plotted on Figure 7. There is some very weak variation is the chalcopyrite compositions of this investigation; overall, they compare fairly well with previously analyzed chalcopyrite. The composition range for chalcopyrite

analyzed in this investigation is: Cu0.91-1.08Fe0.96-1.04S2.

Table 4. Chalcopyrite - mineral compositions

Drill Hole: B1-116 B1-135 B1-135 B1-136 B1-136 B1-136 B1-136 B1-146 Footage (ft.):1,686 1,652 1,652 1,729.5 1,729.5 1,730.5 1,734 1,804.8

S 35.71 34.68 35.17 35.52 34.14 36.76 35.68 34.56 Fe 30.16 30.49 30.29 29.35 29.48 30.82 30.46 29.23 Co 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.00 Ni 0.91 0.00 0.04 0.00 0.00 0.00 0.07 0.09 Cu 32.32 33.45 34.17 34.80 34.46 33.37 32.82 33.61 As 0.00 0.99 0.00 0.48 1.21 0.30 0.27 0.00 Total 99.09 99.61 99.70 97.15 99.29 101.25 99.36 97.49

S 4.090 3.992 4.027 3.875 3.961 4.117 4.082 4.043 Fe 1.984 2.016 1.992 2.008 1.965 1.980 2.000 1.965 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 Ni 0.059 0.000 0.004 0.000 0.000 0.000 0.004 0.008 Cu 1.867 1.941 1.977 2.094 2.016 1.887 1.895 1.984 As 0.000 0.047 0.000 0.023 0.059 0.016 0.016 0.000 Total 8.000 7.996 8.000 8.000 8.000 8.000 8.000 8.000

The overall cubanite to chalcopyrite ratios were not determined during drill core logging in this investigation. A range of 6 to 1 was reported in the massive sulfide ore by Watowich (1978).

36 Cubanite - CuFe2S3

Cubanite (Cb) exsolution lamellae are commonly present within chalcopyrite (Fig. 14a) and talnakhite (Figs. 10a & 11a). They are most common within the semi-massive to massive sulfide intersections, and cubanite may often be the dominant Cu-sulfide. The lamellae exhibit several orientations and range from <0.5 to over 20 mm in thickness. They are the result of chalcopyrite- cubanite unmixing at 250-300EC (Ramdohr, 1980). Cubanite-chalcopyrite exsolution lamellae terminate against earlier formed pyrrhotite and pentlandite (Pn1 and Pn2), and cross-cut earlier formed chalcopyrite-talnakhite exsolution lamellae (Figs. 8b & 14a). Cubanite also occurs as thin rinds between pentlandite and pyrrhotite, and as small round blebs within pyrrhotite. Mackinawite commonly replaces cubanite.

Microprobe analyses of cubanite are presented in Table 5, and plotted on Figure 7. There are some very weak variations in the cubanite compositions of this investigation; overall, they compare fairly well with previously analyzed cubanite. The composition range of cubanite probed

in this investigation is: Cu0.94-1.06Fe1.77-2.01S3.

Talnakhite - Cu9(Fe,Ni8)S16

Talnakhite (Tal) is locally present in the massive sulfide and is occasionally present in interstitial sulfides within hornfels (Fig. 9a). It occurs as exsolution lamellae with chalcopyrite

(Figs. 8b, 8c, & 14a) and cubanite (Figs. 10a & 11a), and is the product of unmixing of a copper-rich solid solution. Talnakhite is difficult to distinguish from chalcopyrite in freshly polished samples, but tarnishes rapidly, sometimes within 10-15 minutes (depending on the relative humidity). Note that the microphotographs of this report were taken in a tarnished condition to exhibit the talnakhite textures.

37 Microprobe analyses of talnakhite are presented in Table 6, and plotted on Figure 7. There is some very weak variation in the talnakhite compositions of this investigation; overall, they are more S-enriched than the talnakhite probed by Hardyman (1969). The talnakhite composition range

for this investigation is: Cu7.82-9.09Fe6.91-8.11Ni0.00-0.26As0.00-0.18S16.

The talnakhite-chalcopyrite and talnakhite-cubanite exsolution lamellae terminate against pentlandite (Pn1) and pyrrhotite grains, indicating that unmixing took place after pentlandite (Pn1) and pyrrhotite formed. Talnakhite-chalcopyrite exsolution lamellae are cross-cut by cubanite exsolution lamellae (Figs. 8b & 14a). This indicates that talnakhite-chalcopyrite unmixing took place slightly earlier than chalcopyrite-cubanite exsolution.

"Chalcopyrite" - Cu0.91-0.99Fe0.84-0.97S2

In some instances, the polished sections exhibited only a weak tarnish after days of exposure to air. This tarnish was noticeably weaker than the typical darker talnakhite tarnish that normally develops over the same time. Close inspection of these samples indicated an extremely fine, and faint, exsolution lamellae of talnakhite and what appeared to be chalcopyrite -- will be referred to as "chalcopyrite" ("Cp"). However, "Cp" exsolution lamellae could not be distinguished in all the weakly tarnished samples and only massive "Cp" was observed.

Microprobe analyses were conducted on both lamellae-bearing and non-lamellae-bearing

"Cp" material. In both instances, the "Cp" material contained Fe values similar to talnakhite, but

Cu values similar to chalcopyrite. Results of the "Cp" microprobe analyses are presented in Table

7 (note that the first two results are from samples that are lamellae-bearing), and the

38 Table 5. Cubanite - mineral compositions

Drill hole: B1-116 B1-116 B1-136 B1-136 B1-136 B1-136 B1-136 10198 10198 10198 10216 10216 Footage (ft.):1,686 1,686 1,729.5 1,730.5 1,734 1,734 1,734 105 105 105 139 139

S 35.39 36.72 34.18 37.24 36.88 35.51 36.39 36.21 34.80 35.48 36.90 35.01 Fe 39.62 40.34 40.70 41.54 40.75 40.28 40.70 40.94 38.76 39.14 38.04 39.94 Co 0.00 0.02 0.04 0.00 0.05 0.00 0.01 0.00 0.00 0.06 0.09 0.00 Ni 2.75 0.00 0.00 0.12 0.07 0.00 0.00 0.23 0.10 0.03 0.06 0.00 Cu 22.00 25.04 24.13 22.48 21.99 23.07 22.55 24.15 24.30 23.20 23.57 22.98 As 0.67 0.00 0.00 0.23 0.30 0.05 0.00 0.07 0.75 0.00 0.00 0.00 Total 100.43 102.13 99.04 101.61 100.04 98.91 99.64 101.59 98.71 97.89 98.65 97.93

S 3.984 4.051 3.922 4.105 4.121 4.043 4.094 4.539 3.995 4.072 4.176 4.027 Fe 2.563 2.555 2.680 2.629 2.617 2.633 2.629 2.268 2.554 2.579 2.469 2.637 Co 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000 0.000 0.004 0.004 0.000 Ni 0.168 0.000 0.000 0.008 0.004 0.000 0.000 0.011 0.006 0.002 0.004 0.000 Cu 1.250 1.395 1.395 1.250 1.242 1.324 1.281 1.180 1.407 1.343 1.348 1.336 As 0.031 0.000 0.000 0.012 0.016 0.004 0.000 0.001 0.037 0.000 0.000 0.000 Total 7.996 8.000 8.000 8.004 8.004 8.004 8.004 7.999 7.999 8.000 8.000 8.000

39 Table 6. Talnakhite - mineral compositions

Drill Hole: 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10198 10216 10216 10216

Footage (ft.):23 23 23 23 23 105 105 105 109 109 109 109 122.5 128.6 128.6 128.6 128.6 128.6 139 139 139

S 33.25 33.40 35.08 36.29 34.20 34.62 35.01 34.20 34.34 33.79 34.95 34.82 34.10 35.01 33.57 35.30 35.45 35.45 34.12 33.91 33.32

Fe 27.89 28.85 26.77 27.94 28.49 28.68 29.34 29.07 28.88 29.08 28.00 26.20 28.74 28.04 28.13 28.49 27.93 29.02 28.39 28.57 29.43

Co 0.00 0.00 0.00 0.16 0.07 0.09 0.00 0.04 0.04 0.04 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00

Ni 0.84 0.77 0.56 0.47 0.46 0.20 0.27 0.44 0.78 0.90 0.93 0.83 0.70 0.09 0.52 0.51 0.00 0.36 0.45 0.56 0.62

Cu 37.05 37.27 37.29 36.46 36.93 34.88 35.36 36.13 35.20 37.86 35.91 37.23 36.63 37.68 37.16 35.98 37.36 34.35 37.79 37.06 37.50

As 0.00 0.86 0.00 0.12 0.00 0.14 0.00 0.09 0.29 0.07 0.00 0.00 0.32 0.37 0.37 0.39 0.00 0.57 0.30 0.00 0.04

Total 99.02 101.22 99.81 101.43 100.15 98.60 99.98 99.96 99.52 101.74 99.78 99.11 100.47 101.79 99.76 100.67 100.73 99.75 101.14 100.10 100.91

S 3.887 3.840 4.031 4.082 3.983 4.535 4.010 3.942 3.965 3.855 4.016 4.031 3.918 4.016 3.898 4.020 4.031 4.059 3.906 3.914 3.836

Fe 1.871 1.902 1.766 1.805 1.883 1.661 1.929 1.923 1.914 1.906 1.848 1.742 1.898 1.816 1.875 1.863 1.824 1.906 1.867 1.895 1.945

Co 0.000 0.004 0.000 0.008 0.004 0.004 0.000 0.002 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

Ni 0.055 0.047 0.035 0.027 0.027 0.010 0.017 0.028 0.051 0.055 0.059 0.051 0.043 0.004 0.031 0.031 0.000 0.023 0.027 0.035 0.039

Cu 2.188 2.160 2.168 2.070 2.145 1.783 2.043 2.101 2.051 2.180 2.082 2.176 2.125 2.145 2.176 2.066 2.145 1.984 2.184 2.160 2.180

As 0.000 0.043 0.000 0.004 0.000 0.006 0.000 0.004 0.016 0.004 0.000 0.000 0.016 0.020 0.020 0.020 0.000 0.027 0.016 0.000 0.000

Total 8.000 7.996 8.000 7.996 7.996 7.999 7.999 8.000 8.000 8.004 8.004 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.004 8.004 8.000

40 Table 7. "Chalcopyrite" - mineral compositions

Drill Hole: 10198 10198 10216 10216 10216 10216 Footage (ft.):23 23 119.7 119.7 119.7 119.7

S 36.30 36.16 35.63 35.10 35.77 37.50 Fe 28.21 28.43 28.10 29.55 28.86 27.34 Co 0.00 0.00 0.00 0.00 0.00 0.00 Ni 0.25 0.30 1.07 1.26 0.69 1.16 Cu 33.77 35.56 34.41 32.86 33.45 33.72 As 1.20 0.00 1.09 0.70 1.07 0.00 Total 99.72 100.46 100.29 99.47 99.83 99.72

S 4.137 4.098 4.063 4.031 4.086 4.234 Fe 1.848 1.852 1.840 1.949 1.891 1.773 Co 0.000 0.000 0.000 0.000 0.000 0.000 Ni 0.016 0.020 0.066 0.078 0.043 0.070 Cu 1.941 2.035 1.980 1.906 1.926 1.922 As 0.059 0.000 0.055 0.035 0.051 0.000 Total 8.000 8.000 8.004 8.000 7.996 8.000

"Cp" compositions are plotted on Figure 7. The "Cp" material does not compare with any previously analyzed sulfides (Fig. 7) and, therefore, may represent an unknown Cu-sulfide of the chalcopyrite-talnakhite--haycockite series.

Bornite - Cu5FeS4

Bornite (Bn) is present in most massive sulfide samples and ranges from trace to 5% (locally up to 20%). Although Bn is common within the massive sulfide ore zone, it occurs only within small (<1 mm) interstitial sulfide blebs rather than coarser sulfides. Bn is associated with

41 chalcopyrite in these small interstitial blebs (Fig. 9a). Variable amounts of talnakhite, cubanite, sphalerite, pentlandite (Pn2), and rare chalcocite may also be present within the interstitial blebs.

Bornite and chalcopyrite (or in a few cases talnakhite) are complexly intergrown within the interstitial sulfide blebs (Fig. 9a). Both coarse intergrowths and an extremely fine net-like intergrowth are often present in the same bleb; examples of which are shown in Fig. 9a -- note that the extremely fine net-like intergrowth is labeled "tal-bn mix."

The paragenetic position of bornite is difficult to determine. The extremely fine net-like intergrowths with other Cu-sulfides suggest that bornite was formed during Cu-unmixing. Ripley

(1990) notes similar bornite-chalcopyrite intergrowth textures in disseminated sulfides hosted by troctolite. He feels that the intergrowths are unreliable indicators (as described by Amcoff, 1988, p. 291) as to whether the intergrowths are primary features resulting from cooling or were produced by a replacement process. Covellite, which replaces both bornite and chalcopyrite, was found in one of the interstitial bornite-chalcopyrite blebs (Sample 10216-310').

Microprobe analyses of both the coarse intergrown bornite and the fine net-like intergrowths of bornite-chalcopyrite are presented in Tables 8 and 9, respectively. Bornite compositions are also plotted on Figure 7, and compare well with bornite compositions of Hardyman (1969). The

chemical composition of bornite (this investigation) ranges from Cu4.55Fe0.97S4 to Cu5.16Fe0.98S4.

Bornite also occurs in two other settings. Massive bornite, which replaces pentlandite and contains minor intergrown chalcopyrite, was found in one sample collected from underground drill hole 10216 at 132 feet. Secondary bornite also fills near-vertical veins that cut across disseminated sulfides in troctolite-hosted ore. These veins are extremely common in drill hole B1-324 (1,500.5-

1,519') of the Bathtub area, where they are up to 7 mm thick.

42 Table 8. Bornite - mineral compositions

Drill hole: B1-146 10198 10198 10198 Footage (ft.): 1,804.8 128.6 128.6 128.6

S 26.38 26.14 27.12 25.27 Fe 11.19 10.65 11.21 10.78 Co 0.00 0.00 0.02 0.04 Ni 0.05 0.00 0.02 0.00 Cu 59.49 62.82 63.25 64.57 As 0.00 0.02 0.00 0.07 Total 97.11 99.64 101.62 100.73

S 3.359 3.270 3.313 3.152 Fe 0.816 0.766 0.785 0.773 Co 0.000 0.000 0.000 0.004 Ni 0.004 0.000 0.000 0.000 Cu 3.820 3.965 3.898 4.066 As 0.000 0.000 0.000 0.004 Total 8.000 8.000 7.996 8.000

Table 9. Bornite-chalcopyrite/talnakhite mixture Drill Hole Footage Fe Co Ni Cu Zn As S Total Description 10198 128.6' 20.09 0.00 0.06 49.25 0.00 0.00 31.27 100.67 Interst. BN-CP/TAL-PN 10198 128.6' 18.84 0.08 0.07 48.95 0.00 0.27 31.45 99.66 " " " 10198 128.6' 20.23 0.05 0.02 50.13 0.00 0.46 29.93 100.84 " " " 10198 128.6' 19.27 0.00 0.09 51.18 0.00 0.00 30.23 100.76 " " "

43 Chalcocite - Cu2S

Only rare amounts of secondary chalcocite (Cc) were identified. The chalcocite is present

only in the small interstitial blebs that contain intergrown bornite and chalcopyrite (or talnakhite).

Chalcocite occurs as either: 1) thin stringers or cracks that cross-cut the intergrown bornite-

chalcopyrite; and/or 2) thin partial rinds on the periphery of the interstitial sulfide bleb. Both types

are shown in Figure 9a.

Sphalerite - (Zn,Fe)S

Sphalerite (Sl) is locally a common constituent of the massive sulfide ore in the Local Boy

area where it ranges from trace amounts to 5%. Sphalerite is also present (rare to very minor

amounts) in the troctolite-hosted disseminated sulfide ore. Sphalerite occurs as stars (Figs. 8c & 8d),

anhedral equant blebs (Fig. 8d), and dendritic lenses (maximum size seen is 3 mm) within cubanite,

chalcopyrite, and talnakhite.

Microprobe analyses of sphalerite are presented in Table 10. The range in chemical

composition for sphalerite is Zn0.74-0.84Fe0.05-0.11Cu0.00-0.14S1.00.

Sphalerite formed early in the paragenetic sequence. It formed before chalcopyrite- talnakhite unmixing and chalcopyrite-cubanite unmixing took place. This is exhibited by: 1) the presence of sphalerite stars and blebs within chalcopyrite, cubanite, and talnakhite; and 2) the presence of sphalerite stars that span across individual chalcopyrite-cubanite exsolution lamellae and individual talnakhite-chalcopyrite exsolution lamellae (Fig. 8c). Sphalerite is also found to have nucleated on silicate grains (Fig. 8d) and on early formed maucherite grains (Figs. 10a, 11a, & 11b).

Sphalerite is only rarely found within pyrrhotite.

44 45 Table 10. Sphalerite - mineral compositions Drill Hole: 10198 10198 10198 10198 10198 10198 Footage (ft.):23 23 105 105 109 109 S 34.86 34.20 33.29 34.33 34.50 34.63 Fe 5.80 5.77 5.22 6.77 4.95 2.91 Co 0.04 0.00 0.09 0.00 0.02 0.00 Ni 0.00 0.00 0.24 0.17 0.01 0.45 Cu 1.31 0.16 0.91 0.55 9.32 1.62 Zn 55.94 60.92 58.07 55.96 51.89 60.37 As 0.73 0.61 0.77 0.00 0.41 0.12 Total 98.68 101.64 98.58 97.77 101.28 100.10

S 4.188 4.039 4.051 4.159 4.070 4.133 Fe 0.398 0.391 0.365 0.471 0.336 0.199 Co 0.004 0.000 0.006 0.000 0.012 0.000 Ni 0.000 0.000 0.016 0.011 0.000 0.027 Cu 0.078 0.008 0.056 0.034 0.555 0.098 Zn 3.293 3.531 3.446 3.325 3.004 3.535 As 0.039 0.031 0.040 0.000 0.020 0.008 Total 8.000 8.000 8.000 8.000 7.996 8.000

Mackinawite - Fe1+XS

Secondary mackinawite is fairly common in the massive sulfide ore (trace to 10%) and occurs in several forms. When mackinawite replaces pentlandite, it occurs as individual stringers

(worms), rectangular patches (Fig. 9b), and patches with a irregular mosaic. Mackinawite also occurs as a replacement product of chalcopyrite, and to a lesser extent cubanite, where it is present in a myriad of forms that include: 1) feathery zones peripheral to fractures (Fig. 14a), silicate grains

(Fig. 14a), pyrrhotite, and sphalerite; and 2) stringers and patches along chalcopyrite-cubanite exsolution lamellae.

46 Microprobe analyses of mackinawite, replacing both pentlandite and chalcopyrite, are presented in Table 11, and are plotted on Figure 7. As expected, mackinawite that replaces Cu- sulfides has a higher Cu content. Composition ranges for mackinawite are: 1) mackinawite

replacing Cu-sulfides = Fe0.87-0.93Cu0.02-0.10Ni0.05S1.00; and 2) mackinawite replacing pentlandite = Fe0.82-

0.88Cu0.00Ni0.08-0.10S1.00.

Table 11. Mackinawite - mineral compositions Drill Hole: B1-116 B1-116 B1-116 B1-136 B1-136 B1-136 Footage (ft.):1,686 1,686 1,686 1,740 1,740 1,740 S 35.18 35.80 37.34 36.75 36.97 35.30 Fe 57.15 54.46 59.38 52.66 55.49 54.43 Co 0.14 0.14 0.19 1.27 1.04 1.12 Ni 3.22 3.04 3.54 6.89 5.14 5.23 Cu 3.88 6.87 1.30 0.00 0.00 0.00 Zn 0.00 0.00 0.00 0.22 0.00 0.20 As 0.00 1.30 0.00 0.00 0.58 0.79 Total 99.58 101.61 101.74 97.79 99.22 97.07

S 3.922 3.934 4.031 4.109 4.082 4.008 Fe 3.656 3.434 3.680 3.379 3.520 3.547 Co 0.008 0.008 0.012 0.078 0.063 0.070 Ni 0.195 0.184 0.207 0.422 0.309 0.324 Cu 0.219 0.383 0.070 0.000 0.000 0.000 Zn 0.000 0.000 0.000 0.012 0.000 0.012 As 0.000 0.063 0.000 0.000 0.027 0.039 Total 8.000 8.004 8.000 8.000 8.000 8.000

Maucherite - Ni11As8

Trace amounts of maucherite, up to 2 mm across, are exceptionally common in the massive sulfide ore of the Local Boy area. The most maucherite seen in an individual section was in Sample

10198-48.5' (5% maucherite). Maucherite is also present, though rare, in the troctolite-hosted disseminated sulfide ore close to the basal contact. Overall, maucherite commonly occurs within

47 cubanite (most common), chalcopyrite, and talnakhite; it is rarely found within pyrrhotite and

pentlandite. Maucherite grains occur in a number of morphologies as:

1) round blebs to slightly amoeboid blebs in cubanite (most common).

2) long slender blades (Fig. 10a).

3) terminated euhedral crystals (Fig. 10b).

4) "tadpoles" (Fig. 10c).

5) subrounded anhedral blebs or ovoids with "shrinkage cracks" (Fig. 11a).

6) small aligned blebs that look as though they have been "boudined" within a massive sulfide matrix (Fig. 11b).

7) symplectic intergrowths with Opx.

Microprobe analyses of maucherite are presented in Table 12. Maucherite compositions are

plotted on Figure 12 (Ni-As-Co ternary plot) where they are compared with maucherite analyzed

by Ryan and Weiblen (1984). There is a slight variation in the maucherite compositions of this

investigation; the variation is also evident within a single maucherite grain (Table 12). The

maucherite compositions of this investigation compare well with stoichiometric maucherite (Fig.

12), but differ from compositions obtained by Ryan and Weiblen (1984). Composition range of

maucherite in this investigation is: (Ni10.14-10.89Co0.07-0.82Fe0.01-0.13)11(As7.58-7.95S0.03-0.42)8.

Most of the maucherite grains are internally homogeneous regardless of the grain morphological type. However, some maucherite grains (all morphologies) contain internal zones of a pale white mineral that is present in irregular lensoidal cracks and in an extremely fine-grained myrmekitic intergrowth (Figs. 10c & 10d). Element mapping with the microprobe confirms that these zones contain native silver. However, only a few maucherite grains have been mapped in this manner, and much more additional work is needed to confirm if these

48 Table 12. Maucherite - mineral compositions Drill Hole: B1-136 B1-136 B1-136 B1-136 B1-136 B1-136 B1-136 B1-146 B1-146 B1-146 10198 10198 10198 10198 10198 10198 10216 Footage (ft.): 1,730.5 1,730.5 1,734 1,734 1,734 1,740 1,740 1,804.8 1,858 1,858 109 109 109 128.6 136 136 119.7 S 0.20 0.20 1.27 1.07 0.35 0.22 0.36 0.19 0.36 0.34 0.07 0.12 0.16 0.26 0.54 0.16 0.18 Fe 0.33 0.32 0.36 0.58 0.37 0.61 0.33 0.36 0.45 0.38 0.05 0.20 0.34 0.15 0.25 0.16 0.38 Co 1.49 1.17 1.40 1.53 1.57 1.77 2.13 1.06 1.51 1.56 1.05 1.81 1.50 0.34 3.78 3.98 1.19 Ni 52.52 51.21 53.43 53.95 52.27 52.11 53.32 52.50 51.62 50.76 54.32 50.50 51.02 52.26 49.93 48.96 52.36 As 47.05 46.68 44.70 44.46 44.43 47.79 46.25 46.43 47.69 46.06 46.38 46.71 46.08 46.47 46.36 44.59 46.79 Total 101.59 99.64 101.16 101.59 98.99 102.49 102.38 100.54 101.63 99.09 101.87 99.34 99.10 99.49 100.85 97.86 100.89

S 0.031 0.043 0.203 0.168 0.059 0.035 0.059 0.031 0.059 0.055 0.012 0.020 0.027 0.043 0.086 0.027 0.027 Fe 0.031 0.031 0.031 0.051 0.035 0.055 0.031 0.031 0.043 0.035 0.004 0.020 0.031 0.016 0.023 0.016 0.035 Co 0.129 0.105 0.121 0.133 0.141 0.152 0.184 0.094 0.133 0.141 0.090 0.160 0.133 0.031 0.328 0.359 0.105 Ni 4.586 4.563 4.617 4.648 4.664 4.512 4.602 4.633 4.508 4.543 4.730 4.523 4.574 4.664 4.375 4.434 4.605 As 3.219 3.262 3.027 3.000 3.105 3.242 3.129 3.211 3.262 3.230 3.164 3.277 3.234 3.250 3.184 3.164 3.227 Total 7.996 8.004 8.000 8.000 8.004 7.996 8.004 8.000 8.004 8.004 8.000 8.000 8.000 8.004 7.996 8.000 8.000

49 internal zones are always native silver. Inclusions of PGE minerals, within maucherite grains, have also been recognized by Ryan and Weiblen (1984) and Iwasaki et al., (1986). During probing of maucherite grains in this investigation, numerous grains yielded totals of only 93-96%. Native silver

(and PGEs?) is suspected to be present in these maucherite grains and may make up the remaining

4-7%. However, since silver was not included in the initial microprobe analysis file, the true amount of silver present within the "poor total" maucherite grains is unknown. Note that, no "poor total" maucherite mineral compositions have been presented in this report.

Figure 12. Ternary plot (Ni-As-Co) of maucherite mineral compositions.

50 Maucherite appears to have formed early in the paragenetic sequence -- before sphalerite formation and talnakhite-chalcopyrite-cubanite unmixing. Sphalerite is commonly found nucleating on the boundaries of ovoid maucherite grains and at the breaks between aligned (or "boudined") maucherite blebs (Figs. 11a & 11b, respectively). Therefore, the maucherite formed before sphalerite and acted as a nucleation point during sphalerite formation. Chalcopyrite-talnakhite- cubanite exsolution lamellae commonly terminate against maucherite grains. Long slender maucherite blades also cross-cut the exsolution lamellae with very little affect to the lamellae pattern

(Fig. 10a). This indicates that the maucherite was formed before chalcopyrite-talnakhite-cubanite unmixing took place.

Godlevskite - Ni7S6

Rare amounts of godlevskite were seen in four samples collected from the Local Boy area.

The godlevskite is present within, and exsolved from, chalcopyrite where it has a cloud-like texture

(Fig. 9c). Microprobe analyses of godlevskite are presented in Table 13; good totals are obtained only when a diffuse electron beam is used.

Table 13. Godlevskite - mineral compositions Drill Hole Footage Fe Co Ni As S Total Description 10216 119.7' 1.96 0.00 68.50 0.00 29.20 99.67 Sulf. Vnlt in Hnfl

.133 .000 4.418 .000 3.449 8.000 Ni7.69Fe0.23S6 10216 119.7' 1.61 0.07 69.29 0.62 29.80 101.37 Sulf. Vnlt in Hnfl

.105 .004 4.395 .031 3.461 7.996 Ni7.62Fe0.18S6

Parkerite - Ni3Bi2S2

Very rare parkerite is present as subrounded equant to tabular grains in close proximity to maucherite (Fig. 11a), or as amoeboid grains in chlorite adjacent to native silver. The identification

51 of parkerite is based on petrographic characteristics -- creamy white color, distinct bireflectance, and strong anisotropy. No microprobe analyses of parkerite are presented.

OTHER MINERALS

Native Silver

Native silver occurs in two morphologies: 1) primary - within maucherite as irregular lenses

and extremely fine myrmekitic intergrowths (described above); and 2) secondary - as irregular,

minute blebs within cubanite, chalcopyrite, and interstitial chlorite. The largest native silver grain

(secondary?) found is 0.7 x 0.5 mm across. It is shown in Figure 9d where it is contained within a

1 x 2 inch chlorite patch (Sample 10198-39'). Also present in the chlorite patch is chalcopyrite,

weakly tarnished "chalcopyrite", sphalerite, parkerite, native copper, and several unidentified

secondary sulfide(?) minerals.

Element mapping with the microprobe confirms the presence of native silver in samples:

B1-140-1,890.5', 10051-44.5', 10051-48', 10198-16.4', 10198-39', 10198-100', and 10216-119.7'.

Note that this listing does not include the silver-bearing maucherite grains.

OXIDE MINERALOGY

Zincian Hercynite

Zincian hercynite (Zh) is present in amounts ranging from trace to 10% in some massive

sulfide samples (in drill holes B1-116, B1-146, 10198, and 10219). It occurs as rounded, subhedral to euhedral crystals that are positioned within, and on the periphery of, sulfide blebs (Figs. 11c &

11d). Also associated with the zincian hercynite are euhedral olivine and orthopyroxene crystals.

52 Euhedral olivine has only been found in the hornfels-hosted massive sulfides that contain zincian hercynite.

Microprobe analyses of zincian hercynite are presented in Table 14 and plotted on Figure 13

(spinel compositional prism). Also plotted on Figure 13 for comparison are: 1) green pleonaste,

MAG III magnetites, and titanium chromite -- this investigation (see Severson, 1991; Part I); 2) magnetite, hercynite (similar to the green pleonaste of this investigation), and other spinels from Cr- bearing intervals in drill holes Du-15 and Du-9 -- Birch Lake area (Sabelin and Iwasaki, 1985); 3) chromium titanomagnetite and other spinels from the troctolitic rocks that host the Water Hen

Intrusion (Mainwaring, 1975); 4) magnetite from gabbroic rocks from the Bardon Peak area - Duluth

(Ross, 1985); and 5) magnetite and chromite from troctolite in the Dunka Road deposit (Rao and

Ripley, 1983).

Table 14. Zincian hercynite compositions (all analyses from sample B1-146, 1,873.5'). For ZnO values <4.0%, the hercynite grain is enclosed in silicates rather than sulfides.

Drill Hole Footage TiO2 Cr2O3 MnO FeO Fe2O3 ZnO MgO Al2O3 Total B1-146 1,873.5' 0.01 0.92 0.23 27.93 3.42 8.95 2.75 55.32 99.53 B1-146 1,873.5' 0.01 1.12 0.11 29.91 2.13 8.52 2.40 57.21 101.41 B1-146 1,873.5' 0.10 1.20 0.30 28.58 2.77 8.93 2.11 54.69 98.68 B1-146 1,873.5' 0.03 1.05 0.11 28.92 2.92 7.96 2.45 54.73 98.18 B1-146 1,873.5' 0.00 1.22 0.08 28.58 3.31 7.99 2.55 54.21 97.94 B1-146 1,873.5' 0.04 1.13 0.20 29.20 2.80 9.02 2.40 56.46 101.25 B1-146 1,873.5' 0.01 1.13 0.20 29.64 2.04 8.51 2.45 57.13 101.11 B1-146 1,873.5' 0.00 1.13 0.07 29.72 1.70 8.59 2.18 56.71 100.10 B1-146 1,873.5' 0.11 0.80 0.17 29.34 1.51 7.36 2.70 56.15 98.14 B1-146 1,873.5' 0.24 0.91 0.10 33.61 2.82 3.78 2.93 56.96 101.35 B1-146 1,873.5' 0.07 0.97 0.23 33.19 3.20 3.39 3.07 56.58 100.71 B1-146 1,873.5' 0.18 1.01 0.23 29.75 2.61 8.38 2.56 56.73 101.46 B1-146 1,873.5' 0.17 0.85 0.12 29.30 3.51 6.96 2.80 54.32 98.03 B1-146 1,873.5' 0.22 1.18 0.05 29.54 3.53 7.14 2.57 53.83 98.06 B1-146 1,873.5' 0.20 1.01 0.08 29.42 3.52 7.05 2.69 54.07 98.04 B1-146 1,873.5' 0.06 1.10 0.15 29.73 0.76 7.81 2.39 56.86 98.86 B1-146 1,873.5' 0.09 1.22 0.18 29.31 0.88 8.75 2.50 57.54 100.47 B1-146 1,873.5' 0.13 1.13 0.02 29.83 1.53 8.61 2.68 57.86 101.79 B1-146 1,873.5' 0.15 0.88 0.18 29.47 1.34 8.02 2.84 57.49 100.37

53 The zincian hercynite of this investigation contains 7-9% Zn. Zinc-bearing hercynite has also been reported elsewhere (north of the shaft area, and in 10052) in the Minnamax deposit

(Ripley, 1989) -- they have only been qualitatively analyzed and were found to contain a few percent

Zn (E. Ripley, pers. comm., 1991).

Figure 13. Spinel compositional prism plot.

Magnetite

Magnetite is present within the massive sulfide ore of the Local Boy area in two different

morphologies that formed at different times. These are:

54 1) Primary - thin magnetite lamellae that parallel chalcopyrite-cubanite exsolution lamellae (Fig. 8a). This type of occurrence indicates that magnetite was formed under oxidizing conditions during chalcopyrite-cubanite unmixing (Ramdohr, 1980, p. 636).

2) Secondary - late magnetite veins that cross-cut all sulfide phases. They also cross- cut the magnetite lamellae described above. Veins are up to 1.5 mm thick, and magnetite is often subordinate to intermixed chlorite. In some samples, the magnetite has oxidized to hematite during core storage. This type of core exhibits intense limonite and malachite coatings, and often has Cl drops/encrustations that coat the core surface. Hematite-chlorite veins are shown in Figure 12a.

Magnetite-chlorite veins, or hematite-chlorite veins, are present in numerous samples collected from the Local Boy area. Magnetite lamellae that parallel chalcopyrite-cubanite exsolution lamellae have been found in drill holes B1-135, B1-138, B1-259, 10193, 10195, and 10197.

CHLORINE DROPS/ENCRUSTATIONS

Several, but not all, of the massive sulfide drill core intersections exhibit intense limonite- malachite coatings. This same core contains small, reddish-brown, dome-like encrustations that coat the core surface. These are presumed to be similar to the chlorine drops described in Part I, except that they are present as dried-up husks when on the massive sulfide core. Rare liquid drops (also

Cl-rich - see following discussion) are also present on some of the "encrusted" massive sulfide core.

The encrustations form on freshly sawn massive sulfide drill core within less than six months.

At first glance, the encrustations appear randomly distributed over the core surface.

However, upon closer scrutiny, the encrustations are seen to be aligned along short straight segments that are at numerous orientations to the core axis. In order to better understand the encrustation distribution, several samples of "encrusted" drill core were collected from hole B1-116. These were then photographed, slabbed, and photographed again. Comparing the photographs, it was noticed that the encrustations coat the core surface along short criss-crossing fractures that are hairline to

3 mm thick. Overall, these fractures are present in a networked arrangement that give the rock a

55 "cracked" appearance. These fractures are related to structural deformation that occurred after

deposition of the massive sulfide ore. Because not all the massive sulfide core is Cl "encrusted," this

deformation was limited to specific zones within the Local Boy area.

Petrographic examination of the same samples indicates that these fractures are filled with

chlorite ± hematite (Figs. 14a & 14b). The presence of hematite may be related to oxidation of the

core during storage. Extensive mackinawite replacement of cubanite and chalcopyrite has generally

taken place on the edges of these chlorite ± hematite filled fractures (Fig. 14b).

As mentioned previously, the encrustations were assumed to be dried-up Cl-rich fluid drops.

To confirm this assumption, a sample was element mapped for Cl with the electron microprobe.

Figure 14c is a backscatter image of the sample that is shown in Figure 14b (reflected and

transmitted light). Figure 14d depicts where the element Cl is distributed within the same area as

the backscatter image. Comparison of Figures 14c and 14d, indicates that chlorine is located in the

chlorite-filled fractures. Because the encrustations are associated with these Cl-rich, chlorite-filled

fractures, the encrustations must represent dried-up Cl-rich fluid drops.

The spatial distribution of Cl-encrusted massive sulfide drill core is shown on Plate XVI.

Plate XVI was constructed by projecting all the "encrusted" occurrences to a horizontal planar

surface. As shown on Plate XVI, the Cl-encrustations are generally grouped into an EW-trending area. This area coincides with the anticline that is present within the footwall rocks, as defined by

the top of the BIF (see Fig. 3). More specifically, the Cl-encrustation area coincides with axis of

the anticline; a spotty distribution is also present on the south flank of the anticline. The south flank

of the anticline is an area where more structural deformation (faulting and shearing) occurred.

Interestingly, anomalous PGE values (>1 ppm) also coincide with this zone. This suggests that

structural conditions may have been important in channeling Cl-bearing solutions that were capable

56 of locally transporting and re-concentrating PGEs that were already present within the massive sulfide ore.

57 Figure 14a. Dominantly chalcopyrite(CP) with exsolution Figure 14c. Backscatter image of Figure 14b. Note position of lamellae of cubanite(CB) and talnakhite(tal) in the upper-right chlorite-filled fractures in Figures 14b and 14c. Sample B1-116, corner; minor pyrrhotite(po). Extensive replacement of 1,686'. Bar is 0.2 mm. chalcopyrite by mackinawite(mk) that occurs as: feathery zones along fractures and around silicates and as individual stringers. Hematite chlorite-filled vein in upper-left corner. Sample B1- 116, 1,668'. Bar is 1.0 mm.

Figure 14d. As above (Fig. 14c), but showing distribution of Figure 14b. Cubanite(CB) replaced by mackinawite(MK) in chlorine--determined by element mapping with the electron feathery zones adjacent to fractures. Fractures filled by microprobe. Note that chlorine is present within the chlorite- chlorite(CL) and minor hematite. Transmitted and reflected filled fractures. light. Sample B1-116, 1,686'. Bar is 0.5 mm.

58 Photo page

56 PLATINUM GROUP ELEMENTS

INTRODUCTION

Over 1,050 PGE analyses (combined NRRI and R & F data sets) have been obtained from massive sulfide ore intercepts in the Local Boy area. As stressed earlier, the sampling was exceptionally biased as only the high-grade Cu material was sampled -- >1% Cu in intervals over

10 consecutive feet. Due to budget constraints, the less mineralized Cu material was essentially ignored during sampling for PGE analyses (material not sampled includes the <1% Cu material, and isolated < 10 foot intervals of high-grade Cu material). Even using these criteria, numerous underground drill holes with high-grade Cu material still remain to be sampled.

Plate XIV shows the general area where PGE samples were collected from the underground drill holes of the Local Boy area. Only one-half of the Local Boy area was sampled for PGE analyses -- and in the area sampled, only high-grade material was selected. Needless to say, additional detailed sampling for PGE analyses is needed to fully understand the PGE distribution and concentration in the Local Boy area. However, even with the sampling bias, a crude estimation of PGE values and their distribution can be determined.

RESULTS AND DISTRIBUTION

The samples that were analyzed for PGEs were collected from previously analyzed pulps stored at the MDNR, Hibbing, Minnesota. These pulps had been previously analyzed for Cu, Ni, and S by either Kennecott Corp. or AMAX Inc. The original sample number designator for the pulp was retained in this investigation. All samples, whether collected by the NRRI or R & F, were sent to X-Ray Assay Laboratories (XRAL) in Don Mills, Ontario, Canada. Rhude and Fryberger, Inc.

57 analyzed for Pt, Pd, Au, V, and Cr. NRRI analyzed for Pt, Pd, Au, and Ag. The analytical method

and detection limit for the NRRI analyses were:

Au FADCP 1.0 ppb Au FA 0.03 g/mt Pd FADCP 1.0 ppb Pd FA 0.03 g/mt Pt FADCP 10.0 ppb Ag DCP 0.5 ppm

FA = Fire Assay DCP = Direct Coupled Plasma

One standard (SU-1A, Sudbury Ni-Cu-Co ore) was also submitted for comparison and

monitoring of the analyses. Analyzed results versus accepted values (in parentheses) for the

standard are: Pd - 350 ppb (370 ppb), Pt - 430 ppb (410 ppb), and Ag - 1.0 ppm (4.3 ppm). The Pd

and Pt analyzed values compare well with the accepted values. As an additional check, eight

samples were submitted for PGE scans to Dr. S-J. Barnes at the University of Chicoutimi, Quebec,

and thus were reanalyzed for Pt, Pd, and Au . This check substantiated the XRAL Pt and Pd values

(see Part I); however, a major discrepancy in Au values was indicated -- the XRAL Au values were

substantially higher. The reason for this discrepancy is under investigation (Dr. Barnes, pers.

comm., 1991).

Results obtained from the PGE sampling program are presented in Appendix 2 (entire data

set on diskette) and Appendix 9 (partial listing of only Pt, Pd, and Au values >500 ppb). Within the data set, there are: 47 Pd values >1,000 ppb, with a maximum value of 11,100 ppb; 11 Pt values

>1,000 ppb, with a maximum value of 8,300 ppb; and 9 Au values >1,000 ppb, with a maximum value of 13,100 ppb. A maximum silver value of 34.0 ppm was obtained in the Local Boy area.

High Pd, Pt, and Au values are most often associated with high grade Cu material, but not all high-grade Cu material contains high PGE, etc., values. However, high Pd values are also

58 present to a limited extent within the lower grade Cu material. Palladium is generally greater than

Pt, except in a few cases where exceptionally high Pt values (>2 ppm) are present. Anomalous (>1

ppm) Au values are almost always associated with anomalous Pd values, but are rarely associated

with anomalous Pt values (initially noted by R & F in their sampling program, D. England, pers.

comm., 1990). However, anomalous Pd values are not necessarily coupled with anomalous Au values. Elevated Ag values do not correlate with high PGE, Cu, and Ni values (visual observation).

The extremely erratic distribution of elevated Ag values indicates that some hydrothermal redistribution of Ag (and PGEs?) may have occurred in the Local Boy area.

Underground drill hole 10198 probably represents the best precious metal-bearing drill hole within the entire Duluth Complex to date. It contains: 10 Pd values >1,000 ppb, with a maximum value of 7,000 ppb; 5 Au values >1,000 ppb, with a maximum of 13,100 ppb; and 3 Pt values >

1,000 ppb, with a maximum value of 3,100 ppb. Drill hole 10198 is also unique in that the three

anomalous Pt values are associated with anomalous Pd values and in this instance Pd > Pt.

Anomalous Au values are usually associated with some of the anomalous Pd values. Drill hole

10198 is located in the C-0 fan and was drilled grid west at 0E (Plate XIV).

The spatial distribution of individual anomalous Pd, Pt, and Au values (arbitrary pick of

>800 ppb Pt or Pd or Au) are portrayed on Plate XIV. Plate XIV was constructed by projecting all the spot anomalies onto a horizontal surface. Over 90% of the anomalous values coincide with an

EW-trending zone where Cl-rich encrustations coat the massive sulfide drill core (Plate XIV). This suggests that the elevated precious metal values may have been hydrothermally modified (enriched) by Cl-bearing solutions that migrated through the Local Boy area massive sulfide ores via structurally prepared channels. These channels may be related to the same structures that initially controlled the massive sulfide mineralization and were later reactivated. The more intensely

59 deformed rocks situated along, and to the south of, the major footwall-hosted EW-trending anticline may have served as a focus for sulfide-bearing solutions and later Cl-bearing solutions.

PLATINUM GROUP MINERALS

One of the objectives of this investigation was to describe the types of platinum group

minerals (PGMs) present within the Local Boy area. Unfortunately, no PGMs were found during

routine examination of the polished sections. This may be because: 1) PGE minerals are only

visible under very high power; 2) nugget effect -- PGMs only occur as discrete, widely-spaced

minerals, and therefore, were not "captured" within the selected polished section samples; and 3)

PGMs within the polished sections were "plucked" during polishing (some minerals such as

mackinawite patches, and native silver within maucherite, show evidence of "plucking" in some of

the sections).

The lack of PGE minerals within the Local Boy area is similar to the other Cu-Ni deposits

of the Duluth Complex where individual PGMs have only rarely been identified. Sperrylite was first

identified as an inclusion within maucherite in a sample collected from the shaft in the Local Boy area (Ryan and Weiblen, 1984). Other PGE minerals found in the Duluth Complex since then include: Pt-Fe alloys, Pd-alloys, laurite, irarsite, Pt-sulfur arsenides, and Pd arsenides in drill hole

Du-15 -- South Kawishiwi intrusion (Sabelin et al., 1986); froodite, michenerite, and an unknown

mineral with the composition Pd7(Sb,Bi)8 at the Dunka Road deposit (Morton and Hauck, 1987); sperrylite at the South Filson Creek deposit (Kuhns et al., 1990); sperrylite at the Minnamax deposit

(Ripley, 1990); and sperrylite, taimyrite, froodite, michenerite, and moncheite from four drill holes in both the South Kawishiwi and Partridge River Troctolite areas (Mogessie et al., 1991). In addition, Ripley (1990) has determined that ppm quantities of Pd are often present in cubanite,

60 chalcopyrite, maucherite, and mackinawite. The ppm amount of Pd present in these sulfide minerals

varies drastically -- even within a single sulfide grain (E. Ripley, pers. comm., 1991).

Although PGE analyses suggest that Pd is the major PGE present in the Local Boy area, no

Pd-bearing minerals have been identified. Some of the Pd values may be related to ppm quantities

present in specific sulfide minerals as determined by Ripley (1990), or to discrete Pd-minerals that have eluded identification. Native silver has been found within several maucherite grains, and minute Pd-mineral inclusions may also be present in the maucherite. PGE mineral inclusions have been identified within maucherite grains in samples collected from the Minnamax deposit area

(Ryan and Weiblen, 1984). Additional work with the electron microprobe is necessary to better identify the PGE minerals -- especially within maucherite grains.

Diagnostic Ore Minerals Indicative of PGE-bearing Zones

Since no PGE minerals were identified, an attempt was made to determine if any other diagnostic features are indicative of PGE-bearing zones. This was accomplished by heavily sampling (for polished sections) some of the drill holes with more than two elevated PGE values

(PGE-bearing hole) and heavily sampling drill holes that contained zero to only one elevated PGE value ("Barren" hole). These two drill hole sets include:

PGE-bearing holes "Barren" holes B1-116 9 sections B1-136 5 sections 10193 12 sections B1-146 6 sections 10198 43 sections B1-160 12 sections 10216 18 sections 10194 11 sections

Characteristic ore minerals, in the polished sections from each of the two drill hole sets, were

then compared and the relative differences were noted. Although the data are quite limited due to

61 heavy sampling of only a few scattered drill holes, several differences are apparent. In general, the

PGE-bearing drill holes contain one or more combinations of:

1) "Myrmekitic" maucherite - maucherite grains display internal native silver-filled lensoidal cracks and extremely fine-grained myrmekitic intergrowths. This type of native silver appears to be a primary assemblage.

2) Chlorite-filled fractures and Cl-rich drops that coat the drill core; common in drill holes B1-116, 10198, and 10216. "Encrusted" massive sulfide drill core is spatially distributed along an EW-trending zone that is correlative with the distribution of anomalous PGE values. This EW-zone is also correlative with an EW-trending anticline in the footwall rocks that ultimately may have provided structural channels for migrating Cl-bearing hydrothermal solutions.

3) Zincian hercynite - subhedral to euhedral grains within massive sulfide; common in drill holes B1-116, 10193, and 10198.

4) Native silver - as discrete secondary grains in interstitial chlorite patches; common in drill hole 10198. Indicates that some hydrothermal remobilization of native silver (contained within maucherite grains?) took place after massive sulfide deposition. The secondary enrichment in native silver may be related to Cl-bearing hydrothermal solutions.

5) Talnakhite - drill holes contain talnakhite-rich zones. The drill core is often coated by malachite.

6) Bornite - bornite, and associated chalcopyrite, are common (>2%) within small interstitial blebs; fine-grained bornite-chalcopyrite intergrowths are also common.

7) Sphalerite - sulfides contain >1% sphalerite stars and blebs.

8) Chalcopyrite-Opx symplectite grains - common in drill hole 10198 only.

9) Parkerite - associated with maucherite grains; common in only drill holes 10198 and 10216.

Within the above category, the first four criteria are the most common in the PGE-bearing drill holes; especially the first two. These same criteria were sought for in other drill holes that contained elevated PGE values, but only limited samples were collected from them, e.g., 10046 and

10051. Review of all the polished sections collected within the Local Boy area indicated that the

62 first criteria, "myrmekitic" maucherite, was the dominant feature present in most of the PGE-bearing

drill holes.

Maucherite is a common constituent (but present in only trace amounts) in the massive

sulfide ores of the Local Boy area. Both PGE-bearing and "barren" drill holes contain variable

amounts of maucherite, but "myrmekitic" maucherite is common to only the PGE-bearing drill holes.

However, because both "myrmekitic" maucherite and homogeneous maucherite are present in the

same polished section, it is not uncommon to find only homogeneous maucherites in individual

polished sections from a PGE-bearing drill hole. This must be kept in mind when using the

"myrmekitic" maucherite criteria as an indicator of potential PGE mineralization.

Because maucherite appears to have formed early in the paragenetic sequence, it may have

scavenged most of the available PGEs and precious metals (silver) present within the sulfide melt

that ultimately deposited the massive sulfide ores. The association of "myrmekitic" maucherite with

PGE-bearing zones indicates that some of the PGE values represent primary, or magmatic, PGE mineralization.

However, the second criteria, Cl-"encrusted" drill core, is also often associated the anomalous PGE values. Overall, the association of anomalous PGE values with an EW-trending

Cl-"encrusted" drill core zone (Plate XVI) indicates that some remobilization of PGEs also occurred after deposition of the massive sulfide ores. Cl-bearing solutions may have been channeled along pre-existing, and reactivated, structures that originally controlled the massive sulfide mineralization.

The presence of secondary native silver, associated with interstitial chlorite, also indicates that some hydrothermal remobilization has occurred in the Local Boy area.

63 ORIGIN OF SULFIDE MINERALIZATION

PARAGENETIC SEQUENCE

Fe-Ni-Cu sulfide ores associated with mafic and ultramafic igneous rocks "...are generally

considered to have formed as a result of the separation of an immiscible sulfide-oxide melt from a

sulfur-saturated silicate melt shortly before, during, or shortly after emplacement..." (Craig and

Vaughan, 1981, p. 190). The textures of the sulfide minerals discussed in this investigation suggest

that the above statement applies to the massive sulfide ore of the Local Boy area. All textures

indicate that the earliest formed sulfide phase was a nickeliferous and cupriferous high temperature

pyrrhotite phase, or monosulfide solid solution (MSS), that exsolved various minerals during

subsequent cooling, followed by limited replacement at very low temperatures. The paragenetic

sequence pertaining to the massive sulfide ore is depicted in Figure 15.

Pyrrhotite was the first sulfide mineral

to form. It is highly embayed by all other

sulfides, with the exception of round

pentlandite grains. The nature of the round

pentlandite grains (Pn1) indicates that they were exsolved from the MSS just after pyrrhotite. During subsequent cooling of the

MSS, a copper-rich sulfide phase was formed.

With further cooling, chalcopyrite-talnakhite and then chalcopyrite-cubanite unmixing took Figure 15. Paragenetic sequence--massive sulfide ore, Local Boy area. place at temperatures around 250-300EC

(Ramdohr, 1980). Chalcopyrite-talnakhite unmixing took place slightly before chalcopyrite-

64 cubanite unmixing, as indicated by cubanite exsolution lamellae that cross-cut the earlier

chalcopyrite-talnakhite exsolution lamellae.

Because sphalerite stars are in all three Cu-sulfides, and often span across individual

exsolution lamellae of the Cu-sulfides, sphalerite formation probably took place before the Cu-

sulfide unmixing took place. Sphalerite stars commonly nucleate around maucherite, indicating that

maucherite formation took place before sphalerite formation. This places maucherite formation

sometime very early in the paragenetic sequence -- possibly during, or after, pentlandite (Pn1 and

Pn2?) formation(?). The early-formed maucherite may have scavenged the available PGEs and

precious metals (silver) present within the MSS.

During Cu-sulfide unmixing, a minor amount of pentlandite (Pn3) was redistributed, or exsolved, along chalcopyrite-cubanite exsolution lamellae boundaries, and within cubanite, e.g.,

"spider-web" texture of pentlandite in cubanite. Magnetite exsolution lamellae were also formed at approximately the same time.

The time of formation for bornite is questionable. The intricate intergrowths of bornite with chalcopyrite and talnakhite indicate that bornite may have formed before, or during the early stages of, Cu-sulfide unmixing.

With continued cooling of the MSS, or with introduction of later low temperature fluids, several sulfide minerals were formed by replacement of pre-existing sulfides. Mackinawite replaced pentlandite, chalcopyrite, and cubanite at temperatures between 200 to 250EC (Ramdohr, 1980).

Magnetite veins and chlorite ± magnetite-filled fractures may have been formed during mackinawite replacement. They may have even locally controlled mackinawite replacement, which took place on the edge of the fractures. The Pn4 pentlandite may have also been produced along fractures at

this time. With still continued cooling of the MSS, or introduction of low temperature fluids,

65 additional replacement minerals were produced, and include chalcocite, covellite, and godlevskite.

The distribution of some unique sulfide characteristics described in the previous sections are

illustrated in Figure 16. Specific unique sulfide characteristics include:

1) mm - myrmekitic maucherite -- with internal myrmekitic Ag patches. 2) sl - sphalerite-rich (>1% in thin section). 3) bn - bornite-rich (>3% in thin section). 4) tal - abundant talnakhite in thin section. 5) zh - thin section contains zincian hercynite.

Figure 16. Preliminary distribution of unique sulfide and mineral occurrences in massive sulfide polished sections collected from the Local Boy area.

66 Interestingly, the vast majority of these unique characteristics are situated along the axis of the EW- trending anticline defined by the top of the BIF. However, the spatial distribution of these unique characteristics is extremely preliminary due to the limited number of drill holes sampled for petrographic description.

DISCUSSION

In the quote of the previous section, the key words are "... formed ... an immiscible sulfide- oxide melt ... shortly before, during, or shortly after emplacement ...". Thus, any theory on the origin, and the timing, of the massive sulfide mineralization in the Local Boy area, has to take into account the following major features:

1) The massive sulfide ore is hosted dominantly by hornfels inclusions just above the basal contact and by the footwall rocks just below the basal contact. With the exception of massive sulfide occurring at the contacts between footwall material and intrusive material, the intrusive rocks are relatively barren of massive sulfide mineralization. This suggests that the footwall rocks must have been structurally prepared and flooded by an immiscible sulfide during some early intrusive phase. At some later point the massive sulfide ore zone was re-intruded by multiple troctolite/norite sills along bedding planes in the footwall rocks. The end result is a disjointed zone of mineralized inclusions and mineralized footwall rocks separated by "barren" intrusive rocks. Any theory on the origin has to take into account the general lack of massive sulfide in the adjacent intrusive rocks.

2) There is no systematic increase in sulfide content downwards in Unit I toward the basal massive sulfide ores. Any theory that envisions gravitational settling of an immiscible sulfide melt through the plagioclase-olivine cumulate of Unit I has to take this into account. Also, massive sulfides have not been reported in the trough- like depression at the basal contact located in the Bathtub and Tiger Boy areas. This depression is coincident with a syncline in the footwall rocks, as defined by the top of the BIF.

3) In drill core, the sulfide mineralization exhibits textures with the host footwall rocks that suggest the sulfides were introduced/injected into structurally prepared zones.

4) Most, but by no means all, of the massive sulfide drill hole intersections are situated on the crest and south flank of a major EW-trending anticline, as defined by the top of the BIF. Faulting and shearing appear have been more intense along the south flank of the anticline. Note that the later statement should be viewed with great care

67 as not all of the underground drill holes have been relogged! Therefore, it appears that structural control was an important factor in where the massive sulfides were injected into the footwall rocks.

5) Sulfur isotope data has confirmed that the bulk of sulfur in the entire Minnamax deposit is of sedimentary origin (Ripley, 1986a). However, the isotopic heterogeneity at the Local Boy area indicates that addition of sulfur through an in situ process alone is considered inadequate to explain the massive sulfide ores (Ripley, 1986a; 1986b).

The last point has been addressed by Ripley in several papers (Ripley, 1986a; 1986b; 1990).

Ripley has proposed that the copper, necessary to produce the massive sulfide ore, was scavenged from a much larger volume of silicate melt within a secondary or auxiliary magma chamber at depth

(Ripley, 1986b, p. 976). He further proposes that the magmatic fluids may have been channeled updip along the contact between the igneous and metasedimentary rocks (Ripley, 1990).

Ripley's concepts are particularly intriguing. Production of an immiscible sulfide melt in an auxiliary magma chamber at depth, followed by channeled updip intrusion of both sulfide and silicate melts could explain the host rock "selectivity" in terms of where massive sulfide now occurs.

In this manner, massive sulfides may have been injected into structurally prepared zones within the footwall rocks. The positioning of the Local Boy area massive sulfide ores over the anticlinal crest, and along the south flank of the anticline, indicates that the Local Boy area was just such a site.

The geologic setting of the Local Boy area, and the Duluth Complex, is similar in many respects to the Noril'sk-Talnakh deposits in the U.S.S.R. Massive sulfide ore in the Noril'sk region is also hosted by the footwall rocks along the basal contact of a large intrusion. Although "the origin of mineralization is still being hotly debated. One school of thought ... postulates that a large volume of immiscible sulphide liquid formed at depth in a large magma chamber. This sulphide magma was emplaced, together with a comparatively small volume of silicate magma as a mixture of two immiscible liquids, into the sedimentary ... sequences" (von Gruenewaldt, 1991, p. 100).

68 In summary, the massive sulfide ores of the Local Boy area appear to have been injected into

structurally prepared footwall rocks in a "vein-like" manner. Sulfide ore textures indicate that the

sulfides were formed by cooling of a MSS followed by limited replacement of early formed sulfides at very low temperatures. The MSS may have been formed in a secondary magma chamber at depth and was later emplaced as "veins" within the footwall rocks associated with a major pre-Duluth

Complex structure (EW-trending anticline).

69 GEOSTATISTICS

INTRODUCTION

In this report, 8,166 assays from 79,123 feet of drilling, in 256 core holes, are geostatistically investigated to characterize the Local Boy area mineral anomaly. The statistical analysis includes seven elements: Cu, Ni, S, Au, Pd, Pt, and Ag. Whereas individual assay lengths average approxi- mately 10 feet, a 25 foot composite is used throughout the analysis. During compositing, all unassayed intervals are considered barren. This is a critical point as only the high-grade copper material was selected for PGE analyses (see pages 1-2). The statistical analysis yields four main conclusions.

First, the top of the Biwabik Iron-Formation (BIF) is utilized as a critical datum horizon. All of the higher grade mineralized rock is contained between 100 and 400 feet above the top of the BIF

(within the overlying Virginia Formation and the Duluth Complex rocks).

Second, the marginal distributions for all seven elements can be adequately modelled as log- normal distributions. Furthermore, the inter-variable correlations between Cu and Ni are high, indicating that selective mining of Cu and Ni is physically possible. On the other hand, the inter- variable correlation between Cu/Ni and Au, Pd, Pt, and Ag are quite low. Thus, selection on ore grade Cu/Ni will not necessarily capture all the ore grade Au, Pd, Pt, or Ag. However, as Au, Pd,

Pt, and Ag were only assayed on samples with greater than 1% Cu, the correlations between the

PGEs and Cu/Ni may be significantly biased.

Third, the available drilling is sufficient to identify and characterize the spatial correlation structure for the mineralization. Unambiguous variograms generated show the range of geologic influence to be about 150 feet. No significant vertical to horizontal anisotropy is identified.

70 Fourth, given the available drilling, potentially economic ore reserves do exist in the Local

Boy area. While the grades of Cu and Ni may not be high enough to support an underground mine

at the necessary depth, the potential values from Au, Pd, Pt, and Ag can not be ignored. In order to address the question of selectivity, raised in the second point above, it is necessary to collect substantially more Au, Pd, Pt, and Ag assays.

QUANTITATIVE AND QUALITATIVE DATA SOURCES

There are three generic sources of data for the Local Boy geostatistical analysis:

1) mineralized assay values (Appendices 2 and 8) conducted for Kennecott Corp. and AMAX 5Inc.

-- on file at the Minnesota Department of Natural Resources (MDNR) at Hibbing, Minnesota; 2) ore

grade cross-sections (with only minor geology) generated by AMAX Inc. (on file at the MDNR);

and 3) lengthy discussions with the project geologists.

Due to ongoing research and analysis at the Local Boy area, the available data is

encountering continuous change. The following sections present the details of the data used in this

analysis. Every effort was made to include the most complete and most up-to-date information

(Appendices 1 and 2).

DRILLING STATISTICS

The Local Boy data set is comprised of surface and underground drilling. These include 34

near-vertical surface holes and 222 underground holes drilled in 29 fan patterns (Plate XI). The

complete list of surface holes considered is given in Appendix 3. The complete list of underground

holes considered is given in Appendix 4.

In most of the surface drill holes, there was a variable amount of drill hole drift. The amount

of drift generally varies with the total amount of footage that was drilled. This drift was generally

71 toward the northwest, but directional exceptions and cork-screw drill holes were also present. The amount and direction of drift were surveyed by at least one method in all but one of the surface holes. Included in these methods were (the parenthetical counts indicate the number of times each method was used):

Eastman Single Shot (108) Kuster Single Shot (123) Parsons Tro-Pari (239) Slimhole Gyroscopic Directional (402)

Of the 34 surface holes, 14 were surveyed more than once. Comparing the one, or more, down-the- hole survey results with each other, and with the previously drawn AMAX ore grade cross-sections, a final adjusted survey was generated. In a few cases, significant comparative errors were found.

These cases and the subsequent interpretation are given in Appendix 5. The resulting down-the-hole geometries are reported in Appendix 6.

The surface drilling includes 2,496 assay intervals, totaling 22,605 assayed feet. The underground drilling includes 5,670 assays, totaling 56,518 assayed feet. While the individual assay lengths vary from 1 to 15 feet, the vast majority of the assays are supported by 10 feet of core. The total assayed length is 79,123 feet; thus, the average assay length is 9.7 feet. Assay data are from three sources: 1) Cu, Ni, and S data from Kennecott and AMAX corporate files (on file at the

MDNR); 2) Pt, Pd, Au, V, and Cr analyses (from the remaining pulps stored at the MDNR) for select drill holes and intervals -- supplied by R & F; and 3) Pt, Pd, Au, and Ag analyses (from the remaining pulps stored at the MDNR) for select drill holes and select intervals analyzed during this study.

72 COMPOSITING OF ASSAYS

Top of the Biwabik Iron-Formation

Severson (1988, p. 44) suggests that the basal contact of the Duluth Complex with the

Virginia Formation and the top of the Biwabik Iron-Formation (BIF) offers a natural datum for the geology at the Local Boy area.

"All data collected to date have added immensely to an understanding of the Duluth Complex and its related ore deposits. Contouring of the basal contact of the Complex and top of the Biwabik Iron-Formation has indicated more structure within the Partridge River intrusion than previously recognized."

The AMAX ore grade cross-sections of the Local Boy area support Severson's observations -- the higher grade zones tend to loosely follow the rise and fall of the basal contact. This observation was further supported by detailed analysis of the neighboring Dunka Road copper-nickel mineral anomaly (Geerts et al., 1990).

In accordance with this suggestion, the vertical coordinates of the assay values were redefined as the elevation above the top of the Biwabik Iron Formation (BIF). This redefinition of the geometric coordinate system unfolds an otherwise complex structure. This coordinate transformation is in keeping with the geostatistical mandate to incorporate as much geological insight as possible into the geostatistical analysis, e.g. Barnes (1982); Dagbert et al. (1984); David

(1988).

Of the 34 surface holes in the Local Boy data set, 33 intersected the top of the BIF. In addition, 43 of the 222 underground holes intersected the BIF. Using these 76 intersections, the basic statistics for the top of the BIF in the neighborhood of the Local Boy area were computed.

Elevation for the top of the BIF (in feet, relative to sea level):

Minimum -421 Average -257 Maximum -144

73 Figure 17 shows the associated histogram.

The computation of the height above the BIF for vertical holes that pierced the BIF was simply a matter of direct subtraction. The estimation of the heights above the BIF for angle holes, and holes that did not pierce the BIF, were accomplished using the kriging interpolation algorithm for the surface, Figure 17. Histogram for the top of the Biwabik Iron-Formation in the Local Boy area. using the neighboring data (Davis and

David, 1988).

As shown in Figure 18, there was no significant directional anisotropy for the top of the BIF in the neighborhood of the Local Boy area. Figure 19 shows the experimental and fitted variogram model for the top of the BIF.

Figure 20 shows the resulting interpolated model for the top of the BIF as defined by the Figure 18. Experimental values for the top of the Biwabik Iron-Formation, Local Boy area. 76 available intersections.

Vertical Compositing

Assays were composited into 25 foot intervals starting at the top of the BIF and progressing upwards through the Virginia Formation into the Duluth Complex. Numerical compositing was

74 necessary to equalize the support

(effective assay interval length) of every

Figure 19. Experiment and fitted variogram model for the top of the Biwabik Iron-Formation, Local Boy area.

Figure 20. Interpolated model, using kriging, of the top of the Biwabik Iron- Formation in the Local Boy area. Includes 76 available intersections and their corresponding elevations relative to sea level.

75 sample value, and to allow meaningful inference of the spatial correlation structure. The specific

choice of 25 feet was motivated by historical precedence -- what is done at existing mines in North

America.

Any intervals of core without assays were treated as barren. The compositing process thus

generated many 25 foot intervals with an assigned grade of zero. As discussed later, this decision

incorporates significant economic conservation - the property is under-valued.

SUMMARY STATISTICS

Composite Summary Statistics - Surface Holes

There are 1,271 composites generated from the surface holes. Approximately one-third of

these composites are barren (or unassayed, and thus treated as barren). As tallied during

compositing, the average assayed length per 25 foot composite is 13.5 feet. Because only the high-

grade Cu material was resampled for PGEs, the Pt-Pd-Au-Ag values are present in relatively few

intervals when compared to the more "complete" values of Cu and Ni (not surprisingly, the overall

precious metal averages are severely depressed when compared to the mean of the mineralized

assays). The basic summary statistics for the surface hole composites are given in Table 15.

The reported measures of skewness, the relatively high coefficients of variation, and the

initial graphical data analyses, indicate that the distributions of all elements are highly asymmetric,

with long positive tails. As such, a logarithmic transformation was applied. The resulting logarith-

76 mic summary statistics are presented in Table 16. By the very nature of the logarithm, the statistics in Table 16 do not include the barren (unassayed) intervals.

77 Table 15. Summary statistics for the 25-foot composites generated from the surface drilling alone

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm) Len (ft)

N used 1,271 1,271 1,271 1,271 1,271 1,271 1,271 1,271 N # 0 419 435 412 1,177 1,175 1,175 1,253 410 Mean 0.28 0.06 0.71 4.11 12.19 3.71 0.02 13.49 Variance 0.38 0.01 2.40 851.63 4,781.11 624.24 0.05 Std. Dev. 0.61 0.11 1.55 29.17 69.15 24.99 0.21 Coef. Var. 221.06 186.03 219.26 709.60 567.10 674.78 899.85 Skewness 9.91 8.26 7.10 14.60 10.26 13.71 10.02 Kurtosis 141.75 106.98 71.29 276.04 144.32 242.46 110.86 Minimum 0.00 0.00 0.00 0 0 0 0 0 25th %tile 0.00 0.00 0.00 0 0 0 0 0 Median 0.13 0.04 0.29 0 0 0 0 18 75th %tile 0.37 0.09 0.85 0 0 0 0 23 Maximum 10.92 1.99 20.23 674 1,296 546 3 25

Table 16. Summary statistics for the log-transformed grades of the 25-foot composites generated from the surface drilling alone

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm)

N used 852 836 859 94 96 96 18 N # 0 419 435 412 1,177 1,175 1,175 1,253 Mean -1.47 -2.77 -0.60 3.23 4.39 3.16 0.43 Variance 1.32 0.76 1.31 1.81 1.98 1.69 0.17 Std. Dev. 1.15 0.87 1.15 1.35 1.41 1.30 0.42 Coef. Var. 78.15 31.58 192.47 41.72 32.05 41.17 96.47 Skewness -0.55 -0.09 -0.24 -0.43 -0.92 -0.46 0.09 Kurtosis 3.61 3.55 3.57 3.34 3.74 3.47 1.50 Minimum -4.61 -4.61 -4.61 0.00 0.00 0.00 0.00 25th %tile -2.04 -3.22 -1.31 2.53 3.69 2.57 0.00 Median -1.31 -2.66 -0.49 3.40 4.67 3.24 0.69 75th %tile -0.67 -2.21 0.11 3.92 5.28 3.97 0.69 Maximum 2.39 0.69 3.01 6.51 7.17 6.30 1.10

78 Composite Summary Statistics - Underground Holes

There are 2,302 composites generated from the underground holes. Very few of the underground holes composites are barren (or unassayed, and thus treated as barren). The average assayed length per 25 foot composite is 21.3 feet. Because of the "select resampling" for PGE analyses relatively few of the underground assays include Au, Pd, Pt, or Ag (not surprisingly, the overall average is severely depressed when compared to the mean of the mineralized assays). The basic summary statistics for the surface hole composites are given in Table 17.

As with the surface hole composites, the reported measures of skewness, the relatively high coefficients of variation, and the initial graphical data analyses, indicate that the distributions of all elements are asymmetric, with long positive tails. As such, a logarithmic transformation was applied. The resulting logarithmic summary statistics are presented in Table 18. By the very nature of the logarithm, the statistics in Table 18 do not include the barren (unassayed) intervals.

Composite Summary Statistics - Combined Holes

As seen by comparing Tables 15 and 17, or Tables 16 and 18, the assay statistics for the surface and underground drill holes are not significantly different. This observation takes into account the larger proportion of unassayed feet in the surface holes (intersected more unmineralized rock above the basal contact) relative to the more densely sampled underground holes. Because there was no major difference, the surface hole composite assays were combined with the underground hole composite assays to form one larger data set. Note that a detailed analysis of the implications resulting from combining the two data sets was not carried out.

Table 17. Summary statistics for the 25-foot composites generated from the underground drilling alone

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm) Len (ft)

79 N used 2,302 2,302 2,302 2,302 2,302 2,302 2,302 2,302 N # 0 11 30 10 1,995 1,995 1,995 2,008 10 Mean 0.64 0.13 1.86 10.48 30.45 9.22 .39 21.32 Variance 0.70 0.03 6.85 11,421.14 24,395.48 3,277.07 1.81 Std. Dev. 0.84 0.18 2.62 106.87 156.19 57.25 1.36 Coef. Var. 131.21 134.30 140.98 1,019.83 512.89 621.19 342.56 Skewness 4.15 3.82 3.79 28.55 14.38 22.72 5.37 Kurtosis 27.49 22.45 22.00 968.56 321.46 745.08 42.49 Minimum 0.00 0.00 0.00 0 0 0 0 0 25th %tile 0.17 0.03 0.50 0 0 0 0 20 Median 0.46 0.09 1.08 0 0 0 0 21 75th %tile 0.76 0.16 1.98 0 0 0 0 25 Maximum 9.88 2.01 26.39 4,042 4,456 2,066 18 35

Table 18. Summary statistics for the log-transformed grades of the 25-foot composites generated from the underground drilling alone

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm)

N used 2,291 2,272 2,292 307 307 307 294 N # 0 11 30 10 1,995 1,995 1,995 2,008 Mean -1.05 -2.57 0.02 3.40 4.85 3.60 0.90 Variance 1.45 1.20 1.21 1.49 1.13 1.06 0.43 Std. Dev. 1.21 1.09 1.10 1.22 1.06 1.03 0.66 Coef. Var. 114.96 42.55 4,772.71 35.83 21.93 28.57 73.23 Skewness -0.56 -.09 -0.03 0.13 -0.13 .45 0.35 Kurtosis 3.24 2.62 3.06 4.52 3.71 3.50 2.75 Minimum -4.61 -4.61 -4.61 0.00 1.95 1.10 0.00 25th %tile -1.77 -3.51 -0.69 2.71 4.30 2.93 0.69 Median -0.78 -2.41 0.08 3.43 4.91 3.58 0.69 75th %tile -0.27 -1.83 0.69 4.08 5.42 4.19 1.39 Maximum 2.29 .70 3.27 8.30 8.40 7.63 2.89

80 Table 19. Summary statistics for the 25-foot composites generated from both the surface drilling and the underground drilling

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm) Len (ft)

N used 3,573 3,573 3,573 3,573 3,573 3,573 3,573 3,573 N # 0 430 465 422 3,172 3,170 3,170 3,261 420 Mean 0.51 0.11 1.45 8.21 23.96 7.26 0.26 18.53 Variance 0.62 0.03 5.57 7,668.97 17,491.34 2,339.91 1.22 Std. Dev. 0.79 0.16 2.36 87.57 132.26 48.37 1.10 Coef. Var. 153.84 151.05 163.04 1,066.20 552.04 666.62 421.33 Skewness 5.10 4.50 4.31 33.69 15.89 25.01 6.67 Kurtosis 42.20 31.52 27.79 1,388.23 409.41 951.14 64.04 Minimum 0.00 0.00 0.00 0 0 0 0 0 25th %tile 0.08 0.02 0.26 0 0 0 0 17 Median 0.31 0.07 0.77 0 0 0 0 20 75th %tile 0.65 0.13 1.60 0 0 0 0 25 Maximum 10.92 2.01 26.39 4,042 4,456 2,066 18 35

Table 20. Summary statistics for the log-transformed grades of the 25-foot composites generated from both the surface drilling and the underground drilling

Cu (%) Ni (%) S (%) Au (ppb) Pd (ppb) Pt (ppb) Ag (ppm)

N used 3,143 3,108 3,151 401 403 403 312 N # 0 430 465 422 3,172 3,170 3,170 3,261 Mean -1.16 -2.62 -.15 3.36 4.74 3.50 0.87 Variance 1.45 1.09 1.31 1.57 1.37 1.24 0.43 Std. Dev. 1.21 1.04 1.15 1.25 1.17 1.11 0.65 Coef. Var. 103.61 39.75 788.50 37.21 24.67 31.87 75.17 Skewness -0.52 -.05 -.12 -0.05 -0.58 -0.02 0.39 Kurtosis 3.29 2.82 3.30 4.25 4.41 3.97 2.78 Minimum -4.61 -4.61 -4.61 0.00 0.00 0.00 0.00 25th %tile -1.83 -3.22 -.87 2.71 4.17 2.89 0.69 Median -0.94 -2.53 -.08 3.43 4.88 3.47 0.69 75th %tile -0.36 -1.97 .56 4.07 5.40 4.06 1.39 Maximum 2.39 0.70 3.27 8.30 8.40 7.63 2.89

81 The summary statistics for this combined data set are given in Table 19. The combined logarithmic summary statistics are presented in Table 20. Again, by the very nature of the logarithm, the statistics in Table 20 do not include the barren (unassayed) intervals.

Except where specifically noted, the remainder of the statistical analysis is carried out on the combined surface and underground composites. This decision is justified by the similarity in the sample statistics, and by the effort to infer spatial statistics for the under-sampled Au, Pd, Pt, and

Ag. Some spot checks, comparing assays from the surface holes with nearby assays from the underground holes, were carried out. In all cases considered, these comparisons supported the decision to analyze the combined surface and underground composites. Note that, before a detailed ore reserve can be computed with this data set in future investigations, a more thorough analysis of this aspect must be carried out.

Inter-variable Correlations

The inter-variable correlations between the seven elements are presented in Table 21 (see

Isaaks and Srivastava, 1989, p. 30). The high correlation between Cu and Ni (0.79) indicates that the two metals could be mutually selectable. In a selective mining operation, targeting the

Table 21. Inter-variable correlations of all seven elements for the combined surface and underground 25-foot composites Cu 1.000 Ni 0.788 1.000 S 0.772 0.912 1.000 Au 0.257 0.155 0.149 1.000 Pd 0.550 0.423 0.403 0.357 1.000 Pt 0.381 0.309 0.271 0.264 0.457 1.000 Ag 0.559 0.512 0.452 0.343 0.552 0.401 1.000 Cu Ni S Au Pd Pt Ag

82 ore-grade copper will simultaneously target much of the ore-grade nickel. Not surprisingly, there is also a high correlation between Cu and S (0.77), and an even higher correlation between Ni and

S (0.91). Both of these correlations are probably due to the fact that the massive sulfide intersections in the Local Boy area also contain the highest Cu and Ni values due to overall sulfide content. However, there are several instances where the massive sulfide intersections are dominantly pyrrhotite, and thus the Cu and Ni values will be relatively lower.

The inter-variable correlations between Cu, Ni, Au, Pd, Pt, and Ag are surprisingly low. This is especially true when compared with the nearby Dunka Road mineral deposit which has high inter- variable correlations, e.g., 0.86 between Cu and Ag (Geerts et al., 1990). The lack of correlation between Au, Pd, Pt, and Ag at the Local Boy anomaly, however, can be partially explained by the severe lack of assays for these four elements.

Nonetheless, using only the data at hand, one must conclude that polymetallic selection of ore zones is potentially not possible at the Local Boy area. That is, selection on ore grade Cu/Ni will not necessarily capture all the higher grade Au, Pd, Pt, or Ag values. Reiterating, this conclusion is not strongly supported -- further geologic analysis and further assaying of Au, Pd, Pt, and Ag may very possibly reverse this conclusion.

SPATIAL STATISTICS AND GEOLOGIC CONTINUITY

Variograms for Copper and Nickel

Figure 21 shows the three dimensional, logarithmic, semi-variogram for Cu. The individual semi-variograms for the four principal directions along with the omni-directional semi-variogram are drawn. This figure presents an easily interpreted spatial correlation structure with a significant consequence. In particular, this figure does not indicate any geometric anisotropy. Figure 22

83 redepicts the omni-directional, logarithmic, semi-variogram for Cu, and the associated fitted spherical variogram model.

Figure 21. The four principal, three dimensional, logarithmic semi- variogram for Cu from the combined surface and underground drilling 25-foot composites.

Figure 22. The omni-directional, logarithmic semi-variogram for Cu from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model.

84 Figure 23

shows the

three

dimensiona

l,

logarithmic,

semi-

variogram Figure 23. The four principal, three dimensional, logarithmic semi- for Ni. The variogram for Ni from the combined surface and underground drilling 25-foot composites. individual

semi-variograms for the four principal directions along with the omni-directional semi-variogram are drawn. Again, this figure presents an easily interpreted spatial correlation structure. This figure does not indicate any geometric anisotropy. Figure 24 redepicts the omni-directional, logarithmic, semi-variogram for Ni, and the associated fitted spherical variogram model.

85 The strong similarity between Figures 22 and 24 reinforces the conclusions supported by the inter-variable correlations. In particular, Cu and Ni are highly correlated in space and would most probably allow for mutually selective mining.

It is important to note that the variograms for Cu and Ni (Figs. 21 and 23, respectively) do not indicate any geometric anisotropy. In other words, the variograms suggest that Cu and Ni distribution is not oriented along any particular spacial pattern. Yet, there is a strong visual correlation between the distribution of massive sulfide ore to the EW-trending anticline. This apparent contradiction between visual observation and variogram analysis may be related to scale.

The anticline offers a relatively larger scale control, while the variograms quantify a lack of preferred orientation at a relatively smaller scale (<150 feet).

Figure 24. The omni-directional, logarithmic semi-variogram for Ni from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model.

Variograms for Au, Pd, Pt, and Ag

86 Figures 25 through 28 show the omni-directional, logarithmic, semi-variograms for Au, Pd,

Pt, and Ag, along with the associated fitted spherical variogram models. Due to the limited amount

of assay data for these four variables, analysis of statistical anisotropy was not carried out.

Furthermore, as these figures are logarithmic, the barren (or unassayed, and thus treated as barren) intervals are ignored.

With the limited data, it is difficult to reach any strong conclusions for the spatial continuity of Au, Pd, Pt, and Ag. In all four cases, the relatively high nugget effect (in excess of 50% of the sill) indicates large short range variability. This could be due, in part, to problems in sample preparation and assaying; but, more likely, this indicates a lack of high

87 Figure 25. The omni-directional, logarithmic semi-variogram for Au from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model.

Figure 26. The omni-directional, logarithmic semi-variogram for Pd from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model.

88 Figure 27. The omni-directional, logarithmic semi-variogram for Pt from the combined surface and undeground drilling 25-foot composites and the associated fitted spherical variogram model.

Figure 28. The omni-directional, logarithmic semi-variogram for Ag from the combined surface and underground drilling 25-foot composites and the associated fitted spherical variogram model.

89 grade continuity for precious metals. However, hydrothermal processes may have enriched the

PGEs in localized zones, and thus structural constraints may be very important. Definition of

structural constraints within the Local Boy area should continue.

The variograms reinforce the conclusions drawn earlier -- polymetallic selection of ore zones

is potentially not possible at the Local Boy area. Again, this conclusion is not strongly supported --

further analysis of geologic controls and further assaying of Au, Pd, Pt, and Ag may very possibly reverse this conclusion.

Geology Revised

Though additional lithologic information and expert interpretation are available, the top of the BIF is the only stratigraphic variable (datum base) incorporated into this geostatistical analysis.

Further enhancement of future spatial analyses could be accomplished by development of a more complex, and thus more complete, non-linear coordinate system that satisfies all the known geologic constraints and incorporates all known geologic features.

Specifically, all future identified faults and folds would have to be incorporated into the coordinate system prior to the generation of a geologic block model, i.e., kriging. Also, the top of the sill(?) unit in the Virginia Formation, rather than the top of the BIF, presents a means of tightening-up the datum base. Cu-Ni mineralization is never present within or below the sill(?) unit.

STATISTICAL FOCUS ON Cu AND Ni

Graphical Statistics and Distributional Models

Figure 29 shows the histogram of the combined surface and underground drilling Cu values

for 25 foot composites. A severe skew in the distribution is evident from this figure. Figure 30

90 shows the equivalent histogram for ln(Cu) that exhibits a reasonable lognormal distributional model for Cu.

Figure 29. Histogram of the combined surface and undeground drilling 25-foot composites for Cu.

Figure 30. Histogram of the combined surface and underground drilling 25-foot composites for Ln(Cu).

91 Figure 31 shows the histogram of the combined surface and underground drilling Ni values for 25 foot composites. Again, the severe skew in the distribution is evident from this figure. Figure

32 shows the equivalent histogram for ln(Ni). As seen in Figure 32, a lognormal distributional model is reasonable for Ni.

Figure 31. Histogram of the combined surface and underground drilling 25-foot composites for Ni.

Figure 32. Histogram of the combined surface and underground drilling 25-foot composites for Ln(Ni).

92 Motivated by Figures 30 and 32, log-probability plots and statistical goodness-of-fit tests were applied to the Cu and Ni composite data. In both cases, with all tests, a lognormal distributional model was deemed very acceptable.

Grade/Tonnage Analysis

The in situ geologic reserves for the Local Boy area, paying particular attention to possible high grade cutoffs, are presented in Table 22. This table of numbers is for the potentially economic mineralization defined by drilling in the B, C, and D drifts (and pertinent surrounding surface holes).

These grade/tonnage figures are conservative in that: 1) grades are not projected further than 100 feet from the drifts; and 2) the analysis does not include any 50 ft. by 50 ft. by 50 ft. blocks with fewer than 100 assays in and around the block.

Table 22. Grade/tonnage data for Cu and Ni in Local Boy anomaly. These values are for geologic resources, not mineable ore.

Cutoff Grade MM Tons Avg Cu% Avg Ni% of Cu% Above Above Above Cutoff Cutoff Cutoff

0.00 21.9 1.08 0.20 0.60 10.2 1.78 0.36 1.00 5.3 2.71 0.55 2.00 2.2 4.65 0.94 3.00 1.4 5.84 1.12 4.00 1.0 6.75 1.19 5.00 0.7 7.94 1.25 6.00 0.5 9.04 1.18 7.00 0.3 10.54 1.18

Coarse Block Model for the Local Boy Area

93 A coarse block model interpolation is generated for Cu and Ni values within the mineralized

volume surrounding the Local Boy area. The interpolation uses the average grade of Cu and Ni

mineralization within 50 x 50 x 50 foot blocks (with a total of 1,680 blocks). These blocks are collectively portrayed for six different levels (Plates XVII to XXII for Cu, and Plates XXIII to

XXVIII for Ni) to illustrate the ore grade continuity and spatial three-dimensional distribution. The

six different levels range from the 0 foot elevation (sea level) to the -250 foot elevation. All of the

reported blocks are within 200 feet of drift B, C, or D. The average Cu and Ni values for each block

and the standard deviation for each grade are given in Appendix 7.

The maximum interpolation distance of 200 feet from drifts B, C, and D was selected to

maintain a relatively consistent level of estimation confidence. This is due to the nature of the

sampling density -- samples become consecutively more widely spaced away from the underground drifts as the drill hole fans diverge, and therefore, the confidence level decreases away from the drifts. Thus, the 200 foot limit does not indicate the full extent of the potential ore grade mineralization in the Local Boy area, nor does it indicate the full extent of the drilling. For example, the volume of rock between drifts A and B contain potential ore grade material (and some massive sulfide intersections) not depicted in these figures.

The interpolation was carried out using both the surface drilling and the underground fan drilling, without any correction for the differing support (number of assays in each drill hole group) taken into account. The interpolation algorithm used was log-normal kriging (see David 1988, p.

116-120, and the references cited therein). For each block, the most highly correlated 32 neighboring 25 ft.-assay composites were used in the estimate. The variogram parameters used are those reported in previous sections of this document; specifically, an isotropic spherical variogram was used for both Cu and Ni.

94 This interpolated block model must not be construed as an economic ore reserve for several important reasons. First, the detailed geologic, structural, and mineralogic observations reported elsewhere in this investigation, were not fully incorporated in the analysis as the observations are constantly being upgraded as relogging of core continues. Note that the only geologic control used was the top of the Biwabik Iron-Formation. Second, the necessary cross-validation for a fiscally sound ore reserve, e.g. Journel (1980), was not carried out. Third, the supplemental metal content, i.e., Au, Pt, Pd, and Ag, was not considered. Fourth, and perhaps most importantly, mining selectivity was not incorporated in this analysis. Lastly, there are no economics in this block model; it is merely a geostatistical interpolation of the available composite data.

Nonetheless, four useful conclusions can be drawn from this geostatistical interpolation.

First, the Local Boy area contains a viable quantity of potential ore grade material, as shown on

Levels 2, 3, and 4 (Plates X through XII, respectively). Second, the averaging over 50 ft. x 50 ft. x 50 ft. blocks causes an overwhelming smoothing (averaging out) of the high grade zones. Thus, the ultimate mining method will almost surely have to offer a high level of ore/waste selectivity.

Third, the economic impact of the supplemental metals, i.e. Au, Pt, Pd, and Ag, must be considered.

Fourth, most of the high-grade Cu material is spatially associated with an EW-trending anticline.

High Cu grades are located along the anticline axis (Plates XVII through XIX), and with increasing depth the high Cu grades are progressively positioned on the south flank of the anticline (Plates XIX through XXII). The association of high Cu grades to the anticline indicates that structural control was important in massive sulfide genesis.

OBSERVATIONS AND CONCERNS

Of the 3,573 composites included in this analysis, more than 400 of the composites were not assayed for Cu, Ni, and S, and more than 3,100 of the composites were not assayed for Au, Pd, Pt,

95 and Ag. In this statistical analysis, all unassayed core are treated as unmineralized. This assumption was necessary to proceed with estimation and inference; yet, it was merely an assumption. It is possible, even likely, that Au, Pd, Pt, and Ag are present at parts-per-million concentrations in the unassayed lengths of core. Statistical analysis of the available data could not discern the presence of ore-grade metal in vast unsampled zones and much more intense sampling is needed.

96 SUMMARY AND CONCLUSIONS

The massive sulfide ores in the Local Boy area of the Minnamax/Babbitt deposit are hosted

dominantly by the footwall rocks (Virginia Formation). Even though the ore straddles the contact with the Duluth Complex, most of the massive sulfides are associated with either hornfelsed inclusions above the basal contact, or with the footwall rocks below the basal contact, while the interfingering intrusive rocks are relatively barren of massive sulfides. This suggests that the massive sulfide ores were formed by injection of an immiscible sulfide melt into structurally prepared areas within the footwall rocks ("vein-like" setting). This concept is further substantiated by: 1) sulfides exhibit textures with the footwall rocks that are indicative of structural preparation and sulfide flooding; 2) the massive sulfide ores are spatially situated along the axis and both flanks of a major EW-trending anticline, indicating that structural control was important in their formation; and 3) there is no systematic increase in sulfide content with depth in the overlying troctolitic rocks as would be expected if the massive sulfides formed via a gravitational settling mechanism.

Formation of an immiscible sulfide melt in an auxiliary magma chamber at depth has been proposed by Ripley (1986a; 1986b; 1990). This agrees well with the observations of this investigation that indicate that an immiscible sulfide melt was injected into structurally prepared zones within the footwall rocks. A similar mechanism is proposed for the Noril'sk-Talnakh deposits in the U.S.S.R. (von Gruenewaldt, 1991). The structures that controlled where the immiscible sulfides were injected in the Local Boy area were apparently related to the EW-trending anticline.

The timing of this injection event is unknown, but appears to be an early Unit I intrusion.

This would explain why the later(?) intrusive rocks, which were emplaced as multiple pulses along bedding planes in the footwall rocks, are relatively barren of massive sulfides.

97 Even though the basal contact of the Complex with the Virginia Formation is highly

undulatory, the massive sulfide ores exhibit a definite top and bottom. The ore is distributed such

that all of the higher grade material is contained between 100 and 400 feet above the top of the BIF

-- dominantly within the Virginia Formation. The geologic constraints that confined the ore zone

to such a specific horizon are unknown, especially the top of the ore zone, and may have been

obliterated during intrusion of Unit I. However, in most cases the bottom of the potential ore zone

roughly corresponds to the top of the sill(?) unit of the Virginia Formation.

Textures within the massive sulfide ores at Local Boy indicate that the ore was formed by

cooling of a monosulfide solid solution (MSS) followed by limited replacement at very low

temperatures. Early formed sulfide minerals include (in general order of formation): pyrrhotite;

pentlandite; maucherite (± native silver, PGEs?); sphalerite; and chalcopyrite-talnakhite-cubanite-

bornite. Continued cooling of the MSS, and/or replacement caused by invasion of hydrothermal

solutions, formed late sulfide minerals that include: pentlandite; mackinawite; chalcocite; covellite;

godlevskite; and native silver.

Numerous anomalous PGE and precious metal values are confirmed to be present within the

massive sulfide ores of the Local Boy area. Maximum values obtained in this investigation include:

Pd - 11,100 ppb; Pt - 8,300 ppb; Au - 13,100 ppb; and Ag - 34 ppm. Collectively, the majority of

the anomalous PGE values are spatially distributed along an EW-trending zone that corresponds to

the EW-trending anticline present within the footwall rocks. This suggests that structures that

controlled the distribution of the massive sulfide ores also exerted some control over the PGE

distribution.

Because no individual PGE minerals were found in this investigation, it is difficult to

ascertain their origin and the specific ore controls that influenced their distribution. At least three

possible modes of PGEs are present in the Local Boy area, which include: 1) as inclusions within

98 early-formed maucherite grains (along with native silver); 2) in ppm quantities within sulfide minerals as reported by Ripley (1990); and 3) as discrete mineral grains that have eluded identification. A primary (or magmatic) origin for the PGEs is suggested by the presence of native silver in the early-formed maucherite grains; maucherite grains also contain inclusions of PGE minerals (Ryan and Weiblen, 1984). Thus, PGEs could have been scavenged from the immiscible sulfide melt during maucherite formation. In addition, the presence of ppm quantities of PGEs in maucherite, cubanite, and chalcopyrite (Ripley, 1990) also point to a magmatic origin. However, a hydrothermal origin is also suggested by the presence of: 1) ppm quantities of PGEs in mackinawite (Ripley, 1990), which replaces pentlandite and chalcopyrite; 2) discrete secondary native silver grains contained within interstitial chlorite; and 3) the correlation of anomalous PGE values to an EW-trending zone that exhibits Cl-encrusted massive sulfide. All three points suggest that the PGEs are also present within replacement minerals and as secondary discrete grains (as is native silver). The existence of Cl encrustations indicates that the massive sulfide ores of the Local

Boy area were subjected to invasion by Cl-bearing hydrothermal solutions capable of transporting

(or remobilizing) and concentrating PGEs. In summary, it appears that both magmatic and hydrothermal (later) processes may be responsible for the distribution of PGEs in the Local Boy area. Some of the extremely high Pt, Pd, and Au values (>5-10 ppm) may be related to later reconcentration of PGEs by a hydrothermal process -- thus detailed definition of structural control may be paramount to delineating other extremely elevated PGE-bearing zones within the Local Boy area.

Structural control appears to have been very important in forming or concentrating the massive sulfide ores in the Local Boy area. Though the detailed structure has yet to be defined, it appears that the EW-trending anticline within the footwall rocks exerted an overall control on where the massive sulfide ores were deposited, and on where the majority of PGEs now occur. Also, this

99 same structure exerted control on where the Cl-bearing hydrothermal solutions were most

concentrated. This suggests that the same structures that controlled the ore distribution may have

been reactivated during later hydrothermal activity. However, the timing of invasion by the Cl-

bearing solutions is unknown. To date, Cl-drop coated rocks have been encountered in: 1)

serpentinized sub-horizontal ultramafic horizons -- located up to 2,500 ft. above the basal contact

(see Part I); 2) OUI bodies that are often associated with structural features (see Part I); and 3)

massive sulfide ores at the basal contact (mostly within the vicinity of the EW-trending anticline).

All these factors point to the importance of structural control in channeling the Cl-bearing solutions.

However, confirmation that all three Cl-enrichment types originated during the same event has yet

to be demonstrated.

The geostatistical analysis indicates that potentially economic ore reserves do exist at the

Local Boy area. In situ geologic reserves are presented for several high grade cutoffs. The high inter-variable correlations between Cu and Ni indicate that mutually selective mining of Cu and Ni

is physically possible. Selection on ore grade Cu and Ni will not necessarily capture all the ore

grade Pt, Pd, Au, and Ag. However, this conclusion is not strongly supported and further analysis

of geologic controls and further assaying for PGEs and precious metals are needed.

The top of the Biwabik Iron-Formation (BIF) is used as a critical datum horizon in the

geostatistical analysis. In this manner, the ore grade material elevation is redefined as the elevation

above the top of the BIF, which aids in unfolding an otherwise complex structure. A coarse block model is generated (for six different levels) that indicates that the Local Boy area contains a viable

quantity of potential ore grade material. However, the grades of Cu and Ni may not be high enough

to economically support an underground mine at the necessary depth -- the mining method and

economics are not incorporated in the geostatistical analysis. Thus, the ultimate mining method will

almost surely have to offer a high level of ore/waste selectivity, and the economic impact of

100 supplemental metals (Pt, Pd, Au, and Ag) must be considered. Much more intense sampling is needed to fully access the impact of these supplemental metals and their distribution.

FUTURE CONCERNS

Several questions remain in regards to the massive sulfide ores of the Local Boy area. For example, what was the timing of immiscible sulfide injection? If structure was important in providing a deposition site ("vein-like" setting), are similar structural sites present elsewhere within the Duluth Complex, and how can they be better defined? Also, what was the timing of invasion by Cl-bearing hydrothermal solutions? Did the solutions transport the PGEs into the Local Boy area or just redistribute and concentrate PGEs already present?

Second, discrete PGE minerals are only rarely found. Is more sampling and closer scrutiny of polished sections needed to identify the PGEs, or are they mainly present in the sulfides in ppm quantities? Future preparation of the polished sections with a Vibromet polisher may aid in preventing "plucking" of discrete PGE minerals.

Third, this investigation confirms the presence of high PGEs within the massive sulfide ore, but the data are inconclusive as to their overall distribution. Also, the origin of the PGEs is also inconclusive -- both primary (magmatic) and secondary (hydrothermal) processes are indicated.

Clearly, more detailed definition of structural controls and additional sampling is needed. The magmatic process envisions formation of an immiscible sulfide melt in a secondary magma chamber at depth. Crustal contamination of this melt prior to emplacement is indicated by sulfur isotope research (Ripley, 1986; Ripley and Al-Jassar, 1987; Ripley and Alawi, 1986; Ripley and Taib,

1989), and by the high Re values and Cu/Pd ratios in the Local Boy samples (see Severson, 1991,

PGE Scans). However, the high Re values and Cu/Pd ratios may also be indicative of a hydrothermal process.

101 Fourth, stratibound PGE-bearing horizons have been found in the Dunka Road deposit

(Geerts, 1991). Two of the Dunka Road horizons correspond to the top of Unit I, and near the top of Unit VI. No PGE sampling program has been conducted to check for similar stratibound horizons present within the Minnamax deposit.

Last, the geostatistical analysis needs to be updated as new information is gathered and geologic constraints are refined. For example, the sill(?) unit of the Virginia Formation was identified too late to be utilized as a geologic control -- the sill(?) defines the bottom of the potential massive sulfide ore zone and could have been used as a critical datum base in the geostatistical analysis rather than the BIF. Also, the potential economic impact of supplemental metals (Pt, Pd,

Au, and Ag) within the Cu-Ni ore was not fully assessed in the analysis. Substantially more PGE and precious metal assays are needed in order to address their overall impact to the Local Boy massive sulfide ores.

102 REFERENCES

Amcoff, O.,¨ 1988, Experimental replacement of chalcopyrite by bornite: Textural and chemical changes during a solid-state process: Mineralium Deposita, v. 23, p. 286-292.

Barnes, T. E., 1982, Orebody modelling: The transformation of coordinate systems to model continuity at Mount Emmons: Proc. 17th APCOM, AIME, New York, p. 765-770.

Cabri, L. J., and Hall, S. R., 1972, Mooihoekite and haycockite, two new copper-iron sulfides, and their relationship to chalcopyrite and talnakhite: Am. Mineral., v. 57, p. 680-708.

Craig, J. R. and Vaughan, D. J., 1981, Ore microscopy and ore petrography: John Wiley and Sons, New York, 406 p.

Dagbert, M., David, M., Crozel, D., and Desbarats, A., 1984, Computing variograms in folded strata controlled deposits: in Verly et al., eds., Geostatistics for Natural Resource Characterization: D. Reidel Publishing Company, Doordrecht, Holland, p. 70-90.

David, M., 1988, Handbook of applied advanced geostatistical ore reserve estimation: Elsevier, New York, p. 60-69.

Davis, M., and David, M., 1978, Automatic kriging and contouring in the presence of trends (universal kriging made simple): Jour. Can. Petrol. Tech., v. 17, p. 321-332.

Foose, M. P., and Weiblen, P. W., 1986, The physical and chemical setting and textural and compositional characteristics of sulfide ores from the South Kawishiwi Intrusion, Duluth Complex, Minnesota, U.S.A: in 27th Int. Geol. Congress (Moscow), Special Copper Symposium: Springer-Verlag, New York, p. 8-24.

Geerts, S. D., 1991, Geology, stratigraphy, and mineralization of the Dunka Road Cu-Ni prospect, northeastern Minnesota: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/TR-91/14, 63 p.

Geerts, S. D., Barnes, R. J., and Hauck, S. A., 1990, Geology and mineralization in the Dunka Road copper-nickel mineral deposit, St. Louis County, Minnesota: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/GMIN-TR-89-16, 69 p.

Hardyman, R. J., 1969, The petrography of a section of the basal Duluth Complex, St. Louis County, northeastern Minnesota: Unpubl. M.S. thesis, Univ. Minn., Mpls., Minn., 132 p.

Holst, T. B., Mullenmeister, E. E., Chandler, V. W., Green, J. C., and Weiblen, P. W., 1986, Relationship of structural geology of the Duluth Complex to economic mineralization: Minn. Dept. Nat. Res., Div. Minerals, Rept. 241-2.

103 Irvine, T. N., 1965, Chromian spinel as a petrogenetic indicator; Part I. Theory: Can. Jour. Earth Sci., v. 2, p. 648-672.

Isaaks, E. H., and Srivastava, R. M., 1989, An introduction to applied geostatistics: Oxford University Press, New York.

Iwasaki, I., Weiblen, P. W., Reid, K. J., Ryan, P. J., Nakazawa, H., and Malicsi, A. S., 1986, Platinum group and arsenide minerals in copper-nickel sulfide bearing Duluth gabbro and their flotation recoveries: Trans. SME/AIME, v. 280, p. 1983-1988.

Journel, A., 1980, The lognormal approach to predicting local distribution of selective mining unit grades: Math. Geol., v. 12, p. 285-303.

Kuhns, M. P., Hauck, S. A., and Barnes, R. J., 1990, Origin and occurrence of platinum group elements, gold and silver, in the South Filson Creek copper-nickel mineral deposit, Lake County, Minnesota: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/GMIN-TR-89-15, 60 p.

Mainwaring, P. R., 1975, The petrology of a sulfide-bearing at the base of the Duluth Complex, St. Louis County, Minnesota: Unpubl. Ph.D. dissertation, Univ. Toronto, Toronto, Canada, 251 p.

Mancuso, J. D., and Dolence, J. D., 1970, Structure of the Duluth Gabbro Complex in the Babbitt area, Minnesota [abs.]: 16th Ann. Inst. Lake Superior Geol., p. 27.

Martineau, M. P., 1989, Empirically derived controls on Cu-Ni mineralization: A comparison between fertile and barren in the Duluth Complex, Minnesota, U.S.A.: in Prendergast, M. D., and Jones, M. J., eds., Magmatic Sulphides - The Zimbabwe Volume: Inst. Min. Metall., London, p. 117-137.

Matlack, W. F., 1980, Geology and sulfide mineralization of the Duluth Complex - Virginia Formation contact, Minnamax deposit, St. Louis County, Minnesota: Unpubl. M.S. thesis, Univ. Minn., Duluth, Minn., 90 p.

Mogessie, A., Stumpfl, E. F., and Weiblen, P. W., 1991, The role of fluids in the formation of platinum-group minerals, Duluth Complex, Minnesota: Mineralogic, textural, and chemical evidence: Econ. Geol., v. 86, p. 1506-1518.

Morton, P., and Hauck, S. A., 1987, PGE, Au and Ag contents of Cu-Ni sulfides found at the base of the Duluth Complex, northeastern Minnesota: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/GMIN-TR-87-04, 85 p.

Ramdohr, P., 1980, The ore minerals and their intergrowths: Pergamon Press, Oxford, 2nd ed., 1,207 p.

104 Rao, B. V., 1981, Petrogenesis of sulfides in the Dunka Road copper-nickel deposit, Duluth Complex, Minnesota with special references to the role of contamination by country rock: Unpubl. Ph.D. dissertation, Indiana Univ., Bloomington, Indiana, 372 p.

Rao, B. V., and Ripley, E. M., 1983, Petrochemical studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 78, p. 1,222-1,238.

Ripley, E. M., 1986a, Genesis of Cu-Ni sulfide mineralization in the Dunka Complex: A review: in Augustithis, S. S., ed., Metallogeny of Basic and Ultrabasic Rocks: Theophrastus Pub., Athens, Greece, p. 391-416.

Ripley, E. M., 1986b, Origin and concentration mechanisms of copper and nickel in Duluth Complex sulfide zones - a dilemma: Econ. Geol., v. 81, p. 974-978.

Ripley, E. M., 1989, Mineralogic and isotopic studies of platinum-group element mineralization at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota (abs.): Geol. Soc. Finland Bull., v. 61, p. 8.

Ripley, E. M., 1990, Platinum-group element geochemistry of Cu-Ni mineralization in the basal zone of the Babbitt Deposit, Duluth Complex, Minnesota: Econ. Geol., v. 85, p. 830-841.

Ripley, E. M., and Al-Jassar, T. J., 1987, Sulfur and oxygen isotope studies of melt-country rock interaction, Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 82, p. 87- 107.

Ripley, E. M., and Alawi, J., 1986, Sulfide mineralogy and chemical evolution of the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Can. Mineral., v. 24, p. 347-368.

Ripley, E. M., and Taib, N. I., 1989, Carbon isotope studies of metasedimentary and igneous rocks at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota, U.S.A.: Chem. Geol., v. 73, p. 319-342.

Ross, B. A., 1985, A petrologic study of the Bardon Peak peridotite, Duluth Complex: Unpubl. M.S. thesis, Univ. Minn., Mpls., Minn., 140 p.

Ryan, P. J., and Weiblen, P. W., 1984, Pt and Ni arsenide minerals in the Duluth Complex (abs.): 30th Ann. Inst. Lake Superior Geol., Wausau, Wisconsin, v. 30, p. 58-60.

Sabelin, T., and Iwasaki, I., 1985, Metallurgical evaluation of chromium-bearing drill core samples from the Duluth Complex: Mineral Resources Res. Ctr., Minn. Dept. Nat. Res., Div. Minerals, Contract Rept., 58 p.

Sabelin, T., Iwasaki, I., and Reid, K. J., 1986, Platinum group minerals in the Duluth Complex and their beneficiation behaviors: Proceedings 59th Annual Meeting, Minnesota Section AIME, 12 p.

105 Severson, M. J., 1988, Geology and structure of a portion of the Partridge River intrusion: A progress report: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/GMIN-TR-88-08, 78 p.

Severson, M. J., 1991, Geology, mineralization, and geostatistics of the Minnamax/Babbitt Cu-Ni deposit (Local Boy area), Minnesota, Part I: geology: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/TR-91/13a, 96 p.

Severson, M. J., and Hauck, S. A., 1990, Geology, geochemistry, and stratigraphy of a portion of the Partridge River intrusion: Natural Resources Research Institute, Univ. Minn., Duluth, Tech. Rept., NRRI/GMIN-TR-89-11, 235 p. von Gruenewaldt, G., 1991, The Noril'sk-Talnakh deposits: The largest platinum occurrences in the U.S.S.R.: Platinum Metals Rev., v. 35, p. 96-100.

Watowich, S. N., 1978, A preliminary geological view of the Minnamax copper-nickel deposit in the Duluth gabbro at the Minnamax Project: in Graven, L. K., compiler, Productivity in Lake Superior Mining, 39th Proc., Ann. Minn. Mining Sym.: Univ. Minn., Mpls., Minn., p. 19.1-19.11.

Watowich, S. N., Malcolm, J. B., and Parker, P. D., 1981, A review of the Duluth Gabbro Complex of Minnesota as a domestic source of critical and strategic metals: SME-AIME Fall Meeting, Denver, Colorado, 9 p.

Weiblen, P. W., and Morey, G. B., 1976, Textural and compositional characteristics of sulfide ores from the basal contact zone of the South intrusion, Duluth Complex, northeastern Minnesota: 37th Ann. Mining Sym., Univ. Minn., Mpls., Minn., 22 p.

106 APPENDIX 1

DATA FILE INFORMATION

The following files (surface drill hole locations and lithologic breaks) are given in Appendix 1 on the floppy diskette (360kb) in the back pocket:

BABBITT.WK1 (74,885 k, 07-23-88, 4:01 p.m.) Surface drilling information and lithologic breaks (from Bear Creek and AMAX drill logs). Mostly regional geologic features -- e.g., top and bottom of BIF. This file also includes some Reserve Mining holes. No coordinates are given in this file. Note that this file is also presented in Severson, 1988 (p. 51-61).

MINMAX.WK1 (51,871 k, 09-26-89, 9:05 p.m.) Surface drilling collar data. There are 443 records, with holes numbering from #1 to #432.

107 APPENDIX 2

DATA FILE INFORMATION

Appendix 2 lists: geochemical results, drill hole survey results, and underground lithologic breaks. The following files are given in Appendix 2 on the diskette (1.44mb) in the back pocket.

108 MMXCHEM.WK1 (289,734 k, 07-16-91, 4:40 p.m.) Underground drill hole assay information: Hole #, Sample #, from, to, Cu, Ni, S, Au, Pd, Pt, Ag. There are 2496 records including holes #10001 to #10096. This data is continued in files MMXCHEM1.WK1 and MMXCHEM2.WK1. The following is a list of the number of assays of each type: 2496 Cu, 2496 Ni, 2496 S, 204 Au, 204 Pd, 204 Pt, 204 Ag.

MMXCHEM1.WK1 (259,411 k, 07-16-91, 4:39 p.m.) Underground drill hole assay information: Hole #, Sample #, from, to, Cu, Ni, S, Au, Pd, Pt, Ag. There are 2190 records including holes #10096 to #10175. This data is continued in files MMXCHEM.WK1 and MMXCHEM2.WK1. The following is a list of the number of assays of each type: 2190 Cu, 2190 Ni, 2190 S, 314 Au, 314 Pd, 314 Pt, 314 Ag.

MMXCHEM2.WK1 (119,335 k, 08-30-91, 9:16 p.m.) Underground drill hole assay information: Hole #, Sample #, from, to, Cu, Ni, S, Au, Pd, Pt, Ag. There are 982 records including holes #10175 to #10219. This data is continued from files MMXCHEM.WK1 and MMXCHEM1.WK1. The following is a list of the number of assays of each type: 976 Cu, 976 Ni, 976 S, 197 Au, 197 Pd, 197 Pt, 201 Ag.

MXDRSAM.WK1 (86,450 k, 08-20-90, 12:44 p.m.) Underground drift samples: Drift, Sample #, from, to, Northing, Easting, horizontal thickness, Cu, Ni, S. There are 179 records in drift A, 173 in drift B, 92 in drift C, and 62 in drift D.

MXSDHC1.WK1 (200,864 k, 09-18-90, 11:17 a.m.) Surface drilling assay data: Drill hole #, Sample #, from, to, Cu, Ni, S, Au, V, Cr, Pd, Pt, Ag. There are 1666 records in the file. This includes holes #105 to #146 (with gaps in the sequence). The following is a list of the number of assays of each type: 1614 Cu, 1614 Ni, 1614 S, 219 Au, 187 V, 187 Cr, 219 Pd, 219 Pt, 32 Ag.

MXSDHC2.WK1 (190,302 k, 09-18-90, 11:12 a.m.) Surface drilling assay data: Drill hole #, Sample #, from, to, Cu, Ni, S, Au, V, Cr, Pd, Pt, Ag. There are 1659 records in the file. This includes holes #146 to #421 (with gaps in the sequence). The following is a list of the number of assays of each type: 1659 Cu, 1659 Ni, 1659 S, 103 Au, 59 V, 59 Cr, 103 Pd, 103 Pt, 44 Ag.

MXULITH.WK1 (16,097 k, 06-28-91, 3:03 p.m.) Underground drilling lithologic picks (from AMAX drill logs and cross-sections).

MXSDHI.WK1 (174,403 k, 03-26-90, 10:04 p.m.) Surface drilling down-the-hole survey information.

MMXDRINF.WK1 (114,712 k, 04-06-90, 8:04 p.m.) Underground drilling down-the-hole survey information.

109 APPENDIX 3

IDENTIFICATION OF SURFACE HOLES USED IN THE ANALYSIS

110 Collar Coordinates BIF Coordinates DH # Cnt North East Elev North East Elev 105 85 -5625 3228 1611 -5686 3042 -282 116 65 -5540 3047 1604 -5491 2852 -217 120 79 -6419 3976 1624 -6100 3866 -418 121 80 -4471 3468 1589 -4522 3376 -234 124 134 -5192 4038 1590 -5045 3803 -288 127 87 -5597 4027 1602 -5411 3833 -247 129 69 -5990 3228 1615 -5675 3190 -307 130 73 -5609 2425 1605 -5391 2159 -179 131 46 -5995 4029 1606 -5837 3761 -276 132 120 -5199 3222 1602 -5027 3144 -179 133 51 -5211 2424 1597 -5124 2306 -170 134 23 -6006 2829 1616 -5897 2686 -283 135 75 -5596 3631 1601 -5407 3547 -144 136 89 -5199 3621 1602 -5126 3334 -215 137 45 -6001 3632 1610 -5756 3518 -346 138 86 -4802 3619 1587 -4657 3454 -239 139 49 -5608 2825 1605 -5445 2680 -200 140 63 -6401 3239 1621 -6087 3074 -320 141 15 -6007 2427 1613 -6007 2427 -383 142 107 -4810 3221 1587 -4823 3221 -165 146 107 -4798 4019 1585 -4802 3930 -347 148 82 -5574 4425 1584 -5258 4186 -385 150 20 -5194 4426 1578 -4955 4236 -374 152 96 -4794 4422 1594 -4650 4212 -364 153 30 -5991 4450 1599 -5991 4450 -374 154 94 -4400 4006 1589 -4361 3990 -328 156 73 -4390 3731 1586 -4454 3594 -257 158 77 -4598 4013 1584 -4616 3900 -301 159 146 -4990 4022 1584 -4906 3827 -337 160 81 -5502 3427 1604 -5487 3161 -222 161 29 -5208 2827 1595 -5208 2827 -179

111 Collar Coordinates BIF Coordinates DH # Cnt North East Elev North East Elev 162 100 -4808 2822 1589 -4798 2754 -175 163 39 -6318 3608 1633 -6318 3608 -421 197 81 -3992 3420 1587 -4107 3229 -307

112 APPENDIX 4

IDENTIFICATION OF UNDERGROUND HOLES USED IN THE ANALYSIS

Hole # = underground drill hole number Fan = underground drill fan (Drifts A, B, C, & D) Cnt = number of Cu-Ni assays in the drill hole L = length of drill hole Nc = north coordinates at collar Ec = east coordinates at collar Zc = collar elevation Nb = north coordinates at bottom of hole Eb = east coordinates at bottom of hole Zb = elevation of bottom of hole

113 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10001 A-6 18 252 -4413 3995 -87 -4413 3995 -337 10002 A-6 30 383 -4416 3995 -86 -4692 3995 -353 10003 A-6 49 549 -4418 3995 -86 -4924 3995 -299 10004 A-6 39 395 -4420 3995 -84 -4815 3995 -84 10005 A-6 51 509 -4406 3995 -84 -3897 3995 -93 10006 A-6 49 504 -4407 3995 -87 -3942 3995 -280 10007 A-6 30 306 -4407 3995 -87 -4165 3995 -274 10008 A-6 32 324 -4407 3995 -80 -4215 3995 179 10009 A-6 35 354 -4414 3995 -77 -4411 3995 277 10010 A-6 41 409 -4418 3995 -80 -4720 3995 195 10011 A-6 30 299 -4414 4010 -84 -4414 4309 -75 10012 A-6 38 384 -4414 4010 -87 -4414 4320 -313 10013 A-6 30 301 -4414 4010 -77 -4414 4282 51 10014 A-6 20 303 -4414 4005 -87 -4414 4156 -349 10015 D-5 8 153 -5504 2702 -86 -5499 2698 -239 10016 D-5 5 169 -5497 2702 -83 -5330 2702 -108 10017 D-5 19 194 -5497 2702 -81 -5307 2702 -41 10018 D-5 10 130 -5497 2702 -76 -5400 2702 10 10019 D-5 17 165 -5511 2703 -80 -5672 2703 -44 10020 D-5 11 99 -5511 2703 -75 -5567 2703 7 10021 D-5 17 150 -5511 2703 -83 -5657 2703 -118 10022 D-5 20 294 -5502 2697 -84 -5502 2406 -127 10023 D-5 18 184 -5502 2697 -83 -5502 2527 -154 10024 D-5 23 289 -5502 2697 -80 -5502 2412 -30 10025 D-5 10 95 -5502 2697 -76 -5502 2627 -21 10026 A-5 8 82 -4410 3800 -89 -4410 3800 -171 10026-1 A-5 17 202 -4412 3800 -89 -4412 3800 -291 10027 A-5 24 293 -4405 3800 -89 -4196 3800 -294 10028 A-5 15 261 -4415 3800 -89 -4605 3800 -268 10029 A-5 23 329 -4414 3800 -89 -4710 3800 -233 10030 A-5 40 400 -4415 3800 -86 -4815 3800 -89 10031 A-5 49 500 -4402 3800 -86 -3902 3800 -79

114 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10032 A-5 29 519 -4402 3800 -89 -3927 3800 -297 10033 A-5 42 421 -4404 3800 -80 -4073 3800 180 10034 A-5 34 350 -4414 3800 -80 -4678 3800 150 10035 A-5 33 350 -4410 3800 -78 -4410 3800 272 10036 D-5 13 120 -5511 2696 -86 -5562 2696 -195 10037 D-4 9 145 -5503 2800 -85 -5503 2800 -230 10038 D-4 17 173 -5509 2800 -84 -5669 2800 -152 10039 D-4 14 200 -5509 2800 -81 -5709 2800 -85 10040 D-4 15 149 -5496 2799 -82 -5350 2799 -101 10041 D-4 14 147 -5496 2799 -74 -5385 2799 22 10042 D-4 12 115 -5505 2799 -74 -5573 2799 18 10043 D-3 7 128 -5502 2900 -87 -5502 2900 -215 10044 D-3 24 249 -5510 2899 -86 -5728 2899 -203 10045 D-3 11 149 -5510 2900 -84 -5658 2900 -84 10046 D-3 15 210 -5494 2900 -84 -5284 2900 -82 10047 D-3 14 165 -5497 2900 -77 -5372 2900 29 10048 D-3 12 120 -5505 2901 -76 -5550 2901 35 10049 D-2 22 227 -5508 3000 -88 -5630 3000 -279 10050 D-2 29 315 -5509 3000 -87 -5771 3000 -261 10051 D-2 9 160 -5496 3000 -87 -5402 3000 -217 10052 D-2 24 225 -5493 3000 -84 -5268 3000 -88 10053 D-2 20 210 -5509 3000 -84 -5719 3000 -86 10054 D-2 11 105 -5439 3000 -81 -5349 3000 -37 10055 D-2 7 49 -5502 3002 -78 -5505 3002 -29 10056 D-1 6 175 -5495 3099 -87 -5331 3099 -143 10057 D-1 10 132 -5498 3100 -89 -5462 3100 -215 10058 D-1 23 237 -5505 3099 -89 -5631 3099 -290 10059 D-1 34 364 -5507 3100 -88 -5801 3100 -302 10060 A-4 15 485 -4407 3600 -92 -4407 3600 -577 10061 A-4 22 292 -4413 3600 -92 -4163 3600 -242 10062 A-4 26 419 -4413 3600 -90 -4802 3600 -247 10063 A-4 23 250 -4399 3600 -92 -4195 3600 -237

115 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10064 A-4 27 460 -4398 3600 -91 -3988 3600 -299 10065 A-4 47 495 -4398 3600 -88 -3903 3600 -77 10066 A-4 39 400 -4413 3600 -88 -4813 3600 -103 10067 A-4 50 500 -4412 3600 -84 -4803 3600 228 10068 A-4 29 300 -4399 3600 -84 -4140 3600 67 10069 A-4 27 275 -4407 3600 -82 -4409 3600 193 10070 C-6 20 215 -5902 3205 -86 -5910 3205 -301 10071 C-6 32 325 -5901 3196 -85 -5901 2901 -222 10072 C-6 21 253 -5900 3198 -86 -5900 3091 -315 10073 C-6 28 261 -5900 3196 -85 -5900 2990 -246 10074 C-6 44 450 -5900 3210 -86 -5900 3583 -338 10075 C-6 18 295 -5900 3209 -86 -5900 3395 -315 10076 C-6 21 250 -5904 3205 -86 -5998 3205 -318 10077 C-6 25 250 -5906 3204 -86 -6056 3204 -286 10078 C-6 28 320 -5908 3203 -86 -6142 3203 -304 10079 C-5 25 230 -5852 3201 -86 -5852 3201 -316 10080 B-5 35 350 -5189 4003 -75 -5189 4257 166 10081 B-5 30 300 -5191 4003 -81 -5191 4303 -73 10082 B-5 19 235 -5197 4000 -86 -5197 4000 -321 10083 B-5 47 487 -5193 4000 -86 -4767 4000 -322 10084 B-5 37 398 -5202 3998 -85 -5547 3998 -284 10085 B-5 41 408 -5202 3999 -82 -5606 3999 -139 10086 B-5 50 500 -5202 4000 -80 -5689 4000 32 10087 B-5 30 300 -5202 3999 -75 -5438 3999 110 10088 B-5 26 333 -5188 3999 -86 -4961 3999 -330 10089 B-5 47 475 -5195 4003 -85 -5195 4414 -323 10090 B-5 48 476 -5201 4003 -82 -5538 4340 -74 10091 B-5 35 350 -5190 4003 -82 -4943 4250 -91 10092 A-3 15 151 -4405 3378 -94 -4405 3378 -245 10093 A-3 41 395 -4412 3378 -89 -4807 3378 -90 10094 A-3 60 595 -4399 3378 -89 -3804 3378 -85 10095 A-3 25 312 -4399 3378 -94 -4157 3378 -291

116 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10096 A-3 62 600 -4399 3378 -91 -3816 3378 -234 10097 A-3 19 205 -4411 3378 -94 -4545 3378 -249 10098 A-3 26 276 -4412 3378 -92 -4678 3378 -163 10099 A-3 24 248 -4412 3382 -93 -4572 3542 -196 10100 A-3 26 270 -4399 3378 -93 -4226 3551 -207 10101 A-3 21 200 -4405 3383 -94 -4405 3552 -201 10102 A-3 50 500 -4411 3378 -85 -4805 3378 223 10103 A-3 29 289 -4400 3378 -85 -4156 3378 70 10104 A-3 30 300 -4401 3378 -84 -4388 3378 216 10105 B-5 40 400 -5188 3999 -82 -4788 3999 -82 10106 B-5 40 396 -5188 3999 -76 -4898 3999 194 10107 B-5 30 300 -5195 4000 -76 -5195 3990 224 10108 A-2 5 95 -4582 3200 -96 -4582 3200 -191 10109 A-2 5 190 -4574 3200 -96 -4410 3200 -191 10110 A-2 29 400 -4574 3200 -94 -4185 3200 -187 10111 A-2 58 600 -4574 3200 -93 -3974 3200 -94 10112 A-2 25 250 -4587 3200 -93 -4837 3200 -87 10113 A-2 5 50 -4575 3200 -88 -4537 3200 -56 10113A A-2 30 300 -4575 3200 -88 -4346 3200 105 10114 A-2 8 85 -4582 3200 -86 -4582 3200 -1 10114A A-2 45 450 -4582 3200 -86 -4568 3200 364 10115 A-2 44 442 -4586 3200 -87 -4864 3200 257 10116 B-5 4 40 -5192 4003 -81 -5192 4043 -81 10117 B-4 13 165 -5200 3800 -88 -5200 3800 -253 10118 B-4 28 302 -5191 3802 -87 -4993 3802 -315 10119 B-4 14 250 -5207 3803 -87 -5419 3803 -219 10120 B-4 44 450 -5207 3803 -84 -5657 3803 -84 10121 B-4 39 400 -5191 3803 -85 -4791 3803 -88 10122 B-4 44 445 -5191 3804 -87 -4795 3804 -289 10123 B-4 39 399 -5191 3804 -77 -4909 3804 205 10124 B-4 34 350 -5209 3804 -78 -5461 3804 165 10125 B-4 28 300 -5197 3803 -75 -5197 3813 225

117 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10126 C-5 19 200 -5805 3200 -87 -5805 3200 -287 10127 C-5 20 200 -5805 3208 -87 -5805 3321 -252 10128 C-5 37 380 -5805 3208 -86 -5805 3518 -306 10129 C-5 25 250 -5805 3195 -87 -5805 3015 -260 10130 C-5 9 100 -5805 3200 -77 -5804 3200 23 10131 B-3 4 35 -5198 3700 -90 -5198 3700 -125 10132 B-3 12 150 -5197 3676 -90 -5197 3676 -240 10133 B-3 27 275 -5193 3677 -89 -4982 3677 -266 10134 B-3 28 295 -5205 3601 -87 -5500 3601 -82 10135 B-3 41 395 -5193 3601 -87 -4798 3601 -87 10136 B-3 33 350 -5193 3601 -90 -4890 3601 -265 10137 B-3 22 218 -5205 3601 -90 -5406 3601 -175 10138 B-3 38 395 -5204 3601 -80 -5458 3601 223 10139 B-3 40 400 -5196 3601 -80 -4978 3601 255 10140 B-3 19 195 -5199 3602 -80 -5199 3602 115 10141 B-3 10 539 -5200 3601 -91 -5181 3601 -630 10142 C-4 21 200 -5750 3200 -87 -5750 3200 -287 10143 C-4 29 300 -5750 3195 -87 -5750 2943 -250 10144 C-4 27 260 -5750 3208 -87 -5750 3425 -230 10145 C-4 41 408 -5700 3208 -86 -5700 3573 -268 10146 C-4 32 320 -5700 3207 -87 -5700 3460 -282 10147 C-4 26 300 -5700 3205 -87 -5700 3385 -326 10148 C-4 20 200 -5700 3201 -87 -5700 3201 -287 10149 C-4 33 315 -5700 3195 -87 -5700 2933 -261 10150 C-4 20 200 -5700 3201 -78 -5700 3201 122 10151 C-3 19 190 -5648 3203 -88 -5648 3203 -278 10152 C-3 29 295 -5648 3193 -87 -5648 2952 -257 10153 C-3 27 270 -5648 3207 -87 -5648 3428 -242 10154 B-3 40 400 -5199 3603 -80 -5199 3669 315 10155 C-3 20 557 -5602 3199 -89 -5602 3199 -646 10156 C-3 28 270 -5602 3192 -88 -5602 2973 -246 10157 C-3 21 205 -5602 3206 -89 -5602 3341 -247

118 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10158 C-3 33 335 -5602 3207 -87 -5602 3512 -225 10159 C-3 27 265 -5602 3207 -88 -5602 3431 -230 10160 C-3 26 250 -5602 3204 -80 -5602 3382 96 10161 C-3 18 195 -5602 3199 -78 -5602 3199 117 10162 B-2 6 130 -5200 3505 -92 -5200 3505 -222 10163 B-2 27 345 -5194 3505 -90 -4926 3505 -307 10164 B-2 9 194 -5204 3504 -90 -5384 3504 -163 10165 B-2 28 260 -5401 3505 -82 -5531 3505 143 10166 B-2 30 300 -5200 3505 -82 -5041 3505 172 10167 B-2 26 252 -5198 3505 -82 -5198 3505 170 10168 B-2 6 97 -5199 3401 -93 -5199 3401 -190 10169 B-2 12 125 -5206 3401 -91 -5085 3401 -123 10170 B-2 20 205 -5196 3402 -91 -5007 3402 -171 10171 B-2 40 400 -5196 3402 -89 -4796 3402 -89 10172 B-2 40 402 -5206 3402 -90 -5608 3402 -83 10173 B-2 33 352 -5204 3402 -84 -5496 3402 113 10174 B-2 39 400 -5199 3403 -83 -4904 3403 187 10175 B-2 30 300 -5203 3404 -83 -5225 3426 215 10176 C-2 17 185 -5544 3198 -89 -5544 3198 -274 10177 C-2 18 180 -5544 3198 -77 -5544 3198 103 10178 C-2 16 255 -5508 3192 -86 -5703 3028 -97 10179 C-2 11 146 -5495 3199 -90 -5495 3199 -236 10180 C-2 12 200 -5495 3205 -89 -5495 3374 -196 10181 C-2 23 245 -5495 3205 -87 -5495 3439 -159 10182 C-2 27 340 -5495 3205 -86 -5495 3540 -144 10183 C-2 38 369 -5495 3205 -85 -5495 3574 -82 10184 C-2 5 50 -5495 3199 -77 -5495 3199 -27 10185 C1- 9 95 -5450 3198 -91 -5450 3198 -186 10186 C1- 18 170 -5450 3198 -81 -5450 3198 89 10187 B-1 4 106 -5205 3308 -93 -5143 3308 -179 10188 B-1 57 585 -5198 3308 -84 -4807 3308 351 10189 B-1 39 405 -5201 3308 -84 -5422 3308 256

119 Hole # Fan Cnt L Nc Ec Zc Nb Eb Zb 10190 B-1 38 410 -5201 3308 -84 -5187 3308 326 10191 C-1 5 100 -5400 3199 -92 -5400 3199 -192 10192 C-1 6 95 -5400 3206 -91 -5400 3277 -154 10193 C-1 8 122 -5400 3206 -88 -5400 3326 -111 10194 C-1 18 190 -5400 3206 -86 -5400 3371 9 10195 C-1 14 150 -5400 3199 -81 -5400 3199 69 10196 C-0 5 75 -5300 3199 -93 -5300 3199 -168 10197 C-0 6 120 -5300 3194 -92 -5300 3107 -175 10198 C-0 33 300 -5300 3193 -89 -5300 2893 -89 10199 C-0 9 100 -5300 3195 -84 -5300 3124 -14 10200 C-0 19 180 -5300 3204 -84 -5300 3333 41 10201 A-1 7 100 -4788 2986 -97 -4788 2986 -197 10202 A-1 10 225 -4795 2986 -93 -5020 2986 -91 10203 A-1 21 350 -4783 2986 -93 -4433 2986 -102 10204 A-1 50 500 -4793 2986 -89 -5187 2986 218 10205 A-1 40 400 -4789 2986 -88 -4789 2986 311 10206 A-1 50 500 -4785 2986 -89 -4371 2986 192 10207 B-1 8 125 -5196 3308 -93 -5101 3308 -174 10208 B-1 5 96 -5201 3222 -94 -5200 3221 -190 10209 B-1 7 110 -5205 3221 -94 -5277 3221 -177 10210 B-1 14 195 -5195 3222 -92 -5008 3222 -146 10211 B-1 32 334 -5195 3221 -90 -4861 3221 -81 10212 B-1 45 450 -5195 3221 -88 -4784 3221 95 10213 B-1 49 495 -5198 3221 -85 -4860 3221 277 10214 B-1 29 327 -5201 3222 -83 -5372 3222 196 10215 B-1 30 293 -5199 3222 -84 -5199 3227 209 10216 B-1 36 345 -5201 3194 -90 -5201 2849 -84 10217 B-1 28 315 -5201 3194 -89 -5201 2888 -13 10218 B-1 27 320 -5202 3194 -85 -5202 2982 155 10219 B-1 33 285 -5193 3194 -91 -5193 2915 -150

120 APPENDIX 5

IDENTIFIED DOWN-THE-HOLE SURVEY ERRORS

121 In 14 of the surface holes there were two downhole surveys run. As can be expected, the two independent surveys do not agree in many cases.

The following table shows a number of apparent "busts" in the surface drilling downhole survey data. This comparison was done by finding the furthest point down the hole that was surveyed by both methods and comparing the resulting coordinates. The values given are the reduced coordinates of the point given as offsets from the collar location. The "*" indicates which of the methods was used in the analysis. The reasoning that was used to select the method was consistency with the plotted maps.

LOCAL BOY SURFACE DRILL HOLE SURVEY INFORMATION (based on the data in file MXSDHI.WK1)

Drill Station Hole Type of Survey Depth Delta N Delta E Delta Z

105 Tro-Pari 1200 -41.49 -60.67 1196.60 105 *Gyroscopic Directional 1200 -49.94 -65.82 1196.05 116 Tro-Pari 1100 -12.20 -55.33 1097.60 116 *Slimhole Gyroscopic Direc 1100 13.64 -65.54 1096.35 124 Tro-Pari 1800 -9.55 -243.24 1777.80 124 *Slimhole Gyroscopic Direc 1800 131.62 -214.62 1776.86 127 Tro-Pari 1700 94.97 -186.12 1681.00 127 *Slimhole Gyroscopic Direc 1700 155.82 -157.50 1679.22 129 Tro-Pari 1700 189.01 -137.43 1674.40 129 *Slimhole Gyroscopic Direc 1700 242.66 -12.95 1672.56 130 Tro-Pari 1800 40.18 -329.50 1761.59 130 *Slimhole Gyroscopic Direc 1800 212.33 -261.01 1760.33 132 Tro-Pari 1400 71.13 -108.02 1293.70 132 *Slimhole Gyroscopic Direc 1400 117.15 -53.89 1393.06 134 Eastman Single Shot 1906 26.99 55.62 1892.50 134 *Tro-Pari 1906 107.97 -142.61 1893.60 135 Eastman Single Shot 1600 94.19 -135.07 1584.90 135 *Slimhole Gyroscopic Direc 1600 150.34 -71.95 1584.73 136 Eastman Single Shot 1700 -20.17 -245.01 1674.10 136 *Slimhole Gyroscopic Direc 1700 57.71 -247.78 1673.15

122 Drill Station Hole Type of Survey Depth Delta N Delta E Delta Z 137 Eastman Single Shot 1900 180.08 -170.89 1855.20 137 *Slimhole Gyroscopic Direc 1900 223.14 -104.04 1875.25 138 Eastman Single Shot 1800 16.28 -201.91 1776.30 138 *Slimhole Gyroscopic Direc 1800 142.80 -160.59 1785.23 139 Eastman Single Shot 1800 89.04 -198.33 1782.70 139 *Slimhole Gyroscopic Direc 1800 158.64 -141.02 1782.81 162 Parsons Tro-Pari 1750 44.47 -50.94 1780.46 162 *Parsons Directional 1750 9.57 -67.29 1748.42

123 APPENDIX 6

ADJUSTED DOWN-THE-HOLE SURVEY INFORMATION

124 LOCAL BOY SURFACE DRILL HOLE SURVEY INFORMATION (based on the data in file MXSDHI.WK1)

Drill Station Delta Hole Depth Delta N Delta E Elev 105 0 0.00 0.00 0.00 105 100 -2.20 1.42 99.97 105 200 -5.13 2.27 199.92 105 300 -9.92 1.99 299.80 105 400 -14.53 -0.48 399.67 105 500 -18.15 -5.40 499.48 105 600 -20.50 -13.34 599.14 105 700 -24.38 -21.63 698.72 105 800 -29.87 -28.40 798.34 105 900 -36.21 -36.71 897.79 105 1000 -41.29 -45.84 997.24 105 1100 -45.70 -55.80 1096.65 105 1200 -49.94 -65.82 1196.05 105 1300 -54.04 -77.30 1295.31 105 1400 -58.01 -90.19 1394.39 105 1500 -61.95 -103.99 1493.36 105 1600 -64.84 -120.24 1591.99 105 1700 -65.87 -138.43 1690.31 105 1800 -65.09 -160.49 1787.85 105 1875 -62.14 -178.07 1860.70

116 0 0.00 0.00 0.00 116 100 1.74 -0.07 99.98 116 200 3.58 -1.25 199.96 116 300 4.02 -3.39 299.94 116 400 3.75 -5.99 399.90 116 500 2.07 -9.54 499.83 116 600 0.22 -14.44 599.69 116 700 -1.30 -19.90 699.53 116 800 -1.82 -27.29 799.25

125 Drill Station Delta Hole Depth Delta N Delta E Elev 116 900 2.68 -37.68 898.61 116 1000 8.89 -51.09 997.51 116 1100 13.64 -65.54 1096.35 116 1200 18.46 -81.78 1194.90 116 1300 23.31 -100.23 1293.07 116 1400 28.22 -120.00 1390.97 116 1450 30.94 -130.03 1439.88

120 125 0.00 0.00 125.00 120 250 0.00 0.00 375.00 120 500 37.06 -12.76 747.95 120 1000 135.36 -46.61 1237.02 120 1500 213.99 -73.68 1628.28 120 1800 290.87 -100.15 1911.85 120 2090 322.24 -110.95 2055.57 120 2095 322.77 -111.13 2058.01

121 100 0.00 0.00 100.00 121 200 3.49 0.00 299.97 121 400 13.95 -0.37 499.70 121 600 12.98 -14.29 699.21 121 800 6.88 -33.07 898.23 121 1000 -7.96 -47.91 1109.69 121 1844 -52.24 -92.77 1838.41

124 0 0.00 0.00 0.00 124 100 -0.26 -3.04 99.95 124 200 -0.17 -7.40 199.86 124 300 -1.51 -14.25 299.61 124 400 -1.72 -21.66 399.34 124 500 -0.22 -31.56 498.84 124 600 1.19 -42.36 598.24

126 Drill Station Delta Hole Depth Delta N Delta E Elev 124 700 3.99 -52.88 697.65 124 800 9.49 -63.75 796.90 124 900 15.22 -76.91 895.87 124 1000 21.77 -90.16 994.77 124 1100 30.47 -103.67 1093.47 124 1200 40.59 -118.31 1191.87 124 1300 53.22 -132.62 1290.04 124 1400 67.34 -147.88 1387.85 124 1500 82.10 -162.52 1485.66 124 1600 99.63 -178.58 1582.80 124 1700 117.21 -195.19 1679.83 124 1800 131.62 -214.62 1776.86

127 0 0.00 0.00 0.00 127 100 -1.26 -1.21 99.98 127 200 -0.53 -2.30 199.98 127 300 3.39 -2.46 299.90 127 400 8.95 -3.55 399.74 127 500 15.28 -5.21 499.52 127 600 21.43 -9.20 599.25 127 700 27.24 -15.19 698.91 127 800 33.70 -23.41 798.36 127 900 46.06 -30.69 897.32 127 100 59.70 -41.44 995.80 127 1100 74.19 -54.50 1093.88 127 1200 87.92 -70.12 1191.70 127 1300 101.50 -86.42 1289.42 127 1400 113.19 -103.62 1387.23 127 1500 125.55 -120.86 1484.96 127 1600 139.81 -138.81 1582.30 127 1700 155.82 -157.50 1679.22 127 1800 172.76 -176.51 1775.92

127 Drill Station Delta Hole Depth Delta N Delta E Elev 127 1875 185.96 -194.02 1847.65

129 0 0.00 0.00 0.00 129 100 -0.42 0.13 100.00 129 200 -0.96 1.53 199.98 129 300 -0.40 5.41 299.91 129 400 1.94 9.09 399.81 129 500 7.71 13.01 499.57 129 600 16.87 15.83 599.11 129 700 27.83 18.70 698.46 129 800 39.23 21.55 797.77 129 900 53.05 23.14 896.80 129 1000 72.09 21.84 994.96 129 1100 93.71 20.79 1092.59 129 1200 115.30 19.34 1190.22 129 1300 138.73 15.34 1287.35 129 1400 163.85 9.09 1383.95 129 1500 189.99 1.76 1480.19 129 1600 216.29 -4.95 1576.44 129 1700 242.66 -12.95 1672.56 129 1800 270.76 -21.02 1768.19 129 1900 298.50 -31.52 1863.70

130 0 0.00 0.00 0.00 130 100 3.08 -1.64 99.94 130 200 8.66 -5.06 199.72 130 300 15.35 -9.94 299.38 130 400 21.21 -16.39 399.00 130 500 27.13 -24.47 498.50 130 600 33.67 -33.17 597.90 130 700 41.12 -44.93 696.93 130 800 50.05 -58.81 795.56

128 Drill Station Delta Hole Depth Delta N Delta E Elev 130 900 59.69 -73.25 894.04 130 1000 73.05 -89.18 991.85 130 1100 88.10 -107.58 1088.99 130 1200 103.81 -128.67 1185.47 130 1300 120.68 -151.00 1281.47 130 1400 137.29 -173.52 1377.48 130 1500 154.02 -195.43 1473.60 130 1600 169.72 -218.08 1569.73 130 1700 189.30 -239.79 1665.36 130 1800 212.33 -261.01 1760.33

131 0 0.00 0.00 0.00 131 100 -1.55 -0.82 99.90 131 200 -4.66 -2.40 199.80 131 300 -7.48 -4.45 299.70 131 400 -6.56 -9.68 399.60 131 500 -4.94 -14.65 499.50 131 600 -1.14 -20.50 599.30 131 700 6.24 -32.37 698.30 131 800 18.75 -48.91 796.10 131 900 28.58 -77.49 894.20 131 1000 37.53 -92.38 992.70 131 1100 48.85 -109.82 1090.50 131 1200 58.29 -126.85 1188.30 131 1300 71.11 -147.37 1285.30 131 1400 84.82 -169.32 1381.90 131 1500 97.64 -189.84 1478.90 131 1600 110.10 -210.58 1575.90 131 1700 125.15 -227.30 1673.30 131 1800 140.37 -246.10 1770.30 131 1945 162.45 -273.36 1911.30

129 Drill Station Delta Hole Depth Delta N Delta E Elev 132 0 0.00 0.00 0.00 132 100 0.40 -0.18 100.00 132 200 3.45 -0.32 199.95 132 300 9.21 -2.32 299.77 132 400 16.00 -5.30 399.49 132 500 23.76 -8.18 499.15 132 600 32.86 -12.38 598.64 132 700 42.66 -17.13 698.05 132 800 54.05 -22.55 797.25 132 900 65.28 -27.28 896.51 132 1000 76.08 -31.92 995.81 132 1100 85.17 -37.08 1095.26 132 1200 94.32 -42.13 1194.72 132 1300 105.20 -47.63 1293.97 132 1400 117.15 -53.89 1393.06 132 1500 131.11 -59.91 1491.89

133 0 0.00 0.00 0.00 133 100 -1.25 3.26 99.90 133 200 -3.59 5.85 199.80 133 300 -3.95 7.56 299.70 133 400 -3.44 5.89 399.60 133 500 0.13 2.06 499.50 133 600 3.70 0.53 599.40 133 700 11.99 -2.16 699.00 133 800 20.65 -8.00 798.50 133 1100 50.18 -37.53 1095.60 133 1200 57.76 -49.20 1194.60 133 1300 63.64 -61.82 1293.60 133 1400 70.60 -73.87 1392.60 133 1500 76.88 -84.32 1491.90 133 1600 81.87 -97.32 1590.90

130 Drill Station Delta Hole Depth Delta N Delta E Elev 133 1700 84.82 -109.15 1690.20 133 1813 88.15 -122.51 1802.30

134 0 0.00 0.00 0.00 134 100 -3.63 -3.76 99.90 134 200 -6.30 -6.00 199.80 134 300 -8.46 -12.64 299.60 134 400 -10.83 -17.30 399.50 134 500 -11.29 -22.51 499.40 134 600 -10.56 -27.69 599.30 134 700 -9.56 -32.82 699.20 134 800 -7.10 -37.44 799.10 134 900 -2.92 -40.59 899.00 134 1000 1.65 -43.13 998.90 134 1100 8.23 -48.85 1098.50 134 1200 16.12 -55.71 1198.00 134 1300 25.18 -63.87 1297.30 134 1400 35.84 -72.82 1396.30 134 1500 47.91 -85.31 1494.80 134 1600 61.87 -98.32 1593.00 134 1700 76.82 -112.76 1691.80 134 1906 107.97 -142.61 1893.60

135 0 0.00 0.00 0.00 135 100 -2.70 -5.47 99.81 135 200 -6.79 -12.68 199.47 135 300 -10.59 -20.04 299.13 135 400 -12.74 -28.03 398.78 135 500 -9.38 -34.64 498.51 135 600 -1.41 -38.17 598.13 135 700 6.01 -40.71 697.82 135 800 14.32 -43.35 797.44

131 Drill Station Delta Hole Depth Delta N Delta E Elev 135 900 25.02 -45.37 896.84 135 1000 39.67 -47.34 995.75 135 1100 55.17 -49.41 1094.51 135 1200 72.78 -52.00 1192.92 135 1300 90.24 -55.42 1291.32 135 1400 108.38 -59.76 1389.57 135 1500 128.60 -66.20 1487.29 135 1600 150.34 -71.95 1584.73 135 1675 167.71 -77.21 1657.50

136 0 0.00 0.00 0.00 136 100 -2.57 0.49 99.97 136 200 -4.34 -0.78 199.94 136 300 -4.93 -4.66 299.86 136 400 -5.73 -11.59 399.62 136 500 -8.38 -21.25 499.12 136 600 -12.90 -33.50 598.26 136 700 -14.12 -47.80 697.23 136 800 -13.38 -63.42 796.00 136 900 -11.60 -79.83 894.63 136 1000 -8.44 -97.34 993.03 136 1100 -3.29 -115.72 1091.19 136 1200 4.92 -135.28 1188.91 136 1300 14.97 -155.72 1286.35 136 1400 25.81 -176.56 1383.49 136 1500 36.45 -199.69 1480.19 136 1600 47.81 -223.41 1576.67 136 1700 57.71 -247.78 1673.15 136 1800 67.66 -273.94 1769.15 136 1845 72.25 -285.66 1812.36

137 0 0.00 0.00 0.00

132 Drill Station Delta Hole Depth Delta N Delta E Elev 137 100 -3.19 -1.42 99.94 137 200 -5.79 -3.01 199.89 137 300 -8.48 -5.24 299.83 137 400 -7.65 -7.26 399.81 137 500 -4.67 -7.91 499.76 137 600 1.23 -10.73 599.55 137 700 11.84 -13.15 698.95 137 800 23.89 -14.97 798.21 137 900 37.92 -18.00 897.17 137 1000 52.93 -22.40 995.94 137 1100 67.26 -27.52 1094.78 137 1200 83.59 -33.41 1193.26 137 1300 101.54 -41.06 1291.34 137 1400 120.23 -49.13 1389.24 137 1500 138.03 -58.12 1487.23 137 1600 156.19 -69.10 1584.96 137 1700 176.69 -80.25 1682.19 137 1800 198.97 -91.70 1779.01 137 1900 223.14 -104.04 1875.25 137 1975 242.46 -113.01 1947.17

138 0 0.00 0.00 0.00 138 100 1.99 -2.87 99.94 138 200 4.09 -7.66 199.80 138 300 6.66 -12.22 299.66 138 400 10.25 -19.68 399.32 138 500 15.79 -28.03 498.82 138 600 22.81 -36.35 598.22 138 700 30.44 -45.29 697.53 138 800 41.05 -54.95 796.50 138 900 52.84 -65.23 895.26 138 1000 65.61 -75.69 993.89

133 Drill Station Delta Hole Depth Delta N Delta E Elev 138 1100 78.03 -85.89 1092.59 138 1200 90.97 -96.81 1191.15 138 1300 103.27 -107.82 1289.78 138 1400 114.70 -117.86 1388.61 138 1500 125.21 -127.64 1487.58 138 1600 132.42 -139.03 1586.66 138 1700 137.12 -149.80 1685.97 138 1800 142.80 -160.59 1785.23

139 0 0.00 0.00 0.00 139 100 0.35 -0.26 100.00 139 200 1.43 -2.65 199.96 139 300 2.44 -7.33 299.85 139 400 4.45 -13.10 399.66 139 500 7.72 -18.76 499.45 139 600 13.83 -24.98 599.07 139 700 20.47 -31.90 698.61 139 800 28.50 -37.88 798.10 139 900 37.72 -43.68 897.51 139 1000 47.63 -49.13 996.87 139 1100 58.62 -56.19 1096.01 139 1200 68.99 -64.12 1195.16 139 1300 79.46 -73.28 1294.18 139 1400 91.82 -82.87 1392.95 139 1500 105.77 -93.92 1491.36 139 1600 121.00 -108.69 1589.08 139 1700 138.44 -124.84 1686.21 139 1800 158.64 -141.02 1782.81

140 0 0.00 0.00 0.00 140 100 -2.18 -0.09 99.98 140 200 -2.41 -1.38 199.97

134 Drill Station Delta Hole Depth Delta N Delta E Elev 140 300 -1.31 -3.75 299.93 140 400 1.62 -8.60 399.77 140 500 7.81 -12.68 499.50 140 600 17.29 -15.93 598.99 140 700 30.72 -20.97 697.96 140 800 48.71 -25.92 796.20 140 900 68.45 -30.91 894.11 140 1000 89.65 -37.05 991.64 140 1100 112.34 -44.13 1088.78 140 1200 136.17 -53.08 1185.48 140 1300 161.54 -62.73 1281.73 140 1400 186.72 -72.88 1377.97 140 1500 211.14 -84.73 1474.22 140 1600 233.80 -98.89 1570.58 140 1700 254.63 -114.96 1667.06 140 1750 264.98 -123.74 1715.18

141 0 0 0 0

142 0 0.00 0.00 0.00 142 100 4.98 -1.63 99.86 142 200 8.43 0.00 199.74 142 300 12.36 0.00 299.47 142 400 14.42 -20.15 399.05 142 500 16.01 0.00 498.63 142 600 16.81 0.00 598.21 142 700 17.54 -48.71 697.66 142 800 17.54 0.00 796.97 142 900 17.11 0.00 896.22 142 1000 16.65 -85.65 995.42 142 1100 16.01 0.00 1094.67 142 1200 16.01 0.00 1193.92

135 Drill Station Delta Hole Depth Delta N Delta E Elev 142 1300 14.10 0.00 1293.17 142 1400 8.89 0.00 1392.20 142 1500 3.01 0.00 1491.23 142 1600 -3.09 0.00 1590.26 142 1700 -9.41 0.00 1689.29 142 1750 -12.46 0.00 1738.80

146 0 0.00 0.00 0.00 146 100 -3.79 -1.02 99.92 146 200 -6.69 -1.97 199.88 146 300 -8.82 -2.47 299.85 146 400 -9.26 -3.23 399.85 146 500 -9.70 -4.91 499.83 146 600 -8.65 -6.82 599.81 146 700 -7.45 -9.63 699.76 146 800 -7.55 -13.12 799.70 146 900 -7.00 -19.64 899.49 146 1000 -6.65 -27.04 999.21 146 1100 -5.69 -34.39 1098.94 146 1200 -4.62 -41.72 1198.66 146 1300 -4.48 -48.70 1298.42 146 1400 -4.49 -56.11 1398.14 146 1500 -3.88 -63.06 1497.90 146 1600 -2.73 -69.50 1597.69 146 1700 -0.97 -75.80 1697.47 146 1800 -1.54 -81.83 1797.26 146 1900 -3.43 -87.18 1897.10

148 0 0.00 0.00 0.00 148 100 0.32 -3.91 99.92 148 200 3.54 -8.58 199.76 148 300 9.14 -14.68 299.42

136 Drill Station Delta Hole Depth Delta N Delta E Elev 148 400 17.32 -21.86 398.82 148 500 27.77 -28.94 498.02 148 600 40.53 -35.50 596.99 148 700 53.42 -43.58 695.83 148 800 68.64 -51.95 794.31 148 900 86.69 -61.37 892.21 148 1000 105.32 -73.21 989.75 148 1100 124.84 -86.00 1086.98 148 1200 144.22 -100.49 1184.01 148 1300 163.35 -118.54 1280.49 148 1400 184.04 -135.46 1376.85 148 1500 206.25 -151.06 1473.10 148 1600 228.68 -168.49 1568.98 148 1700 250.50 -186.00 1664.99 148 1800 271.62 -203.72 1761.11 148 1900 292.21 -220.74 1857.48 148 1975 307.45 -232.77 1929.92

150 0 0.00 0.00 0.00 150 100 -1.51 3.15 99.94 150 200 -6.17 4.29 199.82 150 300 -9.14 4.99 299.78 150 400 -8.73 4.22 399.77 150 500 -6.86 3.10 499.75 150 600 -3.28 1.49 599.67 150 700 7.28 -1.15 699.08 150 800 20.38 -5.86 798.10 150 900 36.13 -12.08 896.66 150 1000 51.56 -22.57 994.91 150 1100 68.01 -35.28 1092.72 150 1200 84.44 -50.01 1190.25 150 1300 101.38 -66.08 1287.49

137 Drill Station Delta Hole Depth Delta N Delta E Elev 150 1400 119.32 -82.93 1384.41 150 1500 137.65 -99.36 1481.34 150 1600 156.34 -114.72 1578.37 150 1700 177.21 -131.41 1674.73 150 1800 197.66 -151.71 1770.49 150 1900 219.58 -171.68 1865.99 150 1925 225.03 -176.72 1889.86

152 0 0.00 0.00 0.00 152 210 18.26 -13.76 208.75 152 410 39.97 -24.82 407.26 152 610 59.91 -37.28 605.96 152 810 72.25 -53.07 804.86 152 1010 0.00 0.00 0.00 152 1210 81.30 -95.67 1202.48 152 1410 85.65 -126.66 1400.02 152 1610 100.50 -157.10 1597.13 152 1810 123.44 -185.43 1793.78 152 1910 135.70 -200.05 1891.94 152 2008 148.26 -215.02 1987.97

153 0 0 0 0

154 0 0.00 0.00 0.00 154 100 0.94 0.92 99.99 154 200 4.40 1.34 199.93 154 300 7.80 2.11 299.87 154 400 11.73 1.97 399.79 154 500 14.93 3.37 499.73 154 600 16.88 7.75 599.62 154 700 20.26 12.83 699.43 154 800 23.21 17.67 799.27

138 Drill Station Delta Hole Depth Delta N Delta E Elev 154 900 24.60 20.40 899.22 154 1000 25.22 18.77 999.21 154 1100 24.09 15.01 1099.13 154 1200 22.17 9.67 1198.97 154 1300 21.72 4.02 1298.81 154 1400 24.98 -1.65 1398.59 154 1500 27.91 -5.99 1498.46 154 1600 31.87 -9.41 1598.32 154 1700 34.91 -11.89 1698.24 154 1800 37.13 -13.99 1798.20 154 1900 38.39 -15.77 1898.17

156 0 0.00 0.00 0.00 156 300 1.09 -10.41 299.80 156 800 -23.14 -35.50 798.60 156 1500 -52.90 -102.34 1494.80 156 1800 -62.59 -132.16 1793.10 158 0 0.00 0.00 0.00 158 100 -2.97 1.83 99.94 158 200 -4.87 2.90 199.92 158 300 -3.15 3.16 299.90 158 400 -1.17 2.25 399.88 158 500 2.48 0.81 499.80 158 600 4.01 -1.32 599.76 158 700 -3.49 -3.44 699.74 158 800 0.62 -8.33 799.58 158 900 -2.18 -16.13 899.24 158 1000 -4.48 -26.77 998.64 158 1100 -6.38 -38.81 1097.90 158 1200 -8.48 -51.25 1197.10 158 1300 -9.55 -62.95 1296.40 158 1400 -10.10 -72.96 1395.90

139 Drill Station Delta Hole Depth Delta N Delta E Elev 158 1500 -10.66 -81.22 1495.56 158 1575 -12.10 -87.26 1570.30

159 0 0.00 0.00 0.00 159 100 -0.22 -3.05 99.95 159 200 -0.78 -6.49 199.89 159 300 -0.13 -10.36 299.82 159 400 1.14 -14.54 399.72 159 500 1.28 -21.08 499.51 159 600 1.92 -29.33 599.16 159 700 3.17 -38.40 698.74 159 800 5.94 -48.92 798.15 159 900 9.07 -60.70 897.40 159 1000 13.55 -72.96 996.55 159 1100 18.01 -85.69 1095.63 159 1200 22.49 -99.77 1194.54 159 1300 28.37 -114.27 1293.30 159 1400 35.38 -128.73 1392.00 159 1500 43.24 -143.74 1490.56 159 1600 52.48 -156.36 1589.33 159 1700 62.68 -168.21 1688.10 159 1800 72.26 -180.03 1786.93 159 1875 79.01 -188.42 1861.16

160 0 0.00 0.00 0.00 160 100 -7.37 -4.65 99.62 160 200 -17.79 -12.51 198.76 160 300 -27.03 -22.33 297.85 160 400 -33.04 -32.94 397.11 160 500 -36.25 -46.03 496.19 160 600 -38.42 -59.78 595.22 160 700 -41.09 -74.76 694.05

140 Drill Station Delta Hole Depth Delta N Delta E Elev 160 800 -45.03 -90.34 792.75 160 900 -47.47 -105.79 891.52 160 1000 -47.40 -120.14 990.49 160 1100 -46.27 -134.88 1089.39 160 1200 -42.31 -151.35 1187.95 160 1300 -36.93 -168.31 1286.35 160 1400 -30.17 -185.23 1384.68 160 1500 -22.45 -202.68 1482.84 160 1600 -14.18 -220.35 1580.92 160 1700 -3.15 -238.48 1678.64 160 1750 2.97 -247.66 1727.41

161 0 0 0 0

162 0 0.00 0.00 0.00 162 100 0.34 -1.26 99.99 162 200 0.57 -2.10 199.99 162 300 0.75 -3.84 299.97 162 400 1.56 -6.33 399.94 162 500 2.25 -9.31 499.89 162 600 3.14 -12.23 599.84 162 700 4.28 -15.53 699.78 162 800 5.70 -18.72 799.72 162 900 6.72 -22.06 899.66 162 1000 7.10 -26.41 999.56 162 1100 6.92 -31.64 1099.42 162 1200 7.38 -36.85 1199.28 162 1300 7.58 -42.52 1299.12 162 1400 7.95 -47.00 1398.98 162 1500 8.59 -53.81 1498.79 162 1600 8.79 -59.48 1598.63 162 1700 9.25 -64.69 1698.49

141 Drill Station Delta Hole Depth Delta N Delta E Elev 162 1750 9.57 -67.29 1748.42

163 0 0 0 0

197 0 0.00 0.00 0.00 197 100 4.89 -1.88 99.86 197 200 8.76 -6.03 199.70 197 300 12.04 -12.19 299.46 197 400 13.76 -20.29 399.12 197 500 14.82 -28.94 498.74 197 600 14.06 -37.62 598.36 197 700 12.70 -46.23 697.98 197 800 9.27 -55.17 797.52 197 900 5.68 -64.53 897.02 197 1000 -1.23 -74.04 990.33 197 1100 -9.44 -84.18 1095.47 197 1200 -20.07 -94.45 1194.37 197 1300 -31.89 -104.02 1293.21 197 1400 -45.05 -114.68 1391.77 197 1500 -60.54 -127.23 1489.76 197 1600 -74.64 -141.33 1587.75 197 1700 -87.98 -156.15 1685.74 197 1800 -100.80 -171.98 1783.64 197 1900 -113.31 -188.58 1881.45

142 APPENDIX 7

ORE BLOCKS FOR THE LOCAL BOY AREA

143 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. LEVEL 1 2600 2650 -5700 -5650 -50 0 0.40 0.43 0.08 0.09 2600 2650 -5650 -5600 -50 0 0.30 0.32 0.05 0.06 2600 2650 -5600 -5550 -50 0 0.17 0.16 0.04 0.03 2600 2650 -5550 -5500 -50 0 0.06 0.03 0.02 0.01 2600 2650 -5500 -5450 -50 0 0.05 0.03 0.02 0.01 2600 2650 -5450 -5400 -50 0 0.15 0.14 0.04 0.04 2600 2650 -5400 -5350 -50 0 0.32 0.33 0.09 0.09 2600 2650 -5350 -5300 -50 0 0.59 0.63 0.16 0.18 2650 2700 -5700 -5650 -50 0 0.41 0.30 0.07 0.05 2650 2700 -5650 -5600 -50 0 0.27 0.19 0.04 0.03 2650 2700 -5600 -5550 -50 0 0.21 0.13 0.03 0.02 2650 2700 -5550 -5500 -50 0 0.15 0.06 0.03 0.01 2650 2700 -5500 -5450 -50 0 0.10 0.04 0.02 0.01 2650 2700 -5450 -5400 -50 0 0.16 0.09 0.04 0.02 2650 2700 -5400 -5350 -50 0 0.35 0.25 0.07 0.05 2650 2700 -5350 -5300 -50 0 0.79 0.62 0.16 0.13 2700 2750 -5700 -5650 -50 0 0.27 0.18 0.04 0.03 2700 2750 -5650 -5600 -50 0 0.16 0.10 0.03 0.02 2700 2750 -5600 -5550 -50 0 0.18 0.09 0.03 0.01 2700 2750 -5550 -5500 -50 0 0.23 0.11 0.03 0.02 2700 2750 -5500 -5450 -50 0 0.30 0.15 0.06 0.03 2700 2750 -5450 -5400 -50 0 0.24 0.13 0.06 0.03 2700 2750 -5400 -5350 -50 0 0.40 0.26 0.08 0.05 2700 2750 -5350 -5300 -50 0 0.61 0.46 0.12 0.09 2750 2800 -5700 -5650 -50 0 0.18 0.16 0.03 0.02 2750 2800 -5650 -5600 -50 0 0.07 0.05 0.01 0.01 2750 2800 -5600 -5550 -50 0 0.07 0.04 0.01 0.01 2750 2800 -5550 -5500 -50 0 0.20 0.10 0.04 0.02 2750 2800 -5500 -5450 -50 0 0.50 0.27 0.13 0.07 2750 2800 -5450 -5400 -50 0 0.84 0.42 0.18 0.09 2750 2800 -5400 -5350 -50 0 0.65 0.50 0.10 0.07

144 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2750 2800 -5350 -5300 -50 0 0.46 0.47 0.08 0.08 2800 2850 -5700 -5650 -50 0 0.14 0.13 0.02 0.02 2800 2850 -5650 -5600 -50 0 0.05 0.04 0.01 0.01 2800 2850 -5600 -5550 -50 0 0.07 0.04 0.01 0.01 2800 2850 -5550 -5500 -50 0 0.15 0.07 0.03 0.02 2800 2850 -5500 -5450 -50 0 0.73 0.36 0.17 0.08 2800 2850 -5450 -5400 -50 0 1.14 0.58 0.22 0.11 2800 2850 -5400 -5350 -50 0 0.55 0.44 0.08 0.07 2800 2850 -5350 -5300 -50 0 0.30 0.32 0.05 0.05 2850 2900 -5700 -5650 -50 0 0.18 0.19 0.03 0.03 2850 2900 -5650 -5600 -50 0 0.09 0.08 0.01 0.01 2850 2900 -5600 -5550 -50 0 0.11 0.08 0.02 0.01 2850 2900 -5550 -5500 -50 0 0.14 0.05 0.03 0.01 2850 2900 -5500 -5450 -50 0 0.51 0.18 0.10 0.04 2850 2900 -5450 -5400 -50 0 0.69 0.33 0.12 0.06 2850 2900 -5400 -5350 -50 0 0.28 0.21 0.05 0.04 2850 2900 -5350 -5300 -50 0 0.22 0.22 0.04 0.03 2900 2950 -5700 -5650 -50 0 0.21 0.22 0.04 0.04 2900 2950 -5650 -5600 -50 0 0.13 0.12 0.02 0.02 2900 2950 -5600 -5550 -50 0 0.12 0.09 0.02 0.01 2900 2950 -5550 -5500 -50 0 0.14 0.07 0.02 0.01 2900 2950 -5500 -5450 -50 0 0.38 0.21 0.06 0.03 2900 2950 -5450 -5400 -50 0 0.48 0.25 0.08 0.04 2900 2950 -5400 -5350 -50 0 0.27 0.19 0.05 0.04 2900 2950 -5350 -5300 -50 0 0.33 0.29 0.06 0.05 2950 3000 -5700 -5650 -50 0 0.29 0.27 0.05 0.04 2950 3000 -5650 -5600 -50 0 0.19 0.18 0.03 0.03 2950 3000 -5600 -5550 -50 0 0.18 0.16 0.03 0.02 2950 3000 -5550 -5500 -50 0 0.38 0.26 0.05 0.04 2950 3000 -5500 -5450 -50 0 0.61 0.43 0.09 0.07 2950 3000 -5450 -5400 -50 0 0.50 0.36 0.09 0.06 2950 3000 -5400 -5350 -50 0 0.30 0.20 0.05 0.03

145 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2950 3000 -5350 -5300 -50 0 0.46 0.37 0.08 0.07 3000 3050 -6000 -5950 -50 0 0.44 0.50 0.11 0.12 3000 3050 -5950 -5900 -50 0 0.48 0.55 0.11 0.12 3000 3050 -5900 -5850 -50 0 0.52 0.59 0.11 0.13 3000 3050 -5850 -5800 -50 0 0.50 0.57 0.11 0.12 3000 3050 -5800 -5750 -50 0 0.31 0.33 0.06 0.06 3000 3050 -5750 -5700 -50 0 0.40 0.34 0.07 0.06 3000 3050 -5700 -5650 -50 0 0.39 0.26 0.07 0.05 3000 3050 -5650 -5600 -50 0 0.22 0.18 0.05 0.04 3000 3050 -5600 -5550 -50 0 0.19 0.17 0.04 0.04 3000 3050 -5550 -5500 -50 0 0.36 0.26 0.06 0.04 3000 3050 -5500 -5450 -50 0 0.55 0.40 0.09 0.06 3000 3050 -5450 -5400 -50 0 0.44 0.35 0.07 0.06 3000 3050 -5400 -5350 -50 0 0.44 0.30 0.07 0.05 3000 3050 -5350 -5300 -50 0 0.65 0.53 0.11 0.09 3000 3050 -5300 -5250 -50 0 0.69 0.60 0.12 0.11 3000 3050 -5250 -5200 -50 0 0.71 0.42 0.09 0.06 3000 3050 -5200 -5150 -50 0 0.58 0.36 0.07 0.05 3000 3050 -5150 -5100 -50 0 0.67 0.70 0.11 0.11 3000 3050 -5100 -5050 -50 0 0.40 0.46 0.09 0.10 3000 3050 -5050 -5000 -50 0 0.27 0.30 0.08 0.09 3050 3100 -6000 -5950 -50 0 0.24 0.28 0.06 0.07 3050 3100 -5950 -5900 -50 0 0.72 0.80 0.15 0.17 3050 3100 -5900 -5850 -50 0 0.45 0.50 0.11 0.12 3050 3100 -5850 -5800 -50 0 0.42 0.47 0.09 0.11 3050 3100 -5800 -5750 -50 0 0.27 0.29 0.07 0.08 3050 3100 -5750 -5700 -50 0 0.29 0.23 0.07 0.06 3050 3100 -5700 -5650 -50 0 0.26 0.10 0.07 0.03 3050 3100 -5650 -5600 -50 0 0.10 0.08 0.03 0.03 3050 3100 -5600 -5550 -50 0 0.11 0.11 0.03 0.03 3050 3100 -5550 -5500 -50 0 0.14 0.13 0.03 0.03 3050 3100 -5500 -5450 -50 0 0.32 0.30 0.06 0.05

146 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3050 3100 -5450 -5400 -50 0 0.34 0.34 0.06 0.06 3050 3100 -5400 -5350 -50 0 0.59 0.58 0.08 0.08 3050 3100 -5350 -5300 -50 0 0.98 0.83 0.13 0.11 3050 3100 -5300 -5250 -50 0 0.94 0.76 0.13 0.11 3050 3100 -5250 -5200 -50 0 0.49 0.29 0.07 0.04 3050 3100 -5200 -5150 -50 0 0.40 0.26 0.06 0.04 3050 3100 -5150 -5100 -50 0 0.56 0.58 0.09 0.09 3050 3100 -5100 -5050 -50 0 0.53 0.56 0.09 0.09 3050 3100 -5050 -5000 -50 0 0.27 0.28 0.07 0.07 3100 3150 -6000 -5950 -50 0 0.29 0.33 0.06 0.06 3100 3150 -5950 -5900 -50 0 0.32 0.33 0.08 0.08 3100 3150 -5900 -5850 -50 0 0.39 0.40 0.10 0.10 3100 3150 -5850 -5800 -50 0 0.33 0.34 0.10 0.11 3100 3150 -5800 -5750 -50 0 0.17 0.17 0.06 0.06 3100 3150 -5750 -5700 -50 0 0.11 0.09 0.04 0.04 3100 3150 -5700 -5650 -50 0 0.21 0.17 0.06 0.05 3100 3150 -5650 -5600 -50 0 0.14 0.11 0.05 0.04 3100 3150 -5600 -5550 -50 0 0.07 0.06 0.03 0.02 3100 3150 -5550 -5500 -50 0 0.11 0.10 0.03 0.03 3100 3150 -5500 -5450 -50 0 0.14 0.12 0.03 0.03 3100 3150 -5450 -5400 -50 0 0.27 0.25 0.05 0.04 3100 3150 -5400 -5350 -50 0 0.46 0.43 0.05 0.04 3100 3150 -5350 -5300 -50 0 0.70 0.43 0.05 0.03 3100 3150 -5300 -5250 -50 0 0.54 0.30 0.04 0.02 3100 3150 -5250 -5200 -50 0 0.41 0.19 0.04 0.02 3100 3150 -5200 -5150 -50 0 0.38 0.21 0.05 0.03 3100 3150 -5150 -5100 -50 0 0.56 0.53 0.09 0.08 3100 3150 -5100 -5050 -50 0 0.53 0.39 0.08 0.06 3100 3150 -5050 -5000 -50 0 0.41 0.25 0.07 0.04 3150 3200 -6000 -5950 -50 0 0.30 0.32 0.06 0.07 3150 3200 -5950 -5900 -50 0 0.24 0.23 0.07 0.07 3150 3200 -5900 -5850 -50 0 0.23 0.20 0.07 0.06

147 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3150 3200 -5850 -5800 -50 0 0.26 0.16 0.08 0.05 3150 3200 -5800 -5750 -50 0 0.07 0.04 0.03 0.02 3150 3200 -5750 -5700 -50 0 0.03 0.01 0.01 0.01 3150 3200 -5700 -5650 -50 0 0.27 0.16 0.07 0.04 3150 3200 -5650 -5600 -50 0 0.32 0.19 0.09 0.05 3150 3200 -5600 -5550 -50 0 0.20 0.10 0.06 0.03 3150 3200 -5550 -5500 -50 0 0.11 0.05 0.03 0.01 3150 3200 -5500 -5450 -50 0 0.13 0.06 0.03 0.01 3150 3200 -5450 -5400 -50 0 0.26 0.13 0.04 0.02 3150 3200 -5400 -5350 -50 0 0.48 0.29 0.04 0.03 3150 3200 -5350 -5300 -50 0 0.75 0.44 0.07 0.04 3150 3200 -5300 -5250 -50 0 0.47 0.24 0.05 0.03 3150 3200 -5250 -5200 -50 0 0.27 0.13 0.03 0.02 3150 3200 -5200 -5150 -50 0 0.32 0.17 0.05 0.03 3150 3200 -5150 -5100 -50 0 0.62 0.43 0.10 0.07 3150 3200 -5100 -5050 -50 0 0.72 0.39 0.12 0.06 3150 3200 -5050 -5000 -50 0 0.53 0.24 0.10 0.05 3200 3250 -6000 -5950 -50 0 0.29 0.31 0.06 0.07 3200 3250 -5950 -5900 -50 0 0.22 0.21 0.07 0.06 3200 3250 -5900 -5850 -50 0 0.18 0.17 0.06 0.05 3200 3250 -5850 -5800 -50 0 0.22 0.14 0.07 0.04 3200 3250 -5800 -5750 -50 0 0.09 0.06 0.04 0.02 3200 3250 -5750 -5700 -50 0 0.06 0.03 0.03 0.01 3200 3250 -5700 -5650 -50 0 0.39 0.23 0.09 0.05 3200 3250 -5650 -5600 -50 0 0.55 0.25 0.13 0.06 3200 3250 -5600 -5550 -50 0 0.39 0.16 0.10 0.04 3200 3250 -5550 -5500 -50 0 0.29 0.15 0.07 0.04 3200 3250 -5500 -5450 -50 0 0.33 0.17 0.08 0.04 3200 3250 -5450 -5400 -50 0 0.61 0.28 0.14 0.06 3200 3250 -5400 -5350 -50 0 0.78 0.41 0.13 0.07 3200 3250 -5350 -5300 -50 0 0.84 0.49 0.11 0.06 3200 3250 -5300 -5250 -50 0 0.43 0.18 0.06 0.03

148 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3200 3250 -5250 -5200 -50 0 0.18 0.05 0.03 0.01 3200 3250 -5200 -5150 -50 0 0.25 0.08 0.05 0.02 3200 3250 -5150 -5100 -50 0 0.64 0.19 0.11 0.03 3200 3250 -5100 -5050 -50 0 0.78 0.26 0.16 0.05 3200 3250 -5050 -5000 -50 0 0.56 0.20 0.14 0.05 3250 3300 -6000 -5950 -50 0 0.30 0.34 0.06 0.07 3250 3300 -5950 -5900 -50 0 0.28 0.30 0.08 0.08 3250 3300 -5900 -5850 -50 0 0.22 0.23 0.07 0.07 3250 3300 -5850 -5800 -50 0 0.21 0.21 0.07 0.07 3250 3300 -5800 -5750 -50 0 0.17 0.17 0.06 0.06 3250 3300 -5750 -5700 -50 0 0.22 0.22 0.07 0.07 3250 3300 -5700 -5650 -50 0 0.45 0.40 0.11 0.10 3250 3300 -5650 -5600 -50 0 0.50 0.27 0.11 0.06 3250 3300 -5600 -5550 -50 0 0.45 0.25 0.10 0.06 3250 3300 -5550 -5500 -50 0 0.50 0.41 0.11 0.09 3250 3300 -5500 -5450 -50 0 0.85 0.69 0.19 0.15 3250 3300 -5450 -5400 -50 0 1.38 0.79 0.35 0.20 3250 3300 -5400 -5350 -50 0 1.52 0.81 0.29 0.16 3250 3300 -5350 -5300 -50 0 0.76 0.38 0.09 0.05 3250 3300 -5300 -5250 -50 0 0.27 0.11 0.03 0.01 3250 3300 -5250 -5200 -50 0 0.16 0.07 0.03 0.01 3250 3300 -5200 -5150 -50 0 0.31 0.14 0.08 0.04 3250 3300 -5150 -5100 -50 0 0.92 0.47 0.16 0.08 3250 3300 -5100 -5050 -50 0 0.93 0.67 0.17 0.12 3250 3300 -5050 -5000 -50 0 0.59 0.49 0.14 0.12 3300 3350 -6000 -5950 -50 0 0.36 0.42 0.09 0.10 3300 3350 -5950 -5900 -50 0 0.30 0.34 0.07 0.08 3300 3350 -5900 -5850 -50 0 0.27 0.30 0.07 0.08 3300 3350 -5850 -5800 -50 0 0.27 0.30 0.07 0.08 3300 3350 -5800 -5750 -50 0 0.25 0.28 0.08 0.09 3300 3350 -5750 -5700 -50 0 0.26 0.29 0.08 0.08 3300 3350 -5700 -5650 -50 0 0.39 0.41 0.10 0.10

149 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3300 3350 -5650 -5600 -50 0 0.41 0.33 0.10 0.08 3300 3350 -5600 -5550 -50 0 0.45 0.36 0.10 0.08 3300 3350 -5550 -5500 -50 0 0.61 0.54 0.15 0.13 3300 3350 -5500 -5450 -50 0 1.01 0.84 0.22 0.18 3300 3350 -5450 -5400 -50 0 1.20 0.63 0.20 0.10 3300 3350 -5400 -5350 -50 0 0.89 0.45 0.11 0.06 3300 3350 -5350 -5300 -50 0 0.54 0.37 0.07 0.05 3300 3350 -5300 -5250 -50 0 0.25 0.13 0.03 0.02 3300 3350 -5250 -5200 -50 0 0.18 0.07 0.04 0.01 3300 3350 -5200 -5150 -50 0 0.30 0.11 0.08 0.03 3300 3350 -5150 -5100 -50 0 0.58 0.23 0.13 0.05 3300 3350 -5100 -5050 -50 0 0.62 0.49 0.14 0.11 3300 3350 -5050 -5000 -50 0 0.63 0.65 0.14 0.15 3350 3400 -6000 -5950 -50 0 0.31 0.35 0.07 0.08 3350 3400 -5950 -5900 -50 0 0.33 0.37 0.09 0.10 3350 3400 -5900 -5850 -50 0 0.29 0.33 0.09 0.10 3350 3400 -5850 -5800 -50 0 0.23 0.26 0.06 0.07 3350 3400 -5800 -5750 -50 0 0.14 0.16 0.05 0.06 3350 3400 -5750 -5700 -50 0 0.25 0.29 0.07 0.08 3350 3400 -5700 -5650 -50 0 0.28 0.31 0.07 0.08 3350 3400 -5650 -5600 -50 0 0.32 0.30 0.08 0.08 3350 3400 -5600 -5550 -50 0 0.34 0.30 0.08 0.07 3350 3400 -5550 -5500 -50 0 0.72 0.63 0.18 0.16 3350 3400 -5500 -5450 -50 0 0.93 0.75 0.20 0.16 3350 3400 -5450 -5400 -50 0 0.69 0.43 0.11 0.07 3350 3400 -5400 -5350 -50 0 0.44 0.24 0.05 0.03 3350 3400 -5350 -5300 -50 0 0.40 0.22 0.04 0.02 3350 3400 -5300 -5250 -50 0 0.36 0.18 0.04 0.02 3350 3400 -5250 -5200 -50 0 0.59 0.31 0.09 0.04 3350 3400 -5200 -5150 -50 0 0.64 0.29 0.13 0.06 3350 3400 -5150 -5100 -50 0 0.45 0.14 0.11 0.03 3350 3400 -5100 -5050 -50 0 0.58 0.38 0.14 0.09

150 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3350 3400 -5050 -5000 -50 0 0.72 0.64 0.16 0.14 3400 3450 -5400 -5350 -50 0 0.38 0.26 0.05 0.04 3400 3450 -5350 -5300 -50 0 0.39 0.22 0.04 0.02 3400 3450 -5300 -5250 -50 0 0.48 0.25 0.05 0.03 3400 3450 -5250 -5200 -50 0 0.98 0.43 0.13 0.06 3400 3450 -5200 -5150 -50 0 1.30 0.60 0.19 0.09 3400 3450 -5150 -5100 -50 0 1.14 0.54 0.19 0.09 3400 3450 -5100 -5050 -50 0 0.96 0.65 0.20 0.14 3400 3450 -5050 -5000 -50 0 0.84 0.73 0.18 0.16 3450 3500 -5400 -5350 -50 0 0.57 0.48 0.07 0.06 3450 3500 -5350 -5300 -50 0 0.61 0.60 0.08 0.08 3450 3500 -5300 -5250 -50 0 0.69 0.63 0.11 0.10 3450 3500 -5250 -5200 -50 0 0.84 0.52 0.16 0.10 3450 3500 -5200 -5150 -50 0 0.91 0.44 0.19 0.09 3450 3500 -5150 -5100 -50 0 0.72 0.49 0.15 0.10 3450 3500 -5100 -5050 -50 0 0.76 0.72 0.17 0.16 3450 3500 -5050 -5000 -50 0 0.87 0.94 0.19 0.20 3500 3550 -5400 -5350 -50 0 0.68 0.51 0.10 0.07 3500 3550 -5350 -5300 -50 0 0.75 0.77 0.12 0.12 3500 3550 -5300 -5250 -50 0 0.70 0.64 0.16 0.15 3500 3550 -5250 -5200 -50 0 0.81 0.47 0.19 0.11 3500 3550 -5200 -5150 -50 0 0.72 0.28 0.17 0.07 3500 3550 -5150 -5100 -50 0 0.63 0.42 0.14 0.09 3500 3550 -5100 -5050 -50 0 0.81 0.81 0.17 0.17 3500 3550 -5050 -5000 -50 0 0.85 0.94 0.18 0.20 3550 3600 -5400 -5350 -50 0 1.14 0.79 0.16 0.11 3550 3600 -5350 -5300 -50 0 0.73 0.56 0.15 0.11 3550 3600 -5300 -5250 -50 0 0.58 0.34 0.14 0.08 3550 3600 -5250 -5200 -50 0 0.81 0.39 0.19 0.09 3550 3600 -5200 -5150 -50 0 0.74 0.33 0.17 0.08 3550 3600 -5150 -5100 -50 0 0.81 0.49 0.17 0.10 3550 3600 -5100 -5050 -50 0 0.87 0.75 0.18 0.15

151 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3550 3600 -5050 -5000 -50 0 0.78 0.75 0.16 0.15 3600 3650 -5400 -5350 -50 0 1.09 0.94 0.18 0.15 3600 3650 -5350 -5300 -50 0 0.68 0.53 0.15 0.12 3600 3650 -5300 -5250 -50 0 0.57 0.32 0.13 0.08 3600 3650 -5250 -5200 -50 0 0.74 0.33 0.17 0.07 3600 3650 -5200 -5150 -50 0 0.76 0.32 0.17 0.07 3600 3650 -5150 -5100 -50 0 0.87 0.55 0.18 0.12 3600 3650 -5100 -5050 -50 0 0.88 0.76 0.18 0.15 3600 3650 -5050 -5000 -50 0 0.77 0.74 0.16 0.15 3650 3700 -5400 -5350 -50 0 0.61 0.66 0.12 0.14 3650 3700 -5350 -5300 -50 0 0.57 0.61 0.13 0.14 3650 3700 -5300 -5250 -50 0 0.74 0.74 0.17 0.18 3650 3700 -5250 -5200 -50 0 0.95 0.85 0.21 0.19 3650 3700 -5200 -5150 -50 0 1.07 0.93 0.24 0.20 3650 3700 -5150 -5100 -50 0 1.04 1.04 0.23 0.23 3650 3700 -5100 -5050 -50 0 1.02 1.10 0.22 0.24 3650 3700 -5050 -5000 -50 0 0.90 1.00 0.19 0.21 3700 3750 -5400 -5350 -50 0 0.60 0.66 0.15 0.17 3700 3750 -5350 -5300 -50 0 0.50 0.53 0.13 0.13 3700 3750 -5300 -5250 -50 0 0.68 0.70 0.15 0.16 3700 3750 -5250 -5200 -50 0 0.94 0.92 0.22 0.22 3700 3750 -5200 -5150 -50 0 0.98 0.95 0.23 0.23 3700 3750 -5150 -5100 -50 0 0.97 0.99 0.24 0.24 3700 3750 -5100 -5050 -50 0 0.95 1.01 0.22 0.24 3700 3750 -5050 -5000 -50 0 0.90 0.98 0.20 0.21 3750 3800 -5400 -5350 -50 0 0.41 0.36 0.11 0.10 3750 3800 -5350 -5300 -50 0 0.37 0.27 0.09 0.06 3750 3800 -5300 -5250 -50 0 0.51 0.30 0.11 0.06 3750 3800 -5250 -5200 -50 0 0.68 0.40 0.16 0.09 3750 3800 -5200 -5150 -50 0 0.72 0.42 0.19 0.11 3750 3800 -5150 -5100 -50 0 0.69 0.41 0.16 0.10 3750 3800 -5100 -5050 -50 0 0.74 0.54 0.17 0.12

152 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3750 3800 -5050 -5000 -50 0 0.79 0.68 0.17 0.15 3800 3850 -5400 -5350 -50 0 0.49 0.36 0.11 0.08 3800 3850 -5350 -5300 -50 0 0.38 0.26 0.08 0.06 3800 3850 -5300 -5250 -50 0 0.49 0.25 0.10 0.05 3800 3850 -5250 -5200 -50 0 0.65 0.32 0.15 0.08 3800 3850 -5200 -5150 -50 0 0.69 0.33 0.19 0.09 3800 3850 -5150 -5100 -50 0 0.68 0.32 0.15 0.07 3800 3850 -5100 -5050 -50 0 0.74 0.26 0.15 0.05 3800 3850 -5050 -5000 -50 0 0.77 0.51 0.16 0.11 3850 3900 -5400 -5350 -50 0 0.57 0.51 0.12 0.11 3850 3900 -5350 -5300 -50 0 0.53 0.54 0.12 0.12 3850 3900 -5300 -5250 -50 0 0.61 0.61 0.14 0.14 3850 3900 -5250 -5200 -50 0 0.81 0.80 0.21 0.21 3850 3900 -5200 -5150 -50 0 0.88 0.88 0.23 0.23 3850 3900 -5150 -5100 -50 0 0.97 0.90 0.22 0.20 3850 3900 -5100 -5050 -50 0 0.99 0.70 0.20 0.14 3850 3900 -5050 -5000 -50 0 0.88 0.74 0.18 0.15 3900 3950 -5400 -5350 -50 0 0.81 0.79 0.17 0.16 3900 3950 -5350 -5300 -50 0 0.81 0.83 0.16 0.17 3900 3950 -5300 -5250 -50 0 0.79 0.79 0.17 0.17 3900 3950 -5250 -5200 -50 0 0.80 0.80 0.18 0.18 3900 3950 -5200 -5150 -50 0 0.87 0.86 0.20 0.20 3900 3950 -5150 -5100 -50 0 0.95 0.95 0.20 0.20 3900 3950 -5100 -5050 -50 0 1.05 1.02 0.21 0.21 3900 3950 -5050 -5000 -50 0 0.98 1.03 0.21 0.22 3950 4000 -5400 -5350 -50 0 0.74 0.42 0.15 0.08 3950 4000 -5350 -5300 -50 0 0.69 0.38 0.14 0.08 3950 4000 -5300 -5250 -50 0 0.61 0.31 0.13 0.07 3950 4000 -5250 -5200 -50 0 0.66 0.34 0.15 0.08 3950 4000 -5200 -5150 -50 0 0.68 0.34 0.15 0.08 3950 4000 -5150 -5100 -50 0 0.74 0.38 0.16 0.08 3950 4000 -5100 -5050 -50 0 0.87 0.59 0.17 0.12

153 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3950 4000 -5050 -5000 -50 0 0.97 0.82 0.21 0.17 4000 4050 -5400 -5350 -50 0 0.73 0.42 0.15 0.09 4000 4050 -5350 -5300 -50 0 0.69 0.38 0.15 0.08 4000 4050 -5300 -5250 -50 0 0.62 0.30 0.14 0.07 4000 4050 -5250 -5200 -50 0 0.64 0.29 0.15 0.07 4000 4050 -5200 -5150 -50 0 0.64 0.23 0.14 0.05 4000 4050 -5150 -5100 -50 0 0.71 0.35 0.16 0.08 4000 4050 -5100 -5050 -50 0 0.83 0.56 0.17 0.12 4000 4050 -5050 -5000 -50 0 0.95 0.81 0.20 0.17 4050 4100 -5400 -5350 -50 0 0.89 0.87 0.19 0.19 4050 4100 -5350 -5300 -50 0 0.82 0.72 0.19 0.16 4050 4100 -5300 -5250 -50 0 0.76 0.59 0.18 0.14 4050 4100 -5250 -5200 -50 0 0.67 0.40 0.16 0.10 4050 4100 -5200 -5150 -50 0 0.63 0.26 0.15 0.06 4050 4100 -5150 -5100 -50 0 0.75 0.57 0.17 0.13 4050 4100 -5100 -5050 -50 0 0.86 0.78 0.19 0.18 4050 4100 -5050 -5000 -50 0 0.92 0.96 0.21 0.21

LEVEL 2 2600 2650 -5700 -5650 -100 -50 0.72 0.76 0.11 0.12 2600 2650 -5650 -5600 -100 -50 0.53 0.55 0.07 0.07 2600 2650 -5600 -5550 -100 -50 0.41 0.38 0.07 0.06 2600 2650 -5550 -5500 -100 -50 0.28 0.13 0.05 0.02 2600 2650 -5500 -5450 -100 -50 0.38 0.19 0.07 0.04 2600 2650 -5450 -5400 -100 -50 0.63 0.58 0.14 0.12 2600 2650 -5400 -5350 -100 -50 0.51 0.53 0.12 0.12 2600 2650 -5350 -5300 -100 -50 0.57 0.61 0.15 0.16 2650 2700 -5700 -5650 -100 -50 0.56 0.40 0.07 0.05 2650 2700 -5650 -5600 -100 -50 0.53 0.30 0.06 0.04 2650 2700 -5600 -5550 -100 -50 0.54 0.28 0.07 0.04 2650 2700 -5550 -5500 -100 -50 0.55 0.17 0.06 0.02 2650 2700 -5500 -5450 -100 -50 0.92 0.26 0.13 0.04

154 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2650 2700 -5450 -5400 -100 -50 0.93 0.46 0.21 0.10 2650 2700 -5400 -5350 -100 -50 0.73 0.46 0.16 0.10 2650 2700 -5350 -5300 -100 -50 0.87 0.69 0.18 0.14 2700 2750 -5700 -5650 -100 -50 0.38 0.24 0.05 0.03 2700 2750 -5650 -5600 -100 -50 0.31 0.14 0.04 0.02 2700 2750 -5600 -5550 -100 -50 0.39 0.16 0.06 0.02 2700 2750 -5550 -5500 -100 -50 0.96 0.37 0.10 0.04 2700 2750 -5500 -5450 -100 -50 1.48 0.60 0.25 0.10 2700 2750 -5450 -5400 -100 -50 1.04 0.48 0.28 0.13 2700 2750 -5400 -5350 -100 -50 0.71 0.40 0.14 0.08 2700 2750 -5350 -5300 -100 -50 0.72 0.55 0.14 0.10 2750 2800 -5700 -5650 -100 -50 0.23 0.14 0.03 0.02 2750 2800 -5650 -5600 -100 -50 0.10 0.05 0.02 0.01 2750 2800 -5600 -5550 -100 -50 0.13 0.06 0.02 0.01 2750 2800 -5550 -5500 -100 -50 0.48 0.20 0.06 0.03 2750 2800 -5500 -5450 -100 -50 1.78 0.75 0.35 0.15 2750 2800 -5450 -5400 -100 -50 1.59 0.76 0.35 0.17 2750 2800 -5400 -5350 -100 -50 0.72 0.46 0.10 0.06 2750 2800 -5350 -5300 -100 -50 0.69 0.65 0.11 0.10 2800 2850 -5700 -5650 -100 -50 0.15 0.09 0.02 0.01 2800 2850 -5650 -5600 -100 -50 0.06 0.03 0.01 0.01 2800 2850 -5600 -5550 -100 -50 0.10 0.05 0.01 0.01 2800 2850 -5550 -5500 -100 -50 0.57 0.22 0.08 0.03 2800 2850 -5500 -5450 -100 -50 2.48 0.94 0.45 0.17 2800 2850 -5450 -5400 -100 -50 1.83 0.90 0.36 0.18 2800 2850 -5400 -5350 -100 -50 0.51 0.33 0.07 0.05 2800 2850 -5350 -5300 -100 -50 0.30 0.28 0.04 0.03 2850 2900 -5700 -5650 -100 -50 0.16 0.14 0.02 0.02 2850 2900 -5650 -5600 -100 -50 0.07 0.04 0.01 0.00 2850 2900 -5600 -5550 -100 -50 0.12 0.06 0.01 0.01 2850 2900 -5550 -5500 -100 -50 0.52 0.19 0.08 0.03 2850 2900 -5500 -5450 -100 -50 2.37 0.74 0.34 0.11

155 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2850 2900 -5450 -5400 -100 -50 1.79 0.83 0.31 0.15 2850 2900 -5400 -5350 -100 -50 0.27 0.14 0.05 0.02 2850 2900 -5350 -5300 -100 -50 0.24 0.16 0.03 0.02 2900 2950 -5700 -5650 -100 -50 0.19 0.16 0.03 0.02 2900 2950 -5650 -5600 -100 -50 0.09 0.05 0.01 0.01 2900 2950 -5600 -5550 -100 -50 0.07 0.03 0.01 0.00 2900 2950 -5550 -5500 -100 -50 0.22 0.09 0.03 0.01 2900 2950 -5500 -5450 -100 -50 0.95 0.40 0.12 0.05 2900 2950 -5450 -5400 -100 -50 1.04 0.48 0.18 0.09 2900 2950 -5400 -5350 -100 -50 0.35 0.17 0.08 0.04 2900 2950 -5350 -5300 -100 -50 0.49 0.23 0.09 0.04 2950 3000 -5700 -5650 -100 -50 0.24 0.13 0.03 0.02 2950 3000 -5650 -5600 -100 -50 0.12 0.06 0.02 0.01 2950 3000 -5600 -5550 -100 -50 0.12 0.06 0.02 0.01 2950 3000 -5550 -5500 -100 -50 0.35 0.16 0.04 0.02 2950 3000 -5500 -5450 -100 -50 1.05 0.49 0.15 0.07 2950 3000 -5450 -5400 -100 -50 1.08 0.49 0.20 0.09 2950 3000 -5400 -5350 -100 -50 0.58 0.26 0.12 0.05 2950 3000 -5350 -5300 -100 -50 0.84 0.34 0.17 0.07 3000 3050 -6000 -5950 -100 -50 0.57 0.64 0.11 0.13 3000 3050 -5950 -5900 -100 -50 0.31 0.32 0.06 0.07 3000 3050 -5900 -5850 -100 -50 0.39 0.41 0.06 0.06 3000 3050 -5850 -5800 -100 -50 0.50 0.55 0.08 0.09 3000 3050 -5800 -5750 -100 -50 0.43 0.41 0.06 0.06 3000 3050 -5750 -5700 -100 -50 0.27 0.15 0.04 0.02 3000 3050 -5700 -5650 -100 -50 0.18 0.06 0.03 0.01 3000 3050 -5650 -5600 -100 -50 0.09 0.04 0.02 0.01 3000 3050 -5600 -5550 -100 -50 0.10 0.05 0.02 0.01 3000 3050 -5550 -5500 -100 -50 0.30 0.14 0.04 0.02 3000 3050 -5500 -5450 -100 -50 0.73 0.34 0.11 0.05 3000 3050 -5450 -5400 -100 -50 0.72 0.34 0.13 0.06 3000 3050 -5400 -5350 -100 -50 0.76 0.36 0.15 0.07

156 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3000 3050 -5350 -5300 -100 -50 1.46 0.61 0.31 0.13 3000 3050 -5300 -5250 -100 -50 1.57 0.73 0.33 0.15 3000 3050 -5250 -5200 -100 -50 1.41 0.60 0.21 0.09 3000 3050 -5200 -5150 -100 -50 1.20 0.61 0.16 0.08 3000 3050 -5150 -5100 -100 -50 1.06 1.08 0.16 0.17 3000 3050 -5100 -5050 -100 -50 0.76 0.86 0.14 0.16 3000 3050 -5050 -5000 -100 -50 0.24 0.27 0.07 0.08 3050 3100 -6000 -5950 -100 -50 0.54 0.59 0.11 0.12 3050 3100 -5950 -5900 -100 -50 0.42 0.40 0.09 0.08 3050 3100 -5900 -5850 -100 -50 0.37 0.35 0.08 0.07 3050 3100 -5850 -5800 -100 -50 0.45 0.48 0.09 0.09 3050 3100 -5800 -5750 -100 -50 0.39 0.39 0.08 0.08 3050 3100 -5750 -5700 -100 -50 0.22 0.16 0.05 0.03 3050 3100 -5700 -5650 -100 -50 0.08 0.03 0.02 0.01 3050 3100 -5650 -5600 -100 -50 0.02 0.01 0.01 0.00 3050 3100 -5600 -5550 -100 -50 0.03 0.02 0.01 0.01 3050 3100 -5550 -5500 -100 -50 0.13 0.08 0.02 0.01 3050 3100 -5500 -5450 -100 -50 0.37 0.21 0.06 0.03 3050 3100 -5450 -5400 -100 -50 0.38 0.27 0.06 0.04 3050 3100 -5400 -5350 -100 -50 0.78 0.65 0.12 0.10 3050 3100 -5350 -5300 -100 -50 1.70 0.94 0.20 0.11 3050 3100 -5300 -5250 -100 -50 2.30 1.17 0.27 0.14 3050 3100 -5250 -5200 -100 -50 1.21 0.53 0.16 0.07 3050 3100 -5200 -5150 -100 -50 0.79 0.39 0.11 0.06 3050 3100 -5150 -5100 -100 -50 0.62 0.63 0.10 0.10 3050 3100 -5100 -5050 -100 -50 0.44 0.47 0.09 0.09 3050 3100 -5050 -5000 -100 -50 0.18 0.18 0.05 0.05 3100 3150 -6000 -5950 -100 -50 0.43 0.44 0.08 0.08 3100 3150 -5950 -5900 -100 -50 0.36 0.27 0.08 0.06 3100 3150 -5900 -5850 -100 -50 0.40 0.31 0.09 0.07 3100 3150 -5850 -5800 -100 -50 0.54 0.46 0.13 0.11 3100 3150 -5800 -5750 -100 -50 0.34 0.27 0.10 0.08

157 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3100 3150 -5750 -5700 -100 -50 0.16 0.11 0.05 0.03 3100 3150 -5700 -5650 -100 -50 0.12 0.07 0.04 0.02 3100 3150 -5650 -5600 -100 -50 0.03 0.02 0.01 0.01 3100 3150 -5600 -5550 -100 -50 0.02 0.01 0.01 0.00 3100 3150 -5550 -5500 -100 -50 0.06 0.03 0.01 0.01 3100 3150 -5500 -5450 -100 -50 0.15 0.08 0.03 0.01 3100 3150 -5450 -5400 -100 -50 0.21 0.15 0.03 0.02 3100 3150 -5400 -5350 -100 -50 0.54 0.45 0.05 0.05 3100 3150 -5350 -5300 -100 -50 0.96 0.51 0.05 0.03 3100 3150 -5300 -5250 -100 -50 1.05 0.50 0.07 0.03 3100 3150 -5250 -5200 -100 -50 0.64 0.27 0.08 0.03 3100 3150 -5200 -5150 -100 -50 0.44 0.21 0.07 0.04 3100 3150 -5150 -5100 -100 -50 0.40 0.37 0.07 0.07 3100 3150 -5100 -5050 -100 -50 0.28 0.22 0.06 0.04 3100 3150 -5050 -5000 -100 -50 0.19 0.10 0.05 0.03 3150 3200 -6000 -5950 -100 -50 0.33 0.29 0.07 0.06 3150 3200 -5950 -5900 -100 -50 0.20 0.11 0.06 0.03 3150 3200 -5900 -5850 -100 -50 0.22 0.12 0.06 0.03 3150 3200 -5850 -5800 -100 -50 0.35 0.17 0.09 0.04 3150 3200 -5800 -5750 -100 -50 0.19 0.08 0.06 0.03 3150 3200 -5750 -5700 -100 -50 0.08 0.03 0.02 0.01 3150 3200 -5700 -5650 -100 -50 0.21 0.09 0.05 0.02 3150 3200 -5650 -5600 -100 -50 0.18 0.07 0.05 0.02 3150 3200 -5600 -5550 -100 -50 0.10 0.04 0.03 0.01 3150 3200 -5550 -5500 -100 -50 0.10 0.03 0.02 0.01 3150 3200 -5500 -5450 -100 -50 0.25 0.09 0.05 0.02 3150 3200 -5450 -5400 -100 -50 0.59 0.28 0.09 0.04 3150 3200 -5400 -5350 -100 -50 1.24 0.73 0.13 0.08 3150 3200 -5350 -5300 -100 -50 1.48 0.65 0.11 0.05 3150 3200 -5300 -5250 -100 -50 0.95 0.39 0.08 0.03 3150 3200 -5250 -5200 -100 -50 0.43 0.17 0.06 0.02 3150 3200 -5200 -5150 -100 -50 0.22 0.09 0.05 0.02

158 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3150 3200 -5150 -5100 -100 -50 0.31 0.22 0.06 0.05 3150 3200 -5100 -5050 -100 -50 0.32 0.18 0.06 0.03 3150 3200 -5050 -5000 -100 -50 0.24 0.11 0.05 0.02 3200 3250 -6000 -5950 -100 -50 0.26 0.22 0.06 0.05 3200 3250 -5950 -5900 -100 -50 0.16 0.09 0.04 0.02 3200 3250 -5900 -5850 -100 -50 0.15 0.08 0.05 0.02 3200 3250 -5850 -5800 -100 -50 0.19 0.09 0.06 0.03 3200 3250 -5800 -5750 -100 -50 0.16 0.07 0.05 0.02 3200 3250 -5750 -5700 -100 -50 0.14 0.05 0.04 0.02 3200 3250 -5700 -5650 -100 -50 0.27 0.11 0.07 0.03 3200 3250 -5650 -5600 -100 -50 0.35 0.12 0.09 0.03 3200 3250 -5600 -5550 -100 -50 0.27 0.11 0.06 0.02 3200 3250 -5550 -5500 -100 -50 0.42 0.17 0.08 0.03 3200 3250 -5500 -5450 -100 -50 0.84 0.28 0.13 0.04 3200 3250 -5450 -5400 -100 -50 1.49 0.52 0.30 0.11 3200 3250 -5400 -5350 -100 -50 1.85 0.77 0.35 0.15 3200 3250 -5350 -5300 -100 -50 2.26 1.09 0.30 0.15 3200 3250 -5300 -5250 -100 -50 1.17 0.51 0.15 0.06 3200 3250 -5250 -5200 -100 -50 0.26 0.09 0.04 0.02 3200 3250 -5200 -5150 -100 -50 0.08 0.02 0.02 0.00 3200 3250 -5150 -5100 -100 -50 0.15 0.04 0.03 0.01 3200 3250 -5100 -5050 -100 -50 0.39 0.13 0.07 0.02 3200 3250 -5050 -5000 -100 -50 0.32 0.11 0.07 0.03 3250 3300 -6000 -5950 -100 -50 0.26 0.27 0.06 0.06 3250 3300 -5950 -5900 -100 -50 0.20 0.17 0.05 0.04 3250 3300 -5900 -5850 -100 -50 0.18 0.14 0.05 0.04 3250 3300 -5850 -5800 -100 -50 0.21 0.16 0.06 0.05 3250 3300 -5800 -5750 -100 -50 0.25 0.19 0.08 0.06 3250 3300 -5750 -5700 -100 -50 0.20 0.14 0.06 0.04 3250 3300 -5700 -5650 -100 -50 0.27 0.18 0.08 0.05 3250 3300 -5650 -5600 -100 -50 0.30 0.18 0.07 0.04 3250 3300 -5600 -5550 -100 -50 0.34 0.21 0.07 0.04

159 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3250 3300 -5550 -5500 -100 -50 0.33 0.18 0.07 0.04 3250 3300 -5500 -5450 -100 -50 0.50 0.22 0.10 0.05 3250 3300 -5450 -5400 -100 -50 0.86 0.42 0.23 0.11 3250 3300 -5400 -5350 -100 -50 1.14 0.61 0.27 0.14 3250 3300 -5350 -5300 -100 -50 1.13 0.84 0.18 0.13 3250 3300 -5300 -5250 -100 -50 0.55 0.38 0.08 0.05 3250 3300 -5250 -5200 -100 -50 0.22 0.11 0.03 0.02 3250 3300 -5200 -5150 -100 -50 0.22 0.10 0.05 0.02 3250 3300 -5150 -5100 -100 -50 0.38 0.24 0.08 0.05 3250 3300 -5100 -5050 -100 -50 0.45 0.36 0.09 0.07 3250 3300 -5050 -5000 -100 -50 0.45 0.38 0.11 0.09 3300 3350 -6000 -5950 -100 -50 0.26 0.29 0.05 0.06 3300 3350 -5950 -5900 -100 -50 0.25 0.25 0.06 0.06 3300 3350 -5900 -5850 -100 -50 0.23 0.23 0.06 0.06 3300 3350 -5850 -5800 -100 -50 0.27 0.28 0.07 0.07 3300 3350 -5800 -5750 -100 -50 0.28 0.27 0.07 0.07 3300 3350 -5750 -5700 -100 -50 0.27 0.25 0.08 0.07 3300 3350 -5700 -5650 -100 -50 0.25 0.23 0.07 0.07 3300 3350 -5650 -5600 -100 -50 0.25 0.21 0.07 0.06 3300 3350 -5600 -5550 -100 -50 0.27 0.21 0.07 0.05 3300 3350 -5550 -5500 -100 -50 0.38 0.22 0.09 0.05 3300 3350 -5500 -5450 -100 -50 0.77 0.36 0.19 0.09 3300 3350 -5450 -5400 -100 -50 1.13 0.77 0.23 0.16 3300 3350 -5400 -5350 -100 -50 0.85 0.64 0.15 0.11 3300 3350 -5350 -5300 -100 -50 0.85 0.77 0.12 0.11 3300 3350 -5300 -5250 -100 -50 0.51 0.40 0.07 0.06 3300 3350 -5250 -5200 -100 -50 0.21 0.10 0.04 0.02 3300 3350 -5200 -5150 -100 -50 0.25 0.09 0.06 0.02 3300 3350 -5150 -5100 -100 -50 0.27 0.14 0.08 0.04 3300 3350 -5100 -5050 -100 -50 0.48 0.41 0.11 0.10 3300 3350 -5050 -5000 -100 -50 0.71 0.72 0.15 0.16 3350 3400 -6000 -5950 -100 -50 0.31 0.35 0.09 0.10

160 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3350 3400 -5950 -5900 -100 -50 0.33 0.37 0.08 0.08 3350 3400 -5900 -5850 -100 -50 0.21 0.23 0.06 0.06 3350 3400 -5850 -5800 -100 -50 0.20 0.23 0.06 0.06 3350 3400 -5800 -5750 -100 -50 0.22 0.24 0.06 0.06 3350 3400 -5750 -5700 -100 -50 0.24 0.26 0.07 0.07 3350 3400 -5700 -5650 -100 -50 0.21 0.21 0.05 0.05 3350 3400 -5650 -5600 -100 -50 0.21 0.17 0.05 0.04 3350 3400 -5600 -5550 -100 -50 0.24 0.14 0.06 0.03 3350 3400 -5550 -5500 -100 -50 0.77 0.34 0.18 0.08 3350 3400 -5500 -5450 -100 -50 1.64 0.65 0.47 0.18 3350 3400 -5450 -5400 -100 -50 1.38 0.72 0.33 0.17 3350 3400 -5400 -5350 -100 -50 0.70 0.38 0.10 0.06 3350 3400 -5350 -5300 -100 -50 0.80 0.45 0.12 0.07 3350 3400 -5300 -5250 -100 -50 0.54 0.28 0.06 0.03 3350 3400 -5250 -5200 -100 -50 0.33 0.15 0.05 0.02 3350 3400 -5200 -5150 -100 -50 0.19 0.07 0.04 0.02 3350 3400 -5150 -5100 -100 -50 0.19 0.06 0.05 0.02 3350 3400 -5100 -5050 -100 -50 0.55 0.30 0.14 0.07 3350 3400 -5050 -5000 -100 -50 0.76 0.47 0.16 0.10 3400 3450 -5400 -5350 -100 -50 0.59 0.31 0.08 0.04 3400 3450 -5350 -5300 -100 -50 0.83 0.43 0.12 0.06 3400 3450 -5300 -5250 -100 -50 0.72 0.34 0.08 0.04 3400 3450 -5250 -5200 -100 -50 0.41 0.17 0.06 0.02 3400 3450 -5200 -5150 -100 -50 0.50 0.20 0.09 0.04 3400 3450 -5150 -5100 -100 -50 0.62 0.31 0.11 0.06 3400 3450 -5100 -5050 -100 -50 0.88 0.48 0.18 0.10 3400 3450 -5050 -5000 -100 -50 0.89 0.50 0.18 0.10 3450 3500 -5400 -5350 -100 -50 0.62 0.46 0.09 0.06 3450 3500 -5350 -5300 -100 -50 0.76 0.66 0.11 0.09 3450 3500 -5300 -5250 -100 -50 0.80 0.58 0.11 0.08 3450 3500 -5250 -5200 -100 -50 0.55 0.30 0.10 0.05 3450 3500 -5200 -5150 -100 -50 0.41 0.21 0.09 0.05

161 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3450 3500 -5150 -5100 -100 -50 0.50 0.38 0.13 0.10 3450 3500 -5100 -5050 -100 -50 0.82 0.79 0.18 0.18 3450 3500 -5050 -5000 -100 -50 0.89 0.90 0.19 0.19 3500 3550 -5400 -5350 -100 -50 0.57 0.35 0.10 0.06 3500 3550 -5350 -5300 -100 -50 0.59 0.51 0.12 0.10 3500 3550 -5300 -5250 -100 -50 0.51 0.36 0.10 0.07 3500 3550 -5250 -5200 -100 -50 0.49 0.24 0.11 0.05 3500 3550 -5200 -5150 -100 -50 0.47 0.20 0.11 0.05 3500 3550 -5150 -5100 -100 -50 0.48 0.35 0.13 0.09 3500 3550 -5100 -5050 -100 -50 0.74 0.72 0.17 0.16 3500 3550 -5050 -5000 -100 -50 0.83 0.85 0.17 0.18 3550 3600 -5400 -5350 -100 -50 1.05 0.48 0.22 0.10 3550 3600 -5350 -5300 -100 -50 0.36 0.20 0.09 0.05 3550 3600 -5300 -5250 -100 -50 0.20 0.10 0.05 0.02 3550 3600 -5250 -5200 -100 -50 0.39 0.17 0.10 0.05 3550 3600 -5200 -5150 -100 -50 0.72 0.31 0.16 0.07 3550 3600 -5150 -5100 -100 -50 0.64 0.34 0.13 0.07 3550 3600 -5100 -5050 -100 -50 0.75 0.44 0.15 0.09 3550 3600 -5050 -5000 -100 -50 0.61 0.36 0.12 0.07 3600 3650 -5400 -5350 -100 -50 1.20 0.66 0.23 0.13 3600 3650 -5350 -5300 -100 -50 0.33 0.18 0.09 0.05 3600 3650 -5300 -5250 -100 -50 0.20 0.11 0.05 0.03 3600 3650 -5250 -5200 -100 -50 0.48 0.20 0.13 0.05 3600 3650 -5200 -5150 -100 -50 0.90 0.35 0.20 0.08 3600 3650 -5150 -5100 -100 -50 0.86 0.44 0.18 0.09 3600 3650 -5100 -5050 -100 -50 0.80 0.45 0.16 0.09 3600 3650 -5050 -5000 -100 -50 0.64 0.36 0.13 0.07 3650 3700 -5400 -5350 -100 -50 0.71 0.71 0.15 0.15 3650 3700 -5350 -5300 -100 -50 0.48 0.49 0.14 0.14 3650 3700 -5300 -5250 -100 -50 0.42 0.40 0.11 0.11 3650 3700 -5250 -5200 -100 -50 0.65 0.44 0.17 0.11 3650 3700 -5200 -5150 -100 -50 0.93 0.50 0.22 0.12

162 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3650 3700 -5150 -5100 -100 -50 1.04 0.83 0.23 0.18 3650 3700 -5100 -5050 -100 -50 0.97 0.95 0.21 0.21 3650 3700 -5050 -5000 -100 -50 0.89 0.91 0.18 0.18 3700 3750 -5400 -5350 -100 -50 0.48 0.49 0.14 0.14 3700 3750 -5350 -5300 -100 -50 0.38 0.39 0.11 0.12 3700 3750 -5300 -5250 -100 -50 0.52 0.51 0.15 0.14 3700 3750 -5250 -5200 -100 -50 0.82 0.63 0.23 0.17 3700 3750 -5200 -5150 -100 -50 0.97 0.70 0.24 0.18 3700 3750 -5150 -5100 -100 -50 1.00 0.90 0.23 0.21 3700 3750 -5100 -5050 -100 -50 0.95 0.95 0.21 0.21 3700 3750 -5050 -5000 -100 -50 0.96 0.98 0.21 0.21 3750 3800 -5400 -5350 -100 -50 0.37 0.22 0.12 0.07 3750 3800 -5350 -5300 -100 -50 0.23 0.14 0.07 0.04 3750 3800 -5300 -5250 -100 -50 0.53 0.30 0.17 0.09 3750 3800 -5250 -5200 -100 -50 0.95 0.48 0.32 0.16 3750 3800 -5200 -5150 -100 -50 1.21 0.60 0.35 0.17 3750 3800 -5150 -5100 -100 -50 0.88 0.50 0.19 0.11 3750 3800 -5100 -5050 -100 -50 0.76 0.45 0.16 0.10 3750 3800 -5050 -5000 -100 -50 0.73 0.44 0.16 0.10 3800 3850 -5400 -5350 -100 -50 0.42 0.20 0.13 0.06 3800 3850 -5350 -5300 -100 -50 0.23 0.12 0.07 0.04 3800 3850 -5300 -5250 -100 -50 0.51 0.25 0.16 0.08 3800 3850 -5250 -5200 -100 -50 1.00 0.44 0.35 0.16 3800 3850 -5200 -5150 -100 -50 1.33 0.58 0.42 0.18 3800 3850 -5150 -5100 -100 -50 0.89 0.41 0.19 0.09 3800 3850 -5100 -5050 -100 -50 0.78 0.24 0.17 0.05 3800 3850 -5050 -5000 -100 -50 0.70 0.30 0.15 0.07 3850 3900 -5400 -5350 -100 -50 0.60 0.51 0.14 0.12 3850 3900 -5350 -5300 -100 -50 0.47 0.47 0.12 0.12 3850 3900 -5300 -5250 -100 -50 0.58 0.58 0.17 0.17 3850 3900 -5250 -5200 -100 -50 0.87 0.87 0.28 0.28 3850 3900 -5200 -5150 -100 -50 1.21 1.20 0.36 0.35

163 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3850 3900 -5150 -5100 -100 -50 1.19 1.13 0.27 0.26 3850 3900 -5100 -5050 -100 -50 1.08 0.85 0.23 0.18 3850 3900 -5050 -5000 -100 -50 0.88 0.75 0.19 0.17 3900 3950 -5400 -5350 -100 -50 0.84 0.81 0.18 0.17 3900 3950 -5350 -5300 -100 -50 0.81 0.82 0.18 0.18 3900 3950 -5300 -5250 -100 -50 0.90 0.90 0.19 0.19 3900 3950 -5250 -5200 -100 -50 0.84 0.83 0.17 0.17 3900 3950 -5200 -5150 -100 -50 0.87 0.85 0.19 0.19 3900 3950 -5150 -5100 -100 -50 1.00 0.99 0.22 0.22 3900 3950 -5100 -5050 -100 -50 1.02 1.00 0.21 0.21 3900 3950 -5050 -5000 -100 -50 0.96 0.95 0.20 0.20 3950 4000 -5400 -5350 -100 -50 0.83 0.46 0.17 0.10 3950 4000 -5350 -5300 -100 -50 0.77 0.39 0.15 0.08 3950 4000 -5300 -5250 -100 -50 0.69 0.33 0.13 0.06 3950 4000 -5250 -5200 -100 -50 0.74 0.33 0.16 0.07 3950 4000 -5200 -5150 -100 -50 0.79 0.35 0.17 0.08 3950 4000 -5150 -5100 -100 -50 0.76 0.38 0.16 0.08 3950 4000 -5100 -5050 -100 -50 0.84 0.45 0.17 0.09 3950 4000 -5050 -5000 -100 -50 0.83 0.46 0.17 0.10 4000 4050 -5400 -5350 -100 -50 0.82 0.46 0.17 0.10 4000 4050 -5350 -5300 -100 -50 0.74 0.36 0.16 0.07 4000 4050 -5300 -5250 -100 -50 0.68 0.24 0.14 0.05 4000 4050 -5250 -5200 -100 -50 0.70 0.17 0.17 0.04 4000 4050 -5200 -5150 -100 -50 0.68 0.14 0.16 0.03 4000 4050 -5150 -5100 -100 -50 0.69 0.25 0.15 0.05 4000 4050 -5100 -5050 -100 -50 0.78 0.39 0.17 0.08 4000 4050 -5050 -5000 -100 -50 0.83 0.47 0.18 0.10 4050 4100 -5400 -5350 -100 -50 0.92 0.83 0.21 0.19 4050 4100 -5350 -5300 -100 -50 0.78 0.49 0.18 0.11 4050 4100 -5300 -5250 -100 -50 0.66 0.24 0.15 0.05 4050 4100 -5250 -5200 -100 -50 0.70 0.30 0.17 0.07 4050 4100 -5200 -5150 -100 -50 0.66 0.22 0.15 0.05

164 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 4050 4100 -5150 -5100 -100 -50 0.63 0.24 0.14 0.05 4050 4100 -5100 -5050 -100 -50 0.74 0.43 0.16 0.09 4050 4100 -5050 -5000 -100 -50 0.84 0.74 0.19 0.16

LEVEL 3 2600 2650 -5700 -5650 -150 -100 0.75 0.81 0.13 0.14 2600 2650 -5650 -5600 -150 -100 0.83 0.87 0.11 0.11 2600 2650 -5600 -5550 -150 -100 1.00 0.93 0.14 0.13 2600 2650 -5550 -5500 -150 -100 1.18 0.61 0.13 0.07 2600 2650 -5500 -5450 -150 -100 1.25 0.68 0.18 0.10 2600 2650 -5450 -5400 -150 -100 1.23 1.14 0.28 0.26 2600 2650 -5400 -5350 -150 -100 0.76 0.83 0.18 0.19 2600 2650 -5350 -5300 -150 -100 0.51 0.58 0.14 0.16 2650 2700 -5700 -5650 -150 -100 0.82 0.68 0.08 0.07 2650 2700 -5650 -5600 -150 -100 1.04 0.66 0.11 0.07 2650 2700 -5600 -5550 -150 -100 1.37 0.78 0.16 0.09 2650 2700 -5550 -5500 -150 -100 1.30 0.48 0.160.06 2650 2700 -5500 -5450 -150 -100 1.50 0.59 0.32 0.13 2650 2700 -5450 -5400 -150 -100 1.64 1.02 0.47 0.29 2650 2700 -5400 -5350 -150 -100 1.12 1.06 0.25 0.23 2650 2700 -5350 -5300 -150 -100 0.75 0.81 0.18 0.19 2700 2750 -5700 -5650 -150 -100 0.80 0.59 0.07 0.05 2700 2750 -5650 -5600 -150 -100 1.10 0.57 0.12 0.06 2700 2750 -5600 -5550 -150 -100 1.62 0.83 0.20 0.10 2700 2750 -5550 -5500 -150 -100 1.27 0.57 0.16 0.07 2700 2750 -5500 -5450 -150 -100 1.36 0.71 0.36 0.19 2700 2750 -5450 -5400 -150 -100 1.64 1.17 0.51 0.36 2700 2750 -5400 -5350 -150 -100 1.17 1.06 0.25 0.23 2700 2750 -5350 -5300 -150 -100 0.90 0.94 0.16 0.16 2750 2800 -5700 -5650 -150 -100 0.50 0.31 0.05 0.03 2750 2800 -5650 -5600 -150 -100 1.00 0.47 0.13 0.06 2750 2800 -5600 -5550 -150 -100 1.46 0.75 0.16 0.08

165 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2750 2800 -5550 -5500 -150 -100 1.50 0.72 0.14 0.07 2750 2800 -5500 -5450 -150 -100 1.53 0.84 0.25 0.14 2750 2800 -5450 -5400 -150 -100 1.40 0.95 0.27 0.18 2750 2800 -5400 -5350 -150 -100 0.76 0.59 0.11 0.08 2750 2800 -5350 -5300 -150 -100 0.79 0.81 0.12 0.13 2800 2850 -5700 -5650 -150 -100 0.34 0.21 0.04 0.03 2800 2850 -5650 -5600 -150 -100 0.52 0.24 0.08 0.04 2800 2850 -5600 -5550 -150 -100 0.83 0.42 0.11 0.05 2800 2850 -5550 -5500 -150 -100 0.67 0.30 0.10 0.04 2800 2850 -5500 -5450 -150 -100 0.86 0.42 0.17 0.08 2800 2850 -5450 -5400 -150 -100 0.93 0.63 0.18 0.12 2800 2850 -5400 -5350 -150 -100 0.49 0.37 0.06 0.05 2800 2850 -5350 -5300 -150 -100 0.38 0.38 0.05 0.05 2850 2900 -5700 -5650 -150 -100 0.31 0.23 0.05 0.04 2850 2900 -5650 -5600 -150 -100 0.22 0.11 0.04 0.02 2850 2900 -5600 -5550 -150 -100 0.31 0.14 0.05 0.02 2850 2900 -5550 -5500 -150 -100 0.30 0.12 0.06 0.03 2850 2900 -5500 -5450 -150 -100 0.38 0.17 0.10 0.04 2850 2900 -5450 -5400 -150 -100 0.64 0.46 0.14 0.10 2850 2900 -5400 -5350 -150 -100 0.42 0.33 0.07 0.06 2850 2900 -5350 -5300 -150 -100 0.40 0.34 0.06 0.05 2900 2950 -5700 -5650 -150 -100 0.34 0.25 0.06 0.05 2900 2950 -5650 -5600 -150 -100 0.17 0.09 0.03 0.02 2900 2950 -5600 -5550 -150 -100 0.19 0.09 0.03 0.01 2900 2950 -5550 -5500 -150 -100 0.27 0.13 0.05 0.02 2900 2950 -5500 -5450 -150 -100 0.42 0.23 0.08 0.04 2900 2950 -5450 -5400 -150 -100 0.61 0.45 0.14 0.10 2900 2950 -5400 -5350 -150 -100 0.61 0.47 0.14 0.10 2900 2950 -5350 -5300 -150 -100 0.84 0.60 0.16 0.11 2950 3000 -5700 -5650 -150 -100 0.54 0.35 0.08 0.05 2950 3000 -5650 -5600 -150 -100 0.27 0.14 0.04 0.02 2950 3000 -5600 -5550 -150 -100 0.18 0.08 0.03 0.01

166 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2950 3000 -5550 -5500 -150 -100 0.26 0.12 0.04 0.02 2950 3000 -5500 -5450 -150 -100 0.64 0.32 0.11 0.05 2950 3000 -5450 -5400 -150 -100 0.89 0.57 0.20 0.13 2950 3000 -5400 -5350 -150 -100 0.98 0.72 0.22 0.17 2950 3000 -5350 -5300 -150 -100 1.39 0.96 0.30 0.21 3000 3050 -6000 -5950 -150 -100 0.40 0.42 0.08 0.08 3000 3050 -5950 -5900 -150 -100 0.40 0.29 0.07 0.05 3000 3050 -5900 -5850 -150 -100 0.41 0.31 0.07 0.05 3000 3050 -5850 -5800 -150 -100 0.44 0.44 0.07 0.07 3000 3050 -5800 -5750 -150 -100 0.36 0.31 0.06 0.05 3000 3050 -5750 -5700 -150 -100 0.34 0.20 0.06 0.03 3000 3050 -5700 -5650 -150 -100 0.32 0.14 0.06 0.03 3000 3050 -5650 -5600 -150 -100 0.26 0.12 0.05 0.02 3000 3050 -5600 -5550 -150 -100 0.16 0.07 0.03 0.01 3000 3050 -5550 -5500 -150 -100 0.23 0.10 0.03 0.02 3000 3050 -5500 -5450 -150 -100 0.56 0.27 0.10 0.05 3000 3050 -5450 -5400 -150 -100 0.59 0.37 0.13 0.08 3000 3050 -5400 -5350 -150 -100 0.92 0.68 0.20 0.15 3000 3050 -5350 -5300 -150 -100 1.64 1.13 0.38 0.26 3000 3050 -5300 -5250 -150 -100 1.82 1.25 0.40 0.28 3000 3050 -5250 -5200 -150 -100 1.54 0.83 0.30 0.16 3000 3050 -5200 -5150 -150 -100 1.26 0.57 0.23 0.10 3000 3050 -5150 -5100 -150 -100 0.78 0.77 0.15 0.14 3000 3050 -5100 -5050 -150 -100 0.50 0.56 0.11 0.13 3000 3050 -5050 -5000 -150 -100 0.21 0.24 0.07 0.07 3050 3100 -6000 -5950 -150 -100 0.54 0.55 0.08 0.08 3050 3100 -5950 -5900 -150 -100 0.40 0.23 0.06 0.04 3050 3100 -5900 -5850 -150 -100 0.34 0.20 0.05 0.03 3050 3100 -5850 -5800 -150 -100 0.32 0.27 0.06 0.05 3050 3100 -5800 -5750 -150 -100 0.26 0.18 0.05 0.03 3050 3100 -5750 -5700 -150 -100 0.28 0.14 0.04 0.02 3050 3100 -5700 -5650 -150 -100 0.17 0.05 0.04 0.01

167 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3050 3100 -5650 -5600 -150 -100 0.18 0.08 0.05 0.02 3050 3100 -5600 -5550 -150 -100 0.13 0.06 0.02 0.01 3050 3100 -5550 -5500 -150 -100 0.17 0.07 0.02 0.01 3050 3100 -5500 -5450 -150 -100 0.29 0.13 0.05 0.02 3050 3100 -5450 -5400 -150 -100 0.21 0.13 0.04 0.02 3050 3100 -5400 -5350 -150 -100 0.46 0.40 0.09 0.08 3050 3100 -5350 -5300 -150 -100 1.21 0.87 0.21 0.15 3050 3100 -5300 -5250 -150 -100 1.45 1.01 0.25 0.17 3050 3100 -5250 -5200 -150 -100 1.27 0.74 0.19 0.11 3050 3100 -5200 -5150 -150 -100 0.93 0.45 0.13 0.07 3050 3100 -5150 -5100 -150 -100 0.69 0.68 0.13 0.13 3050 3100 -5100 -5050 -150 -100 0.40 0.43 0.08 0.09 3050 3100 -5050 -5000 -150 -100 0.21 0.21 0.06 0.06 3100 3150 -6000 -5950 -150 -100 0.43 0.41 0.07 0.07 3100 3150 -5950 -5900 -150 -100 0.51 0.25 0.09 0.04 3100 3150 -5900 -5850 -150 -100 0.48 0.21 0.09 0.04 3100 3150 -5850 -5800 -150 -100 0.52 0.28 0.12 0.06 3100 3150 -5800 -5750 -150 -100 0.56 0.23 0.14 0.06 3100 3150 -5750 -5700 -150 -100 0.49 0.17 0.08 0.03 3100 3150 -5700 -5650 -150 -100 0.39 0.13 0.07 0.02 3100 3150 -5650 -5600 -150 -100 0.25 0.07 0.06 0.02 3100 3150 -5600 -5550 -150 -100 0.12 0.04 0.02 0.01 3100 3150 -5550 -5500 -150 -100 0.17 0.07 0.03 0.01 3100 3150 -5500 -5450 -150 -100 0.31 0.13 0.06 0.03 3100 3150 -5450 -5400 -150 -100 0.11 0.07 0.02 0.01 3100 3150 -5400 -5350 -150 -100 0.21 0.18 0.03 0.03 3100 3150 -5350 -5300 -150 -100 0.35 0.22 0.05 0.03 3100 3150 -5300 -5250 -150 -100 0.45 0.27 0.06 0.03 3100 3150 -5250 -5200 -150 -100 0.60 0.36 0.08 0.05 3100 3150 -5200 -5150 -150 -100 0.48 0.27 0.09 0.05 3100 3150 -5150 -5100 -150 -100 0.30 0.28 0.06 0.06 3100 3150 -5100 -5050 -150 -100 0.18 0.14 0.04 0.03

168 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3100 3150 -5050 -5000 -150 -100 0.10 0.05 0.03 0.02 3150 3200 -6000 -5950 -150 -100 0.37 0.23 0.07 0.04 3150 3200 -5950 -5900 -150 -100 0.42 0.14 0.09 0.03 3150 3200 -5900 -5850 -150 -100 0.38 0.13 0.07 0.02 3150 3200 -5850 -5800 -150 -100 0.45 0.15 0.09 0.03 3150 3200 -5800 -5750 -150 -100 0.34 0.11 0.08 0.03 3150 3200 -5750 -5700 -150 -100 0.31 0.09 0.06 0.02 3150 3200 -5700 -5650 -150 -100 0.33 0.10 0.05 0.02 3150 3200 -5650 -5600 -150 -100 0.18 0.05 0.03 0.01 3150 3200 -5600 -5550 -150 -100 0.11 0.04 0.02 0.01 3150 3200 -5550 -5500 -150 -100 0.39 0.14 0.09 0.03 3150 3200 -5500 -5450 -150 -100 0.48 0.15 0.12 0.04 3150 3200 -5450 -5400 -150 -100 0.14 0.06 0.03 0.01 3150 3200 -5400 -5350 -150 -100 0.23 0.14 0.04 0.02 3150 3200 -5350 -5300 -150 -100 0.26 0.12 0.04 0.02 3150 3200 -5300 -5250 -150 -100 0.28 0.13 0.04 0.02 3150 3200 -5250 -5200 -150 -100 0.35 0.19 0.07 0.04 3150 3200 -5200 -5150 -150 -100 0.24 0.14 0.07 0.04 3150 3200 -5150 -5100 -150 -100 0.19 0.14 0.05 0.04 3150 3200 -5100 -5050 -150 -100 0.12 0.07 0.03 0.02 3150 3200 -5050 -5000 -150 -100 0.09 0.04 0.02 0.01 3200 3250 -6000 -5950 -150 -100 0.30 0.17 0.06 0.04 3200 3250 -5950 -5900 -150 -100 0.28 0.08 0.07 0.02 3200 3250 -5900 -5850 -150 -100 0.23 0.08 0.04 0.02 3200 3250 -5850 -5800 -150 -100 0.20 0.06 0.05 0.01 3200 3250 -5800 -5750 -150 -100 0.24 0.08 0.06 0.02 3200 3250 -5750 -5700 -150 -100 0.25 0.07 0.05 0.01 3200 3250 -5700 -5650 -150 -100 0.19 0.06 0.04 0.01 3200 3250 -5650 -5600 -150 -100 0.11 0.03 0.03 0.01 3200 3250 -5600 -5550 -150 -100 0.11 0.04 0.03 0.01 3200 3250 -5550 -5500 -150 -100 0.39 0.16 0.09 0.03 3200 3250 -5500 -5450 -150 -100 0.42 0.15 0.10 0.03

169 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3200 3250 -5450 -5400 -150 -100 0.11 0.04 0.04 0.01 3200 3250 -5400 -5350 -150 -100 0.19 0.09 0.06 0.03 3200 3250 -5350 -5300 -150 -100 0.26 0.16 0.06 0.04 3200 3250 -5300 -5250 -150 -100 0.34 0.17 0.05 0.02 3200 3250 -5250 -5200 -150 -100 0.20 0.06 0.03 0.01 3200 3250 -5200 -5150 -150 -100 0.10 0.04 0.03 0.01 3200 3250 -5150 -5100 -150 -100 0.11 0.04 0.03 0.01 3200 3250 -5100 -5050 -150 -100 0.09 0.03 0.02 0.01 3200 3250 -5050 -5000 -150 -100 0.09 0.05 0.02 0.01 3250 3300 -6000 -5950 -150 -100 0.27 0.25 0.06 0.06 3250 3300 -5950 -5900 -150 -100 0.23 0.12 0.06 0.03 3250 3300 -5900 -5850 -150 -100 0.20 0.09 0.05 0.02 3250 3300 -5850 -5800 -150 -100 0.19 0.08 0.05 0.02 3250 3300 -5800 -5750 -150 -100 0.21 0.08 0.05 0.02 3250 3300 -5750 -5700 -150 -100 0.18 0.06 0.04 0.01 3250 3300 -5700 -5650 -150 -100 0.10 0.03 0.03 0.01 3250 3300 -5650 -5600 -150 -100 0.08 0.02 0.02 0.01 3250 3300 -5600 -5550 -150 -100 0.12 0.05 0.02 0.01 3250 3300 -5550 -5500 -150 -100 0.23 0.11 0.05 0.02 3250 3300 -5500 -5450 -150 -100 0.22 0.09 0.05 0.02 3250 3300 -5450 -5400 -150 -100 0.13 0.08 0.04 0.02 3250 3300 -5400 -5350 -150 -100 0.16 0.10 0.05 0.03 3250 3300 -5350 -5300 -150 -100 0.32 0.30 0.07 0.06 3250 3300 -5300 -5250 -150 -100 0.35 0.30 0.05 0.05 3250 3300 -5250 -5200 -150 -100 0.20 0.13 0.03 0.02 3250 3300 -5200 -5150 -150 -100 0.14 0.07 0.03 0.02 3250 3300 -5150 -5100 -150 -100 0.15 0.08 0.03 0.02 3250 3300 -5100 -5050 -150 -100 0.16 0.12 0.04 0.03 3250 3300 -5050 -5000 -150 -100 0.19 0.18 0.05 0.05 3300 3350 -6000 -5950 -150 -100 0.20 0.21 0.05 0.05 3300 3350 -5950 -5900 -150 -100 0.23 0.17 0.05 0.04 3300 3350 -5900 -5850 -150 -100 0.23 0.16 0.05 0.03

170 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3300 3350 -5850 -5800 -150 -100 0.25 0.17 0.06 0.04 3300 3350 -5800 -5750 -150 -100 0.24 0.15 0.05 0.03 3300 3350 -5750 -5700 -150 -100 0.21 0.11 0.05 0.02 3300 3350 -5700 -5650 -150 -100 0.15 0.08 0.04 0.02 3300 3350 -5650 -5600 -150 -100 0.10 0.05 0.03 0.01 3300 3350 -5600 -5550 -150 -100 0.20 0.10 0.04 0.02 3300 3350 -5550 -5500 -150 -100 0.56 0.28 0.10 0.05 3300 3350 -5500 -5450 -150 -100 0.83 0.35 0.14 0.06 3300 3350 -5450 -5400 -150 -100 0.60 0.49 0.12 0.10 3300 3350 -5400 -5350 -150 -100 0.46 0.42 0.10 0.09 3300 3350 -5350 -5300 -150 -100 0.59 0.61 0.10 0.11 3300 3350 -5300 -5250 -150 -100 0.40 0.39 0.07 0.06 3300 3350 -5250 -5200 -150 -100 0.18 0.13 0.03 0.02 3300 3350 -5200 -5150 -150 -100 0.27 0.10 0.05 0.02 3300 3350 -5150 -5100 -150 -100 0.43 0.16 0.08 0.03 3300 3350 -5100 -5050 -150 -100 0.36 0.29 0.08 0.07 3300 3350 -5050 -5000 -150 -100 0.34 0.34 0.09 0.09 3350 3400 -6000 -5950 -150 -100 0.27 0.30 0.07 0.08 3350 3400 -5950 -5900 -150 -100 0.20 0.19 0.05 0.05 3350 3400 -5900 -5850 -150 -100 0.24 0.22 0.05 0.05 3350 3400 -5850 -5800 -150 -100 0.25 0.24 0.05 0.05 3350 3400 -5800 -5750 -150 -100 0.24 0.21 0.05 0.05 3350 3400 -5750 -5700 -150 -100 0.16 0.12 0.04 0.03 3350 3400 -5700 -5650 -150 -100 0.15 0.11 0.04 0.03 3350 3400 -5650 -5600 -150 -100 0.21 0.13 0.05 0.03 3350 3400 -5600 -5550 -150 -100 0.40 0.22 0.07 0.04 3350 3400 -5550 -5500 -150 -100 0.75 0.34 0.13 0.06 3350 3400 -5500 -5450 -150 -100 1.31 0.50 0.28 0.11 3350 3400 -5450 -5400 -150 -100 1.05 0.77 0.22 0.16 3350 3400 -5400 -5350 -150 -100 0.80 0.63 0.14 0.11 3350 3400 -5350 -5300 -150 -100 0.78 0.61 0.14 0.11 3350 3400 -5300 -5250 -150 -100 0.38 0.29 0.06 0.05

171 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3350 3400 -5250 -5200 -150 -100 0.08 0.05 0.02 0.01 3350 3400 -5200 -5150 -150 -100 0.11 0.05 0.03 0.01 3350 3400 -5150 -5100 -150 -100 0.40 0.13 0.07 0.02 3350 3400 -5100 -5050 -150 -100 0.58 0.28 0.12 0.06 3350 3400 -5050 -5000 -150 -100 0.56 0.35 0.13 0.08 3400 3450 -5400 -5350 -150 -100 0.62 0.47 0.11 0.08 3400 3450 -5350 -5300 -150 -100 0.98 0.71 0.16 0.12 3400 3450 -5300 -5250 -150 -100 0.45 0.30 0.07 0.05 3400 3450 -5250 -5200 -150 -100 0.08 0.04 0.02 0.01 3400 3450 -5200 -5150 -150 -100 0.03 0.02 0.01 0.00 3400 3450 -5150 -5100 -150 -100 0.23 0.10 0.05 0.02 3400 3450 -5100 -5050 -150 -100 0.67 0.31 0.14 0.07 3400 3450 -5050 -5000 -150 -100 0.55 0.32 0.13 0.07 3450 3500 -5400 -5350 -150 -100 0.30 0.26 0.06 0.05 3450 3500 -5350 -5300 -150 -100 0.60 0.48 0.10 0.08 3450 3500 -5300 -5250 -150 -100 0.48 0.28 0.08 0.05 3450 3500 -5250 -5200 -150 -100 0.11 0.06 0.03 0.02 3450 3500 -5200 -5150 -150 -100 0.08 0.04 0.03 0.01 3450 3500 -5150 -5100 -150 -100 0.32 0.19 0.08 0.05 3450 3500 -5100 -5050 -150 -100 0.68 0.53 0.16 0.12 3450 3500 -5050 -5000 -150 -100 0.74 0.71 0.17 0.16 3500 3550 -5400 -5350 -150 -100 0.12 0.08 0.03 0.02 3500 3550 -5350 -5300 -150 -100 0.27 0.20 0.06 0.04 3500 3550 -5300 -5250 -150 -100 0.32 0.16 0.06 0.03 3500 3550 -5250 -5200 -150 -100 0.17 0.08 0.05 0.02 3500 3550 -5200 -5150 -150 -100 0.13 0.05 0.04 0.02 3500 3550 -5150 -5100 -150 -100 0.42 0.21 0.10 0.05 3500 3550 -5100 -5050 -150 -100 0.80 0.62 0.17 0.13 3500 3550 -5050 -5000 -150 -100 0.91 0.89 0.19 0.18 3550 3600 -5400 -5350 -150 -100 0.12 0.06 0.04 0.02 3550 3600 -5350 -5300 -150 -100 0.12 0.06 0.03 0.02 3550 3600 -5300 -5250 -150 -100 0.13 0.06 0.03 0.01

172 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3550 3600 -5250 -5200 -150 -100 0.21 0.10 0.06 0.03 3550 3600 -5200 -5150 -150 -100 0.44 0.20 0.10 0.05 3550 3600 -5150 -5100 -150 -100 0.69 0.32 0.13 0.06 3550 3600 -5100 -5050 -150 -100 0.92 0.50 0.17 0.09 3550 3600 -5050 -5000 -150 -100 0.88 0.58 0.16 0.11 3600 3650 -5400 -5350 -150 -100 0.30 0.17 0.08 0.05 3600 3650 -5350 -5300 -150 -100 0.14 0.07 0.04 0.02 3600 3650 -5300 -5250 -150 -100 0.11 0.05 0.03 0.01 3600 3650 -5250 -5200 -150 -100 0.26 0.12 0.08 0.04 3600 3650 -5200 -5150 -150 -100 0.70 0.28 0.16 0.06 3600 3650 -5150 -5100 -150 -100 0.92 0.38 0.17 0.07 3600 3650 -5100 -5050 -150 -100 0.97 0.50 0.19 0.10 3600 3650 -5050 -5000 -150 -100 0.94 0.61 0.18 0.11 3650 3700 -5400 -5350 -150 -100 0.33 0.34 0.09 0.09 3650 3700 -5350 -5300 -150 -100 0.22 0.22 0.07 0.07 3650 3700 -5300 -5250 -150 -100 0.22 0.20 0.07 0.07 3650 3700 -5250 -5200 -150 -100 0.29 0.15 0.10 0.05 3650 3700 -5200 -5150 -150 -100 0.52 0.15 0.15 0.04 3650 3700 -5150 -5100 -150 -100 0.80 0.34 0.18 0.08 3650 3700 -5100 -5050 -150 -100 1.05 0.79 0.22 0.16 3650 3700 -5050 -5000 -150 -100 1.05 1.03 0.22 0.22 3700 3750 -5400 -5350 -150 -100 0.34 0.36 0.11 0.12 3700 3750 -5350 -5300 -150 -100 0.21 0.22 0.07 0.08 3700 3750 -5300 -5250 -150 -100 0.25 0.24 0.08 0.08 3700 3750 -5250 -5200 -150 -100 0.32 0.21 0.11 0.07 3700 3750 -5200 -5150 -150 -100 0.56 0.32 0.16 0.09 3700 3750 -5150 -5100 -150 -100 0.88 0.64 0.20 0.14 3700 3750 -5100 -5050 -150 -100 1.01 0.88 0.23 0.20 3700 3750 -5050 -5000 -150 -100 1.12 1.11 0.25 0.25 3750 3800 -5400 -5350 -150 -100 0.27 0.20 0.09 0.07 3750 3800 -5350 -5300 -150 -100 0.12 0.08 0.04 0.03 3750 3800 -5300 -5250 -150 -100 0.17 0.10 0.06 0.04

173 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3750 3800 -5250 -5200 -150 -100 0.47 0.24 0.17 0.09 3750 3800 -5200 -5150 -150 -100 1.13 0.54 0.33 0.16 3750 3800 -5150 -5100 -150 -100 1.03 0.56 0.23 0.13 3750 3800 -5100 -5050 -150 -100 0.86 0.49 0.19 0.11 3750 3800 -5050 -5000 -150 -100 0.95 0.61 0.22 0.14 3800 3850 -5400 -5350 -150 -100 0.29 0.17 0.09 0.05 3800 3850 -5350 -5300 -150 -100 0.12 0.06 0.04 0.02 3800 3850 -5300 -5250 -150 -100 0.17 0.08 0.06 0.03 3800 3850 -5250 -5200 -150 -100 0.52 0.27 0.20 0.10 3800 3850 -5200 -5150 -150 -100 1.33 0.64 0.42 0.20 3800 3850 -5150 -5100 -150 -100 1.06 0.47 0.24 0.10 3800 3850 -5100 -5050 -150 -100 0.84 0.28 0.19 0.06 3800 3850 -5050 -5000 -150 -100 0.88 0.42 0.20 0.10 3850 3900 -5400 -5350 -150 -100 0.52 0.44 0.12 0.10 3850 3900 -5350 -5300 -150 -100 0.33 0.33 0.09 0.09 3850 3900 -5300 -5250 -150 -100 0.32 0.32 0.11 0.11 3850 3900 -5250 -5200 -150 -100 0.56 0.56 0.18 0.19 3850 3900 -5200 -5150 -150 -100 0.89 0.89 0.28 0.28 3850 3900 -5150 -5100 -150 -100 1.26 1.22 0.31 0.30 3850 3900 -5100 -5050 -150 -100 1.23 1.04 0.27 0.23 3850 3900 -5050 -5000 -150 -100 1.09 0.97 0.24 0.21 3900 3950 -5400 -5350 -150 -100 0.84 0.82 0.17 0.17 3900 3950 -5350 -5300 -150 -100 0.71 0.72 0.16 0.16 3900 3950 -5300 -5250 -150 -100 0.74 0.74 0.17 0.17 3900 3950 -5250 -5200 -150 -100 0.99 0.99 0.24 0.24 3900 3950 -5200 -5150 -150 -100 0.89 0.89 0.22 0.22 3900 3950 -5150 -5100 -150 -100 0.91 0.91 0.22 0.22 3900 3950 -5100 -5050 -150 -100 0.89 0.89 0.19 0.19 3900 3950 -5050 -5000 -150 -100 1.08 1.10 0.22 0.23 3950 4000 -5400 -5350 -150 -100 0.87 0.48 0.18 0.10 3950 4000 -5350 -5300 -150 -100 0.85 0.44 0.17 0.09 3950 4000 -5300 -5250 -150 -100 0.77 0.38 0.15 0.07

174 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3950 4000 -5250 -5200 -150 -100 0.75 0.39 0.18 0.09 3950 4000 -5200 -5150 -150 -100 0.74 0.36 0.20 0.10 3950 4000 -5150 -5100 -150 -100 0.62 0.30 0.16 0.08 3950 4000 -5100 -5050 -150 -100 0.60 0.33 0.12 0.07 3950 4000 -5050 -5000 -150 -100 0.83 0.54 0.16 0.10 4000 4050 -5400 -5350 -150 -100 0.87 0.50 0.19 0.11 4000 4050 -5350 -5300 -150 -100 0.84 0.44 0.17 0.09 4000 4050 -5300 -5250 -150 -100 0.75 0.36 0.15 0.07 4000 4050 -5250 -5200 -150 -100 0.76 0.32 0.20 0.08 4000 4050 -5200 -5150 -150 -100 0.71 0.25 0.20 0.07 4000 4050 -5150 -5100 -150 -100 0.59 0.25 0.16 0.07 4000 4050 -5100 -5050 -150 -100 0.56 0.30 0.12 0.06 4000 4050 -5050 -5000 -150 -100 0.80 0.52 0.16 0.10 4050 4100 -5400 -5350 -150 -100 0.97 0.94 0.22 0.21 4050 4100 -5350 -5300 -150 -100 0.90 0.74 0.20 0.16 4050 4100 -5300 -5250 -150 -100 0.82 0.58 0.18 0.13 4050 4100 -5250 -5200 -150 -100 0.79 0.40 0.19 0.10 4050 4100 -5200 -5150 -150 -100 0.76 0.32 0.19 0.08 4050 4100 -5150 -5100 -150 -100 0.67 0.43 0.16 0.10 4050 4100 -5100 -5050 -150 -100 0.70 0.53 0.15 0.11 4050 4100 -5050 -5000 -150 -100 0.86 0.81 0.18 0.17

LEVEL 4 2600 2650 -5700 -5650 -200 -150 0.64 0.72 0.12 0.14 2600 2650 -5650 -5600 -200 -150 0.75 0.82 0.11 0.12 2600 2650 -5600 -5550 -200 -150 0.93 0.91 0.13 0.13 2600 2650 -5550 -5500 -200 -150 1.09 0.91 0.16 0.14 2600 2650 -5500 -5450 -200 -150 1.08 0.94 0.20 0.17 2600 2650 -5450 -5400 -200 -150 0.78 0.81 0.18 0.19 2600 2650 -5400 -5350 -200 -150 0.53 0.60 0.14 0.16 2600 2650 -5350 -5300 -200 -150 0.56 0.64 0.15 0.17 2650 2700 -5700 -5650 -200 -150 0.95 0.98 0.12 0.12

175 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2650 2700 -5650 -5600 -200 -150 1.08 0.97 0.12 0.10 2650 2700 -5600 -5550 -200 -150 0.85 0.53 0.11 0.07 2650 2700 -5550 -5500 -200 -150 0.61 0.35 0.09 0.05 2650 2700 -5500 -5450 -200 -150 0.70 0.53 0.17 0.13 2650 2700 -5450 -5400 -200 -150 1.25 1.14 0.30 0.27 2650 2700 -5400 -5350 -200 -150 1.19 1.30 0.21 0.23 2650 2700 -5350 -5300 -200 -150 0.59 0.68 0.16 0.18 2700 2750 -5700 -5650 -200 -150 0.94 0.91 0.10 0.10 2700 2750 -5650 -5600 -200 -150 1.28 1.08 0.13 0.11 2700 2750 -5600 -5550 -200 -150 1.13 0.74 0.14 0.09 2700 2750 -5550 -5500 -200 -150 0.42 0.25 0.06 0.04 2700 2750 -5500 -5450 -200 -150 0.46 0.35 0.10 0.08 2700 2750 -5450 -5400 -200 -150 0.95 0.91 0.21 0.20 2700 2750 -5400 -5350 -200 -150 1.01 1.11 0.16 0.18 2700 2750 -5350 -5300 -200 -150 0.71 0.80 0.17 0.19 2750 2800 -5700 -5650 -200 -150 0.56 0.45 0.05 0.04 2750 2800 -5650 -5600 -200 -150 1.49 1.13 0.15 0.12 2750 2800 -5600 -5550 -200 -150 1.58 1.27 0.16 0.13 2750 2800 -5550 -5500 -200 -150 0.55 0.35 0.05 0.03 2750 2800 -5500 -5450 -200 -150 0.45 0.32 0.06 0.04 2750 2800 -5450 -5400 -200 -150 0.78 0.78 0.13 0.13 2750 2800 -5400 -5350 -200 -150 0.72 0.77 0.12 0.13 2750 2800 -5350 -5300 -200 -150 0.58 0.65 0.13 0.15 2800 2850 -5700 -5650 -200 -150 0.50 0.36 0.06 0.04 2800 2850 -5650 -5600 -200 -150 1.07 0.78 0.13 0.10 2800 2850 -5600 -5550 -200 -150 0.94 0.78 0.11 0.09 2800 2850 -5550 -5500 -200 -150 0.32 0.21 0.04 0.02 2800 2850 -5500 -5450 -200 -150 0.28 0.19 0.04 0.03 2800 2850 -5450 -5400 -200 -150 0.49 0.49 0.08 0.08 2800 2850 -5400 -5350 -200 -150 0.83 0.90 0.13 0.14 2800 2850 -5350 -5300 -200 -150 0.52 0.58 0.10 0.11 2850 2900 -5700 -5650 -200 -150 0.42 0.21 0.07 0.03

176 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2850 2900 -5650 -5600 -200 -150 0.46 0.29 0.09 0.06 2850 2900 -5600 -5550 -200 -150 0.43 0.34 0.07 0.06 2850 2900 -5550 -5500 -200 -150 0.21 0.15 0.04 0.03 2850 2900 -5500 -5450 -200 -150 0.22 0.17 0.04 0.03 2850 2900 -5450 -5400 -200 -150 0.40 0.41 0.07 0.07 2850 2900 -5400 -5350 -200 -150 0.63 0.69 0.10 0.11 2850 2900 -5350 -5300 -200 -150 0.77 0.84 0.13 0.15 2900 2950 -5700 -5650 -200 -150 0.55 0.27 0.11 0.05 2900 2950 -5650 -5600 -200 -150 0.38 0.22 0.09 0.05 2900 2950 -5600 -5550 -200 -150 0.29 0.21 0.06 0.05 2900 2950 -5550 -5500 -200 -150 0.27 0.20 0.05 0.04 2900 2950 -5500 -5450 -200 -150 0.30 0.24 0.06 0.05 2900 2950 -5450 -5400 -200 -150 0.42 0.42 0.09 0.09 2900 2950 -5400 -5350 -200 -150 0.62 0.67 0.12 0.13 2900 2950 -5350 -5300 -200 -150 1.04 1.13 0.22 0.24 2950 3000 -5700 -5650 -200 -150 0.81 0.43 0.18 0.10 2950 3000 -5650 -5600 -200 -150 0.60 0.28 0.12 0.05 2950 3000 -5600 -5550 -200 -150 0.41 0.20 0.07 0.03 2950 3000 -5550 -5500 -200 -150 0.29 0.19 0.05 0.04 2950 3000 -5500 -5450 -200 -150 0.34 0.27 0.07 0.05 2950 3000 -5450 -5400 -200 -150 0.41 0.38 0.09 0.08 2950 3000 -5400 -5350 -200 -150 0.74 0.78 0.14 0.15 2950 3000 -5350 -5300 -200 -150 1.31 1.40 0.27 0.29 3000 3050 -6000 -5950 -200 -150 0.65 0.66 0.13 0.14 3000 3050 -5950 -5900 -200 -150 0.70 0.36 0.15 0.08 3000 3050 -5900 -5850 -200 -150 0.69 0.35 0.12 0.06 3000 3050 -5850 -5800 -200 -150 0.51 0.40 0.08 0.06 3000 3050 -5800 -5750 -200 -150 0.53 0.30 0.08 0.05 3000 3050 -5750 -5700 -200 -150 0.84 0.35 0.18 0.07 3000 3050 -5700 -5650 -200 -150 0.74 0.25 0.18 0.06 3000 3050 -5650 -5600 -200 -150 0.60 0.20 0.11 0.04 3000 3050 -5600 -5550 -200 -150 0.60 0.23 0.08 0.03

177 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3000 3050 -5550 -5500 -200 -150 0.35 0.22 0.06 0.04 3000 3050 -5500 -5450 -200 -150 0.26 0.20 0.05 0.04 3000 3050 -5450 -5400 -200 -150 0.25 0.23 0.05 0.05 3000 3050 -5400 -5350 -200 -150 0.55 0.58 0.12 0.13 3000 3050 -5350 -5300 -200 -150 1.06 1.13 0.22 0.24 3000 3050 -5300 -5250 -200 -150 1.05 1.09 0.26 0.27 3000 3050 -5250 -5200 -200 -150 1.63 1.43 0.35 0.31 3000 3050 -5200 -5150 -200 -150 1.20 0.97 0.25 0.20 3000 3050 -5150 -5100 -200 -150 0.70 0.73 0.13 0.14 3000 3050 -5100 -5050 -200 -150 0.32 0.36 0.09 0.10 3000 3050 -5050 -5000 -200 -150 0.21 0.24 0.06 0.07 3050 3100 -6000 -5950 -200 -150 0.49 0.50 0.09 0.10 3050 3100 -5950 -5900 -200 -150 0.87 0.44 0.15 0.07 3050 3100 -5900 -5850 -200 -150 0.66 0.30 0.10 0.05 3050 3100 -5850 -5800 -200 -150 0.23 0.12 0.03 0.02 3050 3100 -5800 -5750 -200 -150 0.20 0.07 0.03 0.01 3050 3100 -5750 -5700 -200 -150 0.54 0.18 0.07 0.02 3050 3100 -5700 -5650 -200 -150 0.82 0.22 0.15 0.04 3050 3100 -5650 -5600 -200 -150 0.98 0.26 0.22 0.06 3050 3100 -5600 -5550 -200 -150 1.01 0.36 0.13 0.05 3050 3100 -5550 -5500 -200 -150 0.35 0.20 0.04 0.03 3050 3100 -5500 -5450 -200 -150 0.13 0.07 0.02 0.01 3050 3100 -5450 -5400 -200 -150 0.09 0.08 0.02 0.01 3050 3100 -5400 -5350 -200 -150 0.24 0.25 0.06 0.06 3050 3100 -5350 -5300 -200 -150 0.49 0.52 0.13 0.13 3050 3100 -5300 -5250 -200 -150 0.89 0.91 0.21 0.21 3050 3100 -5250 -5200 -200 -150 0.99 0.93 0.19 0.18 3050 3100 -5200 -5150 -200 -150 1.12 1.00 0.19 0.17 3050 3100 -5150 -5100 -200 -150 0.59 0.63 0.13 0.14 3050 3100 -5100 -5050 -200 -150 0.38 0.42 0.09 0.10 3050 3100 -5050 -5000 -200 -150 0.18 0.18 0.06 0.06 3100 3150 -6000 -5950 -200 -150 0.64 0.60 0.09 0.08

178 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3100 3150 -5950 -5900 -200 -150 0.70 0.37 0.10 0.05 3100 3150 -5900 -5850 -200 -150 0.66 0.31 0.09 0.04 3100 3150 -5850 -5800 -200 -150 0.30 0.14 0.06 0.03 3100 3150 -5800 -5750 -200 -150 0.39 0.19 0.09 0.04 3100 3150 -5750 -5700 -200 -150 0.82 0.43 0.13 0.07 3100 3150 -5700 -5650 -200 -150 0.84 0.37 0.15 0.06 3100 3150 -5650 -5600 -200 -150 1.54 0.63 0.28 0.11 3100 3150 -5600 -5550 -200 -150 1.29 0.56 0.17 0.07 3100 3150 -5550 -5500 -200 -150 0.37 0.19 0.07 0.04 3100 3150 -5500 -5450 -200 -150 0.12 0.06 0.03 0.01 3100 3150 -5450 -5400 -200 -150 0.07 0.05 0.02 0.01 3100 3150 -5400 -5350 -200 -150 0.11 0.11 0.03 0.03 3100 3150 -5350 -5300 -200 -150 0.18 0.16 0.05 0.05 3100 3150 -5300 -5250 -200 -150 0.24 0.21 0.07 0.07 3100 3150 -5250 -5200 -200 -150 0.36 0.34 0.07 0.07 3100 3150 -5200 -5150 -200 -150 0.41 0.39 0.08 0.08 3100 3150 -5150 -5100 -200 -150 0.26 0.28 0.07 0.07 3100 3150 -5100 -5050 -200 -150 0.22 0.21 0.06 0.06 3100 3150 -5050 -5000 -200 -150 0.14 0.11 0.05 0.04 3150 3200 -6000 -5950 -200 -150 0.32 0.17 0.04 0.02 3150 3200 -5950 -5900 -200 -150 0.43 0.16 0.07 0.03 3150 3200 -5900 -5850 -200 -150 0.66 0.25 0.09 0.03 3150 3200 -5850 -5800 -200 -150 0.73 0.31 0.12 0.05 3150 3200 -5800 -5750 -200 -150 0.84 0.38 0.19 0.09 3150 3200 -5750 -5700 -200 -150 1.20 0.51 0.22 0.09 3150 3200 -5700 -5650 -200 -150 0.97 0.40 0.16 0.07 3150 3200 -5650 -5600 -200 -150 0.65 0.29 0.14 0.06 3150 3200 -5600 -5550 -200 -150 0.61 0.27 0.13 0.06 3150 3200 -5550 -5500 -200 -150 0.61 0.24 0.16 0.06 3150 3200 -5500 -5450 -200 -150 0.16 0.05 0.07 0.02 3150 3200 -5450 -5400 -200 -150 0.04 0.02 0.02 0.01 3150 3200 -5400 -5350 -200 -150 0.06 0.04 0.02 0.01

179 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3150 3200 -5350 -5300 -200 -150 0.09 0.07 0.03 0.02 3150 3200 -5300 -5250 -200 -150 0.10 0.08 0.03 0.02 3150 3200 -5250 -5200 -200 -150 0.15 0.13 0.04 0.04 3150 3200 -5200 -5150 -200 -150 0.22 0.20 0.06 0.06 3150 3200 -5150 -5100 -200 -150 0.15 0.15 0.04 0.04 3150 3200 -5100 -5050 -200 -150 0.10 0.09 0.03 0.03 3150 3200 -5050 -5000 -200 -150 0.08 0.06 0.03 0.02 3200 3250 -6000 -5950 -200 -150 0.24 0.10 0.03 0.01 3200 3250 -5950 -5900 -200 -150 0.27 0.10 0.05 0.02 3200 3250 -5900 -5850 -200 -150 0.46 0.19 0.07 0.03 3200 3250 -5850 -5800 -200 -150 0.42 0.16 0.08 0.03 3200 3250 -5800 -5750 -200 -150 0.51 0.21 0.13 0.05 3200 3250 -5750 -5700 -200 -150 0.57 0.23 0.13 0.05 3200 3250 -5700 -5650 -200 -150 0.42 0.16 0.09 0.04 3200 3250 -5650 -5600 -200 -150 0.28 0.11 0.07 0.03 3200 3250 -5600 -5550 -200 -150 0.24 0.11 0.07 0.03 3200 3250 -5550 -5500 -200 -150 0.45 0.22 0.12 0.06 3200 3250 -5500 -5450 -200 -150 0.16 0.08 0.06 0.03 3200 3250 -5450 -5400 -200 -150 0.04 0.02 0.02 0.01 3200 3250 -5400 -5350 -200 -150 0.06 0.04 0.02 0.02 3200 3250 -5350 -5300 -200 -150 0.08 0.07 0.02 0.02 3200 3250 -5300 -5250 -200 -150 0.11 0.09 0.03 0.02 3200 3250 -5250 -5200 -200 -150 0.12 0.09 0.03 0.02 3200 3250 -5200 -5150 -200 -150 0.11 0.09 0.04 0.03 3200 3250 -5150 -5100 -200 -150 0.07 0.06 0.03 0.02 3200 3250 -5100 -5050 -200 -150 0.06 0.05 0.02 0.02 3200 3250 -5050 -5000 -200 -150 0.08 0.07 0.03 0.03 3250 3300 -6000 -5950 -200 -150 0.29 0.26 0.06 0.05 3250 3300 -5950 -5900 -200 -150 0.21 0.11 0.05 0.03 3250 3300 -5900 -5850 -200 -150 0.19 0.08 0.05 0.02 3250 3300 -5850 -5800 -200 -150 0.15 0.06 0.05 0.02 3250 3300 -5800 -5750 -200 -150 0.14 0.06 0.05 0.02

180 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3250 3300 -5750 -5700 -200 -150 0.08 0.03 0.03 0.01 3250 3300 -5700 -5650 -200 -150 0.06 0.02 0.02 0.01 3250 3300 -5650 -5600 -200 -150 0.08 0.03 0.03 0.01 3250 3300 -5600 -5550 -200 -150 0.16 0.08 0.04 0.02 3250 3300 -5550 -5500 -200 -150 0.37 0.26 0.07 0.05 3250 3300 -5500 -5450 -200 -150 0.30 0.21 0.07 0.05 3250 3300 -5450 -5400 -200 -150 0.11 0.09 0.04 0.03 3250 3300 -5400 -5350 -200 -150 0.12 0.11 0.04 0.04 3250 3300 -5350 -5300 -200 -150 0.14 0.15 0.04 0.04 3250 3300 -5300 -5250 -200 -150 0.15 0.15 0.03 0.03 3250 3300 -5250 -5200 -200 -150 0.11 0.09 0.03 0.03 3250 3300 -5200 -5150 -200 -150 0.05 0.04 0.02 0.02 3250 3300 -5150 -5100 -200 -150 0.04 0.03 0.01 0.01 3250 3300 -5100 -5050 -200 -150 0.05 0.04 0.02 0.01 3250 3300 -5050 -5000 -200 -150 0.11 0.12 0.04 0.04 3300 3350 -6000 -5950 -200 -150 0.24 0.24 0.05 0.06 3300 3350 -5950 -5900 -200 -150 0.16 0.08 0.04 0.02 3300 3350 -5900 -5850 -200 -150 0.17 0.08 0.04 0.02 3300 3350 -5850 -5800 -200 -150 0.20 0.08 0.05 0.02 3300 3350 -5800 -5750 -200 -150 0.17 0.06 0.04 0.01 3300 3350 -5750 -5700 -200 -150 0.10 0.03 0.02 0.01 3300 3350 -5700 -5650 -200 -150 0.06 0.02 0.02 0.01 3300 3350 -5650 -5600 -200 -150 0.12 0.04 0.03 0.01 3300 3350 -5600 -5550 -200 -150 0.40 0.19 0.06 0.03 3300 3350 -5550 -5500 -200 -150 0.77 0.55 0.10 0.07 3300 3350 -5500 -5450 -200 -150 0.75 0.54 0.11 0.08 3300 3350 -5450 -5400 -200 -150 0.39 0.38 0.08 0.08 3300 3350 -5400 -5350 -200 -150 0.41 0.44 0.10 0.11 3300 3350 -5350 -5300 -200 -150 0.37 0.42 0.08 0.09 3300 3350 -5300 -5250 -200 -150 0.21 0.23 0.04 0.05 3300 3350 -5250 -5200 -200 -150 0.08 0.08 0.02 0.02 3300 3350 -5200 -5150 -200 -150 0.05 0.03 0.02 0.01

181 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3300 3350 -5150 -5100 -200 -150 0.06 0.02 0.02 0.01 3300 3350 -5100 -5050 -200 -150 0.10 0.08 0.04 0.03 3300 3350 -5050 -5000 -200 -150 0.17 0.17 0.05 0.05 3350 3400 -6000 -5950 -200 -150 0.23 0.24 0.07 0.07 3350 3400 -5950 -5900 -200 -150 0.14 0.09 0.04 0.02 3350 3400 -5900 -5850 -200 -150 0.15 0.08 0.03 0.02 3350 3400 -5850 -5800 -200 -150 0.20 0.11 0.04 0.02 3350 3400 -5800 -5750 -200 -150 0.18 0.09 0.04 0.02 3350 3400 -5750 -5700 -200 -150 0.11 0.04 0.03 0.01 3350 3400 -5700 -5650 -200 -150 0.09 0.03 0.02 0.01 3350 3400 -5650 -5600 -200 -150 0.28 0.10 0.05 0.02 3350 3400 -5600 -5550 -200 -150 0.52 0.24 0.07 0.03 3350 3400 -5550 -5500 -200 -150 0.52 0.36 0.07 0.05 3350 3400 -5500 -5450 -200 -150 0.65 0.45 0.09 0.06 3350 3400 -5450 -5400 -200 -150 0.53 0.53 0.11 0.11 3350 3400 -5400 -5350 -200 -150 0.60 0.65 0.12 0.13 3350 3400 -5350 -5300 -200 -150 0.47 0.51 0.12 0.13 3350 3400 -5300 -5250 -200 -150 0.31 0.32 0.06 0.06 3350 3400 -5250 -5200 -200 -150 0.05 0.04 0.01 0.01 3350 3400 -5200 -5150 -200 -150 0.04 0.03 0.01 0.01 3350 3400 -5150 -5100 -200 -150 0.12 0.07 0.04 0.02 3350 3400 -5100 -5050 -200 -150 0.22 0.13 0.07 0.04 3350 3400 -5050 -5000 -200 -150 0.21 0.14 0.06 0.04 3400 3450 -5400 -5350 -200 -150 0.61 0.66 0.11 0.12 3400 3450 -5350 -5300 -200 -150 0.45 0.48 0.10 0.11 3400 3450 -5300 -5250 -200 -150 0.28 0.28 0.06 0.06 3400 3450 -5250 -5200 -200 -150 0.06 0.04 0.02 0.01 3400 3450 -5200 -5150 -200 -150 0.04 0.03 0.02 0.01 3400 3450 -5150 -5100 -200 -150 0.18 0.14 0.05 0.04 3400 3450 -5100 -5050 -200 -150 0.40 0.25 0.11 0.07 3400 3450 -5050 -5000 -200 -150 0.32 0.19 0.08 0.05 3450 3500 -5400 -5350 -200 -150 0.28 0.30 0.05 0.06

182 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3450 3500 -5350 -5300 -200 -150 0.33 0.33 0.07 0.08 3450 3500 -5300 -5250 -200 -150 0.24 0.22 0.07 0.06 3450 3500 -5250 -5200 -200 -150 0.08 0.06 0.03 0.03 3450 3500 -5200 -5150 -200 -150 0.08 0.06 0.04 0.03 3450 3500 -5150 -5100 -200 -150 0.35 0.23 0.10 0.06 3450 3500 -5100 -5050 -200 -150 0.65 0.36 0.15 0.08 3450 3500 -5050 -5000 -200 -150 0.52 0.39 0.13 0.10 3500 3550 -5400 -5350 -200 -150 0.07 0.06 0.02 0.02 3500 3550 -5350 -5300 -200 -150 0.18 0.17 0.04 0.04 3500 3550 -5300 -5250 -200 -150 0.18 0.15 0.06 0.05 3500 3550 -5250 -5200 -200 -150 0.09 0.06 0.04 0.03 3500 3550 -5200 -5150 -200 -150 0.11 0.07 0.05 0.03 3500 3550 -5150 -5100 -200 -150 0.42 0.24 0.11 0.06 3500 3550 -5100 -5050 -200 -150 0.84 0.39 0.17 0.08 3500 3550 -5050 -5000 -200 -150 0.83 0.60 0.19 0.14 3550 3600 -5400 -5350 -200 -150 0.04 0.02 0.01 0.01 3550 3600 -5350 -5300 -200 -150 0.09 0.07 0.03 0.02 3550 3600 -5300 -5250 -200 -150 0.11 0.09 0.03 0.03 3550 3600 -5250 -5200 -200 -150 0.10 0.07 0.04 0.03 3550 3600 -5200 -5150 -200 -150 0.18 0.11 0.06 0.04 3550 3600 -5150 -5100 -200 -150 0.54 0.37 0.12 0.08 3550 3600 -5100 -5050 -200 -150 1.12 0.59 0.21 0.11 3550 3600 -5050 -5000 -200 -150 1.21 0.64 0.22 0.12 3600 3650 -5400 -5350 -200 -150 0.09 0.05 0.03 0.02 3600 3650 -5350 -5300 -200 -150 0.11 0.08 0.04 0.03 3600 3650 -5300 -5250 -200 -150 0.11 0.09 0.04 0.03 3600 3650 -5250 -5200 -200 -150 0.11 0.07 0.05 0.03 3600 3650 -5200 -5150 -200 -150 0.22 0.12 0.08 0.04 3600 3650 -5150 -5100 -200 -150 0.60 0.37 0.14 0.09 3600 3650 -5100 -5050 -200 -150 1.20 0.55 0.24 0.11 3600 3650 -5050 -5000 -200 -150 1.29 0.64 0.22 0.11 3650 3700 -5400 -5350 -200 -150 0.17 0.17 0.05 0.05

183 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3650 3700 -5350 -5300 -200 -150 0.14 0.15 0.05 0.05 3650 3700 -5300 -5250 -200 -150 0.12 0.12 0.05 0.05 3650 3700 -5250 -5200 -200 -150 0.12 0.07 0.06 0.04 3650 3700 -5200 -5150 -200 -150 0.19 0.09 0.09 0.04 3650 3700 -5150 -5100 -200 -150 0.55 0.26 0.15 0.07 3650 3700 -5100 -5050 -200 -150 1.03 0.39 0.22 0.09 3650 3700 -5050 -5000 -200 -150 1.06 0.77 0.22 0.16 3700 3750 -5400 -5350 -200 -150 0.27 0.30 0.09 0.10 3700 3750 -5350 -5300 -200 -150 0.15 0.16 0.06 0.06 3700 3750 -5300 -5250 -200 -150 0.12 0.12 0.05 0.05 3700 3750 -5250 -5200 -200 -150 0.12 0.10 0.06 0.05 3700 3750 -5200 -5150 -200 -150 0.23 0.17 0.09 0.07 3700 3750 -5150 -5100 -200 -150 0.63 0.48 0.18 0.14 3700 3750 -5100 -5050 -200 -150 1.22 0.89 0.27 0.19 3700 3750 -5050 -5000 -200 -150 1.11 0.95 0.25 0.21 3750 3800 -5400 -5350 -200 -150 0.24 0.22 0.08 0.07 3750 3800 -5350 -5300 -200 -150 0.08 0.06 0.03 0.02 3750 3800 -5300 -5250 -200 -150 0.08 0.06 0.03 0.03 3750 3800 -5250 -5200 -200 -150 0.11 0.07 0.05 0.03 3750 3800 -5200 -5150 -200 -150 0.29 0.16 0.11 0.06 3750 3800 -5150 -5100 -200 -150 0.83 0.46 0.22 0.12 3750 3800 -5100 -5050 -200 -150 1.19 0.65 0.24 0.13 3750 3800 -5050 -5000 -200 -150 1.35 0.78 0.28 0.16 3800 3850 -5400 -5350 -200 -150 0.25 0.16 0.07 0.05 3800 3850 -5350 -5300 -200 -150 0.09 0.06 0.03 0.02 3800 3850 -5300 -5250 -200 -150 0.09 0.06 0.03 0.02 3800 3850 -5250 -5200 -200 -150 0.14 0.09 0.06 0.04 3800 3850 -5200 -5150 -200 -150 0.38 0.22 0.14 0.08 3800 3850 -5150 -5100 -200 -150 0.83 0.43 0.23 0.12 3800 3850 -5100 -5050 -200 -150 1.13 0.44 0.21 0.08 3800 3850 -5050 -5000 -200 -150 1.25 0.52 0.25 0.10 3850 3900 -5400 -5350 -200 -150 0.46 0.40 0.11 0.09

184 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3850 3900 -5350 -5300 -200 -150 0.29 0.29 0.09 0.09 3850 3900 -5300 -5250 -200 -150 0.27 0.28 0.09 0.09 3850 3900 -5250 -5200 -200 -150 0.28 0.29 0.12 0.12 3850 3900 -5200 -5150 -200 -150 0.64 0.66 0.23 0.24 3850 3900 -5150 -5100 -200 -150 0.86 0.85 0.21 0.21 3850 3900 -5100 -5050 -200 -150 0.97 0.88 0.21 0.19 3850 3900 -5050 -5000 -200 -150 1.24 1.14 0.25 0.23 3900 3950 -5400 -5350 -200 -150 0.79 0.78 0.17 0.17 3900 3950 -5350 -5300 -200 -150 0.71 0.72 0.16 0.17 3900 3950 -5300 -5250 -200 -150 0.52 0.55 0.14 0.15 3900 3950 -5250 -5200 -200 -150 0.57 0.59 0.18 0.18 3900 3950 -5200 -5150 -200 -150 0.47 0.48 0.15 0.16 3900 3950 -5150 -5100 -200 -150 0.75 0.77 0.20 0.20 3900 3950 -5100 -5050 -200 -150 0.84 0.84 0.18 0.18 3900 3950 -5050 -5000 -200 -150 1.10 1.11 0.23 0.23 3950 4000 -5400 -5350 -200 -150 0.80 0.42 0.18 0.09 3950 4000 -5350 -5300 -200 -150 0.81 0.48 0.17 0.10 3950 4000 -5300 -5250 -200 -150 0.72 0.53 0.17 0.13 3950 4000 -5250 -5200 -200 -150 0.65 0.42 0.20 0.13 3950 4000 -5200 -5150 -200 -150 0.61 0.35 0.21 0.12 3950 4000 -5150 -5100 -200 -150 0.48 0.27 0.14 0.08 3950 4000 -5100 -5050 -200 -150 0.51 0.26 0.11 0.05 3950 4000 -5050 -5000 -200 -150 0.82 0.45 0.15 0.08 4000 4050 -5400 -5350 -200 -150 0.81 0.46 0.18 0.10 4000 4050 -5350 -5300 -200 -150 0.89 0.56 0.19 0.12 4000 4050 -5300 -5250 -200 -150 0.76 0.59 0.18 0.14 4000 4050 -5250 -5200 -200 -150 0.73 0.45 0.22 0.14 4000 4050 -5200 -5150 -200 -150 0.68 0.37 0.23 0.12 4000 4050 -5150 -5100 -200 -150 0.51 0.29 0.15 0.08 4000 4050 -5100 -5050 -200 -150 0.52 0.27 0.11 0.06 4000 4050 -5050 -5000 -200 -150 0.82 0.45 0.15 0.08 4050 4100 -5400 -5350 -200 -150 0.97 1.00 0.21 0.22

185 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 4050 4100 -5350 -5300 -200 -150 1.01 1.04 0.23 0.23 4050 4100 -5300 -5250 -200 -150 0.85 0.85 0.20 0.20 4050 4100 -5250 -5200 -200 -150 0.72 0.56 0.18 0.14 4050 4100 -5200 -5150 -200 -150 0.67 0.48 0.17 0.12 4050 4100 -5150 -5100 -200 -150 0.71 0.66 0.18 0.17 4050 4100 -5100 -5050 -200 -150 0.71 0.70 0.16 0.15 4050 4100 -5050 -5000 -200 -150 0.85 0.86 0.18 0.18

LEVEL 5 2600 2650 -5700 -5650 -250 -200 0.46 0.53 0.09 0.10 2600 2650 -5650 -5600 -250 -200 0.67 0.75 0.13 0.15 2600 2650 -5600 -5550 -250 -200 0.71 0.76 0.11 0.12 2600 2650 -5550 -5500 -250 -200 0.73 0.78 0.13 0.13 2600 2650 -5500 -5450 -250 -200 0.69 0.76 0.12 0.13 2600 2650 -5450 -5400 -250 -200 0.62 0.70 0.17 0.19 2600 2650 -5400 -5350 -250 -200 0.52 0.60 0.13 0.15 2600 2650 -5350 -5300 -250 -200 0.42 0.48 0.10 0.11 2650 2700 -5700 -5650 -250 -200 0.64 0.73 0.12 0.13 2650 2700 -5650 -5600 -250 -200 0.83 0.87 0.10 0.11 2650 2700 -5600 -5550 -250 -200 0.80 0.69 0.13 0.11 2650 2700 -5550 -5500 -250 -200 0.49 0.44 0.09 0.08 2650 2700 -5500 -5450 -250 -200 0.52 0.55 0.09 0.10 2650 2700 -5450 -5400 -250 -200 0.56 0.62 0.11 0.12 2650 2700 -5400 -5350 -250 -200 0.44 0.51 0.11 0.12 2650 2700 -5350 -5300 -250 -200 0.42 0.48 0.10 0.11 2700 2750 -5700 -5650 -250 -200 0.57 0.64 0.10 0.11 2700 2750 -5650 -5600 -250 -200 0.66 0.69 0.09 0.09 2700 2750 -5600 -5550 -250 -200 0.65 0.58 0.09 0.08 2700 2750 -5550 -5500 -250 -200 0.48 0.44 0.07 0.06 2700 2750 -5500 -5450 -250 -200 0.51 0.54 0.08 0.08 2700 2750 -5450 -5400 -250 -200 0.68 0.76 0.10 0.11 2700 2750 -5400 -5350 -250 -200 0.50 0.57 0.11 0.13

186 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2700 2750 -5350 -5300 -250 -200 0.43 0.49 0.10 0.11 2750 2800 -5700 -5650 -250 -200 0.47 0.50 0.07 0.08 2750 2800 -5650 -5600 -250 -200 0.68 0.72 0.08 0.08 2750 2800 -5600 -5550 -250 -200 0.60 0.63 0.07 0.08 2750 2800 -5550 -5500 -250 -200 0.38 0.36 0.05 0.04 2750 2800 -5500 -5450 -250 -200 0.41 0.40 0.05 0.05 2750 2800 -5450 -5400 -250 -200 0.53 0.58 0.08 0.08 2750 2800 -5400 -5350 -250 -200 0.52 0.59 0.12 0.13 2750 2800 -5350 -5300 -250 -200 0.35 0.40 0.07 0.08 2800 2850 -5700 -5650 -250 -200 0.35 0.35 0.06 0.06 2800 2850 -5650 -5600 -250 -200 0.47 0.50 0.08 0.08 2800 2850 -5600 -5550 -250 -200 0.46 0.50 0.07 0.07 2800 2850 -5550 -5500 -250 -200 0.29 0.28 0.03 0.03 2800 2850 -5500 -5450 -250 -200 0.38 0.38 0.04 0.04 2800 2850 -5450 -5400 -250 -200 0.53 0.59 0.09 0.10 2800 2850 -5400 -5350 -250 -200 0.46 0.53 0.09 0.10 2800 2850 -5350 -5300 -250 -200 0.41 0.47 0.08 0.09 2850 2900 -5700 -5650 -250 -200 0.20 0.16 0.04 0.04 2850 2900 -5650 -5600 -250 -200 0.28 0.27 0.07 0.07 2850 2900 -5600 -5550 -250 -200 0.23 0.25 0.05 0.06 2850 2900 -5550 -5500 -250 -200 0.26 0.27 0.05 0.05 2850 2900 -5500 -5450 -250 -200 0.25 0.26 0.05 0.05 2850 2900 -5450 -5400 -250 -200 0.57 0.65 0.11 0.12 2850 2900 -5400 -5350 -250 -200 0.47 0.54 0.11 0.12 2850 2900 -5350 -5300 -250 -200 0.51 0.58 0.11 0.13 2900 2950 -5700 -5650 -250 -200 0.21 0.12 0.06 0.03 2900 2950 -5650 -5600 -250 -200 0.19 0.14 0.07 0.05 2900 2950 -5600 -5550 -250 -200 0.17 0.16 0.06 0.05 2900 2950 -5550 -5500 -250 -200 0.21 0.21 0.05 0.05 2900 2950 -5500 -5450 -250 -200 0.36 0.39 0.06 0.07 2900 2950 -5450 -5400 -250 -200 0.55 0.61 0.10 0.11 2900 2950 -5400 -5350 -250 -200 0.72 0.82 0.15 0.17

187 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2900 2950 -5350 -5300 -250 -200 0.54 0.62 0.14 0.16 2950 3000 -5700 -5650 -250 -200 0.72 0.24 0.16 0.05 2950 3000 -5650 -5600 -250 -200 0.35 0.13 0.10 0.04 2950 3000 -5600 -5550 -250 -200 0.31 0.17 0.09 0.05 2950 3000 -5550 -5500 -250 -200 0.37 0.34 0.09 0.08 2950 3000 -5500 -5450 -250 -200 0.27 0.29 0.06 0.06 2950 3000 -5450 -5400 -250 -200 0.41 0.45 0.08 0.09 2950 3000 -5400 -5350 -250 -200 0.61 0.70 0.14 0.16 2950 3000 -5350 -5300 -250 -200 0.58 0.66 0.14 0.16 3000 3050 -6000 -5950 -250 -200 0.55 0.57 0.13 0.13 3000 3050 -5950 -5900 -250 -200 0.62 0.34 0.14 0.07 3000 3050 -5900 -5850 -250 -200 0.52 0.25 0.10 0.05 3000 3050 -5850 -5800 -250 -200 0.35 0.18 0.05 0.03 3000 3050 -5800 -5750 -250 -200 0.60 0.23 0.09 0.04 3000 3050 -5750 -5700 -250 -200 1.65 0.59 0.33 0.12 3000 3050 -5700 -5650 -250 -200 0.96 0.32 0.23 0.08 3000 3050 -5650 -5600 -250 -200 0.60 0.20 0.11 0.04 3000 3050 -5600 -5550 -250 -200 0.75 0.37 0.13 0.06 3000 3050 -5550 -5500 -250 -200 0.54 0.48 0.10 0.09 3000 3050 -5500 -5450 -250 -200 0.30 0.31 0.06 0.06 3000 3050 -5450 -5400 -250 -200 0.24 0.26 0.05 0.05 3000 3050 -5400 -5350 -250 -200 0.58 0.66 0.13 0.15 3000 3050 -5350 -5300 -250 -200 0.48 0.55 0.12 0.14 3000 3050 -5300 -5250 -250 -200 1.13 1.28 0.24 0.27 3000 3050 -5250 -5200 -250 -200 0.75 0.83 0.20 0.23 3000 3050 -5200 -5150 -250 -200 0.56 0.62 0.15 0.16 3000 3050 -5150 -5100 -250 -200 0.34 0.39 0.09 0.10 3000 3050 -5100 -5050 -250 -200 0.26 0.29 0.06 0.07 3000 3050 -5050 -5000 -250 -200 0.26 0.29 0.06 0.07 3050 3100 -6000 -5950 -250 -200 0.70 0.73 0.14 0.15 3050 3100 -5950 -5900 -250 -200 0.75 0.48 0.17 0.11 3050 3100 -5900 -5850 -250 -200 0.61 0.36 0.11 0.06

188 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3050 3100 -5850 -5800 -250 -200 0.36 0.18 0.04 0.02 3050 3100 -5800 -5750 -250 -200 0.49 0.23 0.06 0.03 3050 3100 -5750 -5700 -250 -200 1.19 0.51 0.21 0.09 3050 3100 -5700 -5650 -250 -200 1.05 0.40 0.20 0.07 3050 3100 -5650 -5600 -250 -200 0.80 0.36 0.15 0.07 3050 3100 -5600 -5550 -250 -200 1.56 0.77 0.23 0.11 3050 3100 -5550 -5500 -250 -200 0.55 0.46 0.09 0.07 3050 3100 -5500 -5450 -250 -200 0.16 0.15 0.03 0.03 3050 3100 -5450 -5400 -250 -200 0.15 0.16 0.03 0.03 3050 3100 -5400 -5350 -250 -200 0.34 0.38 0.08 0.09 3050 3100 -5350 -5300 -250 -200 0.39 0.44 0.08 0.09 3050 3100 -5300 -5250 -250 -200 0.90 1.03 0.16 0.19 3050 3100 -5250 -5200 -250 -200 1.00 1.13 0.19 0.22 3050 3100 -5200 -5150 -250 -200 0.33 0.37 0.10 0.11 3050 3100 -5150 -5100 -250 -200 0.34 0.39 0.09 0.10 3050 3100 -5100 -5050 -250 -200 0.25 0.28 0.06 0.07 3050 3100 -5050 -5000 -250 -200 0.24 0.27 0.06 0.07 3100 3150 -6000 -5950 -250 -200 0.58 0.55 0.10 0.09 3100 3150 -5950 -5900 -250 -200 0.64 0.34 0.10 0.06 3100 3150 -5900 -5850 -250 -200 0.75 0.37 0.11 0.05 3100 3150 -5850 -5800 -250 -200 0.47 0.33 0.07 0.05 3100 3150 -5800 -5750 -250 -200 0.57 0.36 0.11 0.07 3100 3150 -5750 -5700 -250 -200 1.12 0.57 0.25 0.13 3100 3150 -5700 -5650 -250 -200 0.90 0.44 0.17 0.08 3100 3150 -5650 -5600 -250 -200 1.16 0.62 0.20 0.10 3100 3150 -5600 -5550 -250 -200 1.42 0.73 0.24 0.12 3100 3150 -5550 -5500 -250 -200 0.36 0.27 0.08 0.06 3100 3150 -5500 -5450 -250 -200 0.09 0.07 0.02 0.02 3100 3150 -5450 -5400 -250 -200 0.06 0.06 0.02 0.02 3100 3150 -5400 -5350 -250 -200 0.23 0.26 0.05 0.05 3100 3150 -5350 -5300 -250 -200 0.20 0.22 0.07 0.08 3100 3150 -5300 -5250 -250 -200 0.43 0.47 0.14 0.15

189 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3100 3150 -5250 -5200 -250 -200 0.58 0.66 0.11 0.12 3100 3150 -5200 -5150 -250 -200 0.42 0.47 0.10 0.11 3100 3150 -5150 -5100 -250 -200 0.29 0.33 0.07 0.08 3100 3150 -5100 -5050 -250 -200 0.23 0.26 0.07 0.08 3100 3150 -5050 -5000 -250 -200 0.22 0.24 0.07 0.07 3150 3200 -6000 -5950 -250 -200 0.46 0.25 0.06 0.04 3150 3200 -5950 -5900 -250 -200 0.53 0.24 0.08 0.04 3150 3200 -5900 -5850 -250 -200 1.05 0.45 0.15 0.06 3150 3200 -5850 -5800 -250 -200 1.06 0.51 0.17 0.08 3150 3200 -5800 -5750 -250 -200 1.21 0.60 0.29 0.14 3150 3200 -5750 -5700 -250 -200 2.08 0.94 0.50 0.22 3150 3200 -5700 -5650 -250 -200 1.42 0.57 0.32 0.13 3150 3200 -5650 -5600 -250 -200 0.95 0.44 0.21 0.10 3150 3200 -5600 -5550 -250 -200 0.77 0.36 0.17 0.08 3150 3200 -5550 -5500 -250 -200 0.27 0.14 0.08 0.04 3150 3200 -5500 -5450 -250 -200 0.07 0.05 0.03 0.02 3150 3200 -5450 -5400 -250 -200 0.06 0.05 0.03 0.02 3150 3200 -5400 -5350 -250 -200 0.12 0.13 0.03 0.03 3150 3200 -5350 -5300 -250 -200 0.15 0.17 0.05 0.05 3150 3200 -5300 -5250 -250 -200 0.22 0.24 0.06 0.06 3150 3200 -5250 -5200 -250 -200 0.32 0.35 0.07 0.08 3150 3200 -5200 -5150 -250 -200 0.15 0.17 0.05 0.05 3150 3200 -5150 -5100 -250 -200 0.23 0.26 0.05 0.06 3150 3200 -5100 -5050 -250 -200 0.14 0.15 0.05 0.05 3150 3200 -5050 -5000 -250 -200 0.18 0.20 0.06 0.06 3200 3250 -6000 -5950 -250 -200 0.39 0.18 0.06 0.03 3200 3250 -5950 -5900 -250 -200 0.34 0.15 0.06 0.03 3200 3250 -5900 -5850 -250 -200 0.62 0.29 0.11 0.05 3200 3250 -5850 -5800 -250 -200 0.81 0.36 0.15 0.07 3200 3250 -5800 -5750 -250 -200 0.81 0.39 0.23 0.11 3200 3250 -5750 -5700 -250 -200 1.08 0.51 0.31 0.14 3200 3250 -5700 -5650 -250 -200 0.81 0.37 0.22 0.10

190 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3200 3250 -5650 -5600 -250 -200 0.64 0.30 0.15 0.07 3200 3250 -5600 -5550 -250 -200 0.49 0.25 0.11 0.06 3200 3250 -5550 -5500 -250 -200 0.26 0.16 0.06 0.04 3200 3250 -5500 -5450 -250 -200 0.10 0.09 0.04 0.03 3200 3250 -5450 -5400 -250 -200 0.07 0.07 0.02 0.02 3200 3250 -5400 -5350 -250 -200 0.18 0.19 0.05 0.06 3200 3250 -5350 -5300 -250 -200 0.20 0.22 0.06 0.07 3200 3250 -5300 -5250 -250 -200 0.15 0.16 0.04 0.04 3200 3250 -5250 -5200 -250 -200 0.14 0.15 0.05 0.05 3200 3250 -5200 -5150 -250 -200 0.10 0.11 0.04 0.04 3200 3250 -5150 -5100 -250 -200 0.11 0.13 0.04 0.04 3200 3250 -5100 -5050 -250 -200 0.10 0.11 0.04 0.04 3200 3250 -5050 -5000 -250 -200 0.17 0.19 0.05 0.05 3250 3300 -6000 -5950 -250 -200 0.26 0.24 0.06 0.05 3250 3300 -5950 -5900 -250 -200 0.18 0.12 0.05 0.03 3250 3300 -5900 -5850 -250 -200 0.20 0.13 0.06 0.04 3250 3300 -5850 -5800 -250 -200 0.21 0.11 0.07 0.04 3250 3300 -5800 -5750 -250 -200 0.19 0.11 0.07 0.04 3250 3300 -5750 -5700 -250 -200 0.17 0.10 0.06 0.03 3250 3300 -5700 -5650 -250 -200 0.16 0.09 0.05 0.03 3250 3300 -5650 -5600 -250 -200 0.23 0.14 0.06 0.04 3250 3300 -5600 -5550 -250 -200 0.31 0.21 0.07 0.05 3250 3300 -5550 -5500 -250 -200 0.41 0.38 0.08 0.07 3250 3300 -5500 -5450 -250 -200 0.31 0.31 0.07 0.07 3250 3300 -5450 -5400 -250 -200 0.26 0.28 0.07 0.08 3250 3300 -5400 -5350 -250 -200 0.32 0.36 0.09 0.10 3250 3300 -5350 -5300 -250 -200 0.31 0.36 0.09 0.10 3250 3300 -5300 -5250 -250 -200 0.10 0.11 0.03 0.04 3250 3300 -5250 -5200 -250 -200 0.08 0.09 0.03 0.03 3250 3300 -5200 -5150 -250 -200 0.03 0.03 0.02 0.02 3250 3300 -5150 -5100 -250 -200 0.04 0.04 0.02 0.02 3250 3300 -5100 -5050 -250 -200 0.03 0.03 0.01 0.02

191 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3250 3300 -5050 -5000 -250 -200 0.21 0.24 0.06 0.07 3300 3350 -6000 -5950 -250 -200 0.20 0.21 0.05 0.06 3300 3350 -5950 -5900 -250 -200 0.11 0.07 0.03 0.02 3300 3350 -5900 -5850 -250 -200 0.11 0.07 0.04 0.02 3300 3350 -5850 -5800 -250 -200 0.16 0.08 0.04 0.02 3300 3350 -5800 -5750 -250 -200 0.15 0.08 0.04 0.02 3300 3350 -5750 -5700 -250 -200 0.10 0.04 0.02 0.01 3300 3350 -5700 -5650 -250 -200 0.08 0.04 0.02 0.01 3300 3350 -5650 -5600 -250 -200 0.23 0.10 0.05 0.02 3300 3350 -5600 -5550 -250 -200 0.46 0.26 0.08 0.04 3300 3350 -5550 -5500 -250 -200 0.51 0.49 0.08 0.08 3300 3350 -5500 -5450 -250 -200 0.40 0.42 0.07 0.08 3300 3350 -5450 -5400 -250 -200 0.43 0.49 0.10 0.12 3300 3350 -5400 -5350 -250 -200 0.40 0.46 0.11 0.13 3300 3350 -5350 -5300 -250 -200 0.32 0.36 0.07 0.08 3300 3350 -5300 -5250 -250 -200 0.14 0.16 0.04 0.05 3300 3350 -5250 -5200 -250 -200 0.09 0.10 0.02 0.03 3300 3350 -5200 -5150 -250 -200 0.02 0.02 0.01 0.01 3300 3350 -5150 -5100 -250 -200 0.01 0.01 0.01 0.00 3300 3350 -5100 -5050 -250 -200 0.05 0.04 0.02 0.02 3300 3350 -5050 -5000 -250 -200 0.22 0.25 0.07 0.08 3350 3400 -6000 -5950 -250 -200 0.20 0.21 0.06 0.07 3350 3400 -5950 -5900 -250 -200 0.10 0.06 0.03 0.02 3350 3400 -5900 -5850 -250 -200 0.10 0.06 0.03 0.02 3350 3400 -5850 -5800 -250 -200 0.15 0.07 0.04 0.02 3350 3400 -5800 -5750 -250 -200 0.16 0.07 0.03 0.02 3350 3400 -5750 -5700 -250 -200 0.14 0.05 0.03 0.01 3350 3400 -5700 -5650 -250 -200 0.14 0.05 0.04 0.01 3350 3400 -5650 -5600 -250 -200 0.20 0.08 0.06 0.02 3350 3400 -5600 -5550 -250 -200 0.27 0.17 0.06 0.04 3350 3400 -5550 -5500 -250 -200 0.28 0.27 0.05 0.05 3350 3400 -5500 -5450 -250 -200 0.38 0.39 0.07 0.07

192 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3350 3400 -5450 -5400 -250 -200 0.41 0.46 0.09 0.10 3350 3400 -5400 -5350 -250 -200 0.58 0.66 0.13 0.15 3350 3400 -5350 -5300 -250 -200 0.31 0.36 0.09 0.10 3350 3400 -5300 -5250 -250 -200 0.19 0.21 0.04 0.05 3350 3400 -5250 -5200 -250 -200 0.08 0.09 0.03 0.03 3350 3400 -5200 -5150 -250 -200 0.03 0.03 0.01 0.01 3350 3400 -5150 -5100 -250 -200 0.04 0.03 0.02 0.02 3350 3400 -5100 -5050 -250 -200 0.09 0.08 0.04 0.04 3350 3400 -5050 -5000 -250 -200 0.19 0.19 0.06 0.06 3400 3450 -5400 -5350 -250 -200 0.63 0.72 0.13 0.15 3400 3450 -5350 -5300 -250 -200 0.29 0.33 0.09 0.10 3400 3450 -5300 -5250 -250 -200 0.30 0.34 0.08 0.08 3400 3450 -5250 -5200 -250 -200 0.12 0.13 0.04 0.04 3400 3450 -5200 -5150 -250 -200 0.08 0.08 0.04 0.04 3400 3450 -5150 -5100 -250 -200 0.15 0.15 0.06 0.06 3400 3450 -5100 -5050 -250 -200 0.25 0.25 0.09 0.09 3400 3450 -5050 -5000 -250 -200 0.27 0.24 0.08 0.08 3450 3500 -5400 -5350 -250 -200 0.44 0.50 0.10 0.12 3450 3500 -5350 -5300 -250 -200 0.27 0.31 0.06 0.07 3450 3500 -5300 -5250 -250 -200 0.19 0.21 0.06 0.07 3450 3500 -5250 -5200 -250 -200 0.21 0.22 0.07 0.08 3450 3500 -5200 -5150 -250 -200 0.14 0.14 0.06 0.06 3450 3500 -5150 -5100 -250 -200 0.30 0.30 0.10 0.09 3450 3500 -5100 -5050 -250 -200 0.50 0.37 0.14 0.10 3450 3500 -5050 -5000 -250 -200 0.30 0.18 0.11 0.06 3500 3550 -5400 -5350 -250 -200 0.22 0.24 0.06 0.06 3500 3550 -5350 -5300 -250 -200 0.26 0.29 0.08 0.09 3500 3550 -5300 -5250 -250 -200 0.11 0.12 0.04 0.05 3500 3550 -5250 -5200 -250 -200 0.12 0.13 0.06 0.06 3500 3550 -5200 -5150 -250 -200 0.20 0.20 0.09 0.09 3500 3550 -5150 -5100 -250 -200 0.45 0.42 0.13 0.12 3500 3550 -5100 -5050 -250 -200 0.70 0.47 0.17 0.12

193 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3500 3550 -5050 -5000 -250 -200 0.45 0.20 0.15 0.07 3550 3600 -5400 -5350 -250 -200 0.16 0.15 0.04 0.04 3550 3600 -5350 -5300 -250 -200 0.15 0.16 0.05 0.05 3550 3600 -5300 -5250 -250 -200 0.12 0.13 0.04 0.05 3550 3600 -5250 -5200 -250 -200 0.13 0.12 0.05 0.05 3550 3600 -5200 -5150 -250 -200 0.18 0.17 0.07 0.06 3550 3600 -5150 -5100 -250 -200 0.49 0.49 0.14 0.14 3550 3600 -5100 -5050 -250 -200 0.90 0.78 0.20 0.18 3550 3600 -5050 -5000 -250 -200 0.99 0.65 0.22 0.14 3600 3650 -5400 -5350 -250 -200 0.15 0.14 0.05 0.05 3600 3650 -5350 -5300 -250 -200 0.18 0.19 0.06 0.06 3600 3650 -5300 -5250 -250 -200 0.14 0.15 0.05 0.06 3600 3650 -5250 -5200 -250 -200 0.11 0.10 0.05 0.05 3600 3650 -5200 -5150 -250 -200 0.18 0.16 0.08 0.07 3600 3650 -5150 -5100 -250 -200 0.51 0.49 0.15 0.14 3600 3650 -5100 -5050 -250 -200 0.93 0.75 0.21 0.17 3600 3650 -5050 -5000 -250 -200 0.92 0.53 0.17 0.10 3650 3700 -5400 -5350 -250 -200 0.18 0.20 0.06 0.07 3650 3700 -5350 -5300 -250 -200 0.19 0.22 0.07 0.08 3650 3700 -5300 -5250 -250 -200 0.11 0.13 0.05 0.06 3650 3700 -5250 -5200 -250 -200 0.13 0.12 0.07 0.06 3650 3700 -5200 -5150 -250 -200 0.23 0.20 0.11 0.10 3650 3700 -5150 -5100 -250 -200 0.59 0.53 0.17 0.16 3650 3700 -5100 -5050 -250 -200 0.80 0.47 0.19 0.11 3650 3700 -5050 -5000 -250 -200 0.45 0.16 0.10 0.03 3700 3750 -5400 -5350 -250 -200 0.25 0.28 0.08 0.09 3700 3750 -5350 -5300 -250 -200 0.21 0.24 0.08 0.09 3700 3750 -5300 -5250 -250 -200 0.14 0.16 0.06 0.07 3700 3750 -5250 -5200 -250 -200 0.12 0.12 0.07 0.07 3700 3750 -5200 -5150 -250 -200 0.21 0.20 0.09 0.09 3700 3750 -5150 -5100 -250 -200 0.52 0.49 0.16 0.15 3700 3750 -5100 -5050 -250 -200 0.82 0.64 0.17 0.13

194 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3700 3750 -5050 -5000 -250 -200 0.47 0.34 0.11 0.08 3750 3800 -5400 -5350 -250 -200 0.28 0.29 0.09 0.09 3750 3800 -5350 -5300 -250 -200 0.22 0.23 0.09 0.09 3750 3800 -5300 -5250 -250 -200 0.14 0.14 0.07 0.07 3750 3800 -5250 -5200 -250 -200 0.09 0.07 0.05 0.04 3750 3800 -5200 -5150 -250 -200 0.14 0.11 0.06 0.05 3750 3800 -5150 -5100 -250 -200 0.51 0.39 0.14 0.11 3750 3800 -5100 -5050 -250 -200 0.80 0.44 0.13 0.07 3750 3800 -5050 -5000 -250 -200 0.65 0.39 0.13 0.08 3800 3850 -5400 -5350 -250 -200 0.30 0.27 0.08 0.07 3800 3850 -5350 -5300 -250 -200 0.24 0.24 0.08 0.08 3800 3850 -5300 -5250 -250 -200 0.13 0.13 0.06 0.06 3800 3850 -5250 -5200 -250 -200 0.09 0.07 0.04 0.03 3800 3850 -5200 -5150 -250 -200 0.13 0.11 0.06 0.05 3800 3850 -5150 -5100 -250 -200 0.47 0.35 0.13 0.10 3800 3850 -5100 -5050 -250 -200 0.74 0.34 0.11 0.05 3800 3850 -5050 -5000 -250 -200 0.70 0.35 0.13 0.06 3850 3900 -5400 -5350 -250 -200 0.46 0.45 0.11 0.11 3850 3900 -5350 -5300 -250 -200 0.43 0.47 0.13 0.14 3850 3900 -5300 -5250 -250 -200 0.30 0.33 0.10 0.11 3850 3900 -5250 -5200 -250 -200 0.22 0.24 0.10 0.10 3850 3900 -5200 -5150 -250 -200 0.27 0.29 0.09 0.09 3850 3900 -5150 -5100 -250 -200 0.46 0.48 0.13 0.13 3850 3900 -5100 -5050 -250 -200 0.73 0.71 0.14 0.13 3850 3900 -5050 -5000 -250 -200 0.75 0.72 0.16 0.15 3900 3950 -5400 -5350 -250 -200 0.62 0.64 0.14 0.15 3900 3950 -5350 -5300 -250 -200 0.56 0.62 0.13 0.15 3900 3950 -5300 -5250 -250 -200 0.40 0.45 0.12 0.13 3900 3950 -5250 -5200 -250 -200 0.33 0.35 0.11 0.11 3900 3950 -5200 -5150 -250 -200 0.40 0.41 0.12 0.12 3900 3950 -5150 -5100 -250 -200 0.54 0.57 0.13 0.14 3900 3950 -5100 -5050 -250 -200 0.60 0.61 0.15 0.15

195 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3900 3950 -5050 -5000 -250 -200 0.60 0.61 0.14 0.15 3950 4000 -5400 -5350 -250 -200 0.77 0.57 0.17 0.12 3950 4000 -5350 -5300 -250 -200 0.74 0.69 0.17 0.16 3950 4000 -5300 -5250 -250 -200 0.55 0.54 0.14 0.14 3950 4000 -5250 -5200 -250 -200 0.28 0.20 0.09 0.06 3950 4000 -5200 -5150 -250 -200 0.25 0.16 0.08 0.05 3950 4000 -5150 -5100 -250 -200 0.37 0.28 0.10 0.08 3950 4000 -5100 -5050 -250 -200 0.42 0.24 0.10 0.05 3950 4000 -5050 -5000 -250 -200 0.46 0.25 0.110.06 4000 4050 -5400 -5350 -250 -200 0.77 0.59 0.17 0.13 4000 4050 -5350 -5300 -250 -200 0.76 0.72 0.17 0.16 4000 4050 -5300 -5250 -250 -200 0.53 0.53 0.14 0.14 4000 4050 -5250 -5200 -250 -200 0.29 0.20 0.09 0.06 4000 4050 -5200 -5150 -250 -200 0.26 0.16 0.08 0.05 4000 4050 -5150 -5100 -250 -200 0.37 0.29 0.10 0.08 4000 4050 -5100 -5050 -250 -200 0.44 0.26 0.10 0.06 4000 4050 -5050 -5000 -250 -200 0.46 0.26 0.11 0.06 4050 4100 -5400 -5350 -250 -200 0.69 0.74 0.17 0.18 4050 4100 -5350 -5300 -250 -200 0.86 0.95 0.21 0.23 4050 4100 -5300 -5250 -250 -200 0.73 0.81 0.18 0.20 4050 4100 -5250 -5200 -250 -200 0.51 0.51 0.13 0.13 4050 4100 -5200 -5150 -250 -200 0.44 0.43 0.12 0.11 4050 4100 -5150 -5100 -250 -200 0.52 0.55 0.13 0.14 4050 4100 -5100 -5050 -250 -200 0.61 0.63 0.14 0.15 4050 4100 -5050 -5000 -250 -200 0.70 0.72 0.16 0.17

LEVEL 6 2600 2650 -5700 -5650 -300 -250 0.35 0.40 0.07 0.08 2600 2650 -5650 -5600 -300 -250 0.35 0.40 0.08 0.09 2600 2650 -5600 -5550 -300 -250 0.40 0.45 0.08 0.10 2600 2650 -5550 -5500 -300 -250 0.61 0.69 0.14 0.16 2600 2650 -5500 -5450 -300 -250 0.54 0.61 0.13 0.15

196 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2600 2650 -5450 -5400 -300 -250 0.42 0.47 0.10 0.11 2600 2650 -5400 -5350 -300 -250 0.42 0.48 0.10 0.11 2600 2650 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2650 2700 -5700 -5650 -300 -250 0.40 0.46 0.08 0.09 2650 2700 -5650 -5600 -300 -250 0.41 0.46 0.08 0.09 2650 2700 -5600 -5550 -300 -250 0.43 0.47 0.08 0.09 2650 2700 -5550 -5500 -300 -250 0.51 0.56 0.10 0.11 2650 2700 -5500 -5450 -300 -250 0.50 0.57 0.10 0.11 2650 2700 -5450 -5400 -300 -250 0.42 0.48 0.10 0.11 2650 2700 -5400 -5350 -300 -250 0.42 0.48 0.10 0.11 2650 2700 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2700 2750 -5700 -5650 -300 -250 0.50 0.58 0.10 0.11 2700 2750 -5650 -5600 -300 -250 0.49 0.55 0.09 0.10 2700 2750 -5600 -5550 -300 -250 0.53 0.58 0.10 0.11 2700 2750 -5550 -5500 -300 -250 0.52 0.58 0.11 0.12 2700 2750 -5500 -5450 -300 -250 0.52 0.59 0.11 0.13 2700 2750 -5450 -5400 -300 -250 0.49 0.56 0.11 0.12 2700 2750 -5400 -5350 -300 -250 0.42 0.48 0.10 0.11 2700 2750 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2750 2800 -5700 -5650 -300 -250 0.39 0.45 0.09 0.10 2750 2800 -5650 -5600 -300 -250 0.43 0.49 0.09 0.10 2750 2800 -5600 -5550 -300 -250 0.43 0.48 0.08 0.10 2750 2800 -5550 -5500 -300 -250 0.49 0.55 0.09 0.10 2750 2800 -5500 -5450 -300 -250 0.44 0.49 0.09 0.10 2750 2800 -5450 -5400 -300 -250 0.36 0.41 0.08 0.09 2750 2800 -5400 -5350 -300 -250 0.30 0.35 0.06 0.07 2750 2800 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2800 2850 -5700 -5650 -300 -250 0.27 0.30 0.08 0.09 2800 2850 -5650 -5600 -300 -250 0.35 0.40 0.08 0.09 2800 2850 -5600 -5550 -300 -250 0.47 0.53 0.09 0.10 2800 2850 -5550 -5500 -300 -250 0.37 0.42 0.07 0.08 2800 2850 -5500 -5450 -300 -250 0.34 0.38 0.06 0.07

197 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 2800 2850 -5450 -5400 -300 -250 0.29 0.34 0.06 0.07 2800 2850 -5400 -5350 -300 -250 0.30 0.35 0.06 0.07 2800 2850 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2850 2900 -5700 -5650 -300 -250 0.11 0.10 0.03 0.03 2850 2900 -5650 -5600 -300 -250 0.18 0.20 0.06 0.06 2850 2900 -5600 -5550 -300 -250 0.26 0.29 0.06 0.07 2850 2900 -5550 -5500 -300 -250 0.42 0.47 0.09 0.10 2850 2900 -5500 -5450 -300 -250 0.29 0.33 0.07 0.08 2850 2900 -5450 -5400 -300 -250 0.30 0.34 0.06 0.07 2850 2900 -5400 -5350 -300 -250 0.34 0.38 0.07 0.08 2850 2900 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2900 2950 -5700 -5650 -300 -250 0.06 0.04 0.03 0.02 2900 2950 -5650 -5600 -300 -250 0.07 0.06 0.04 0.03 2900 2950 -5600 -5550 -300 -250 0.10 0.10 0.05 0.04 2900 2950 -5550 -5500 -300 -250 0.21 0.23 0.06 0.07 2900 2950 -5500 -5450 -300 -250 0.30 0.34 0.07 0.08 2900 2950 -5450 -5400 -300 -250 0.29 0.33 0.06 0.07 2900 2950 -5400 -5350 -300 -250 0.32 0.36 0.07 0.08 2900 2950 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 2950 3000 -5700 -5650 -300 -250 0.19 0.11 0.06 0.04 2950 3000 -5650 -5600 -300 -250 0.09 0.05 0.04 0.02 2950 3000 -5600 -5550 -300 -250 0.15 0.12 0.07 0.05 2950 3000 -5550 -5500 -300 -250 0.20 0.21 0.06 0.06 2950 3000 -5500 -5450 -300 -250 0.51 0.58 0.12 0.14 2950 3000 -5450 -5400 -300 -250 0.32 0.36 0.07 0.08 2950 3000 -5400 -5350 -300 -250 0.32 0.36 0.07 0.08 2950 3000 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 3000 3050 -6000 -5950 -300 -250 0.39 0.42 0.08 0.09 3000 3050 -5950 -5900 -300 -250 0.22 0.18 0.05 0.04 3000 3050 -5900 -5850 -300 -250 0.17 0.13 0.04 0.03 3000 3050 -5850 -5800 -300 -250 0.16 0.11 0.03 0.02 3000 3050 -5800 -5750 -300 -250 0.33 0.19 0.06 0.03

198 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3000 3050 -5750 -5700 -300 -250 0.89 0.62 0.17 0.12 3000 3050 -5700 -5650 -300 -250 0.69 0.51 0.16 0.12 3000 3050 -5650 -5600 -300 -250 0.30 0.18 0.07 0.04 3000 3050 -5600 -5550 -300 -250 0.40 0.32 0.09 0.07 3000 3050 -5550 -5500 -300 -250 0.35 0.37 0.08 0.08 3000 3050 -5500 -5450 -300 -250 0.41 0.47 0.10 0.12 3000 3050 -5450 -5400 -300 -250 0.32 0.37 0.08 0.09 3000 3050 -5400 -5350 -300 -250 0.25 0.28 0.05 0.06 3000 3050 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 3000 3050 -5300 -5250 -300 -250 0.34 0.38 0.07 0.08 3000 3050 -5250 -5200 -300 -250 0.34 0.39 0.07 0.08 3000 3050 -5200 -5150 -300 -250 0.34 0.39 0.07 0.08 3000 3050 -5150 -5100 -300 -250 0.34 0.38 0.07 0.08 3000 3050 -5100 -5050 -300 -250 0.34 0.38 0.07 0.08 3000 3050 -5050 -5000 -300 -250 0.34 0.38 0.07 0.08 3050 3100 -6000 -5950 -300 -250 0.37 0.40 0.09 0.09 3050 3100 -5950 -5900 -300 -250 0.30 0.25 0.07 0.06 3050 3100 -5900 -5850 -300 -250 0.30 0.24 0.07 0.06 3050 3100 -5850 -5800 -300 -250 0.28 0.22 0.05 0.04 3050 3100 -5800 -5750 -300 -250 0.58 0.34 0.10 0.06 3050 3100 -5750 -5700 -300 -250 1.34 0.82 0.26 0.16 3050 3100 -5700 -5650 -300 -250 1.06 0.83 0.20 0.15 3050 3100 -5650 -5600 -300 -250 0.70 0.51 0.11 0.08 3050 3100 -5600 -5550 -300 -250 0.73 0.59 0.12 0.09 3050 3100 -5550 -5500 -300 -250 0.45 0.47 0.10 0.10 3050 3100 -5500 -5450 -300 -250 0.25 0.28 0.06 0.07 3050 3100 -5450 -5400 -300 -250 0.29 0.33 0.07 0.08 3050 3100 -5400 -5350 -300 -250 0.22 0.25 0.06 0.07 3050 3100 -5350 -5300 -300 -250 0.28 0.32 0.07 0.08 3050 3100 -5300 -5250 -300 -250 0.28 0.32 0.07 0.08 3050 3100 -5250 -5200 -300 -250 0.28 0.32 0.07 0.08 3050 3100 -5200 -5150 -300 -250 0.34 0.39 0.07 0.08

199 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3050 3100 -5150 -5100 -300 -250 0.29 0.33 0.07 0.08 3050 3100 -5100 -5050 -300 -250 0.29 0.33 0.07 0.08 3050 3100 -5050 -5000 -300 -250 0.26 0.29 0.06 0.07 3100 3150 -6000 -5950 -300 -250 0.38 0.38 0.10 0.10 3100 3150 -5950 -5900 -300 -250 0.19 0.14 0.05 0.04 3100 3150 -5900 -5850 -300 -250 0.20 0.14 0.05 0.03 3100 3150 -5850 -5800 -300 -250 0.38 0.31 0.07 0.06 3100 3150 -5800 -5750 -300 -250 0.67 0.43 0.12 0.08 3100 3150 -5750 -5700 -300 -250 1.00 0.57 0.21 0.12 3100 3150 -5700 -5650 -300 -250 0.78 0.58 0.14 0.10 3100 3150 -5650 -5600 -300 -250 0.51 0.37 0.08 0.06 3100 3150 -5600 -5550 -300 -250 0.49 0.38 0.09 0.07 3100 3150 -5550 -5500 -300 -250 0.29 0.28 0.07 0.07 3100 3150 -5500 -5450 -300 -250 0.16 0.17 0.04 0.05 3100 3150 -5450 -5400 -300 -250 0.33 0.37 0.09 0.10 3100 3150 -5400 -5350 -300 -250 0.23 0.26 0.06 0.07 3100 3150 -5350 -5300 -300 -250 0.21 0.24 0.06 0.07 3100 3150 -5300 -5250 -300 -250 0.26 0.30 0.06 0.07 3100 3150 -5250 -5200 -300 -250 0.22 0.26 0.06 0.07 3100 3150 -5200 -5150 -300 -250 0.34 0.38 0.07 0.08 3100 3150 -5150 -5100 -300 -250 0.29 0.33 0.07 0.08 3100 3150 -5100 -5050 -300 -250 0.26 0.29 0.06 0.07 3100 3150 -5050 -5000 -300 -250 0.25 0.29 0.06 0.07 3150 3200 -6000 -5950 -300 -250 0.18 0.12 0.05 0.03 3150 3200 -5950 -5900 -300 -250 0.13 0.08 0.04 0.02 3150 3200 -5900 -5850 -300 -250 0.17 0.09 0.05 0.02 3150 3200 -5850 -5800 -300 -250 0.32 0.17 0.07 0.04 3150 3200 -5800 -5750 -300 -250 0.50 0.27 0.11 0.06 3150 3200 -5750 -5700 -300 -250 0.73 0.37 0.15 0.07 3150 3200 -5700 -5650 -300 -250 0.45 0.19 0.10 0.04 3150 3200 -5650 -5600 -300 -250 0.22 0.11 0.06 0.03 3150 3200 -5600 -5550 -300 -250 0.20 0.12 0.05 0.03

200 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3150 3200 -5550 -5500 -300 -250 0.13 0.10 0.03 0.03 3150 3200 -5500 -5450 -300 -250 0.10 0.10 0.03 0.03 3150 3200 -5450 -5400 -300 -250 0.18 0.20 0.06 0.07 3150 3200 -5400 -5350 -300 -250 0.19 0.22 0.07 0.07 3150 3200 -5350 -5300 -300 -250 0.23 0.27 0.07 0.07 3150 3200 -5300 -5250 -300 -250 0.24 0.27 0.06 0.07 3150 3200 -5250 -5200 -300 -250 0.22 0.25 0.06 0.07 3150 3200 -5200 -5150 -300 -250 0.26 0.29 0.06 0.07 3150 3200 -5150 -5100 -300 -250 0.20 0.23 0.06 0.06 3150 3200 -5100 -5050 -300 -250 0.23 0.26 0.06 0.07 3150 3200 -5050 -5000 -300 -250 0.24 0.28 0.06 0.07 3200 3250 -6000 -5950 -300 -250 0.15 0.09 0.04 0.03 3200 3250 -5950 -5900 -300 -250 0.10 0.05 0.03 0.02 3200 3250 -5900 -5850 -300 -250 0.14 0.07 0.04 0.02 3200 3250 -5850 -5800 -300 -250 0.26 0.13 0.06 0.03 3200 3250 -5800 -5750 -300 -250 0.38 0.21 0.09 0.05 3200 3250 -5750 -5700 -300 -250 0.43 0.24 0.09 0.05 3200 3250 -5700 -5650 -300 -250 0.27 0.14 0.07 0.03 3200 3250 -5650 -5600 -300 -250 0.15 0.08 0.05 0.03 3200 3250 -5600 -5550 -300 -250 0.15 0.10 0.05 0.03 3200 3250 -5550 -5500 -300 -250 0.16 0.13 0.04 0.03 3200 3250 -5500 -5450 -300 -250 0.09 0.09 0.03 0.03 3200 3250 -5450 -5400 -300 -250 0.24 0.26 0.07 0.08 3200 3250 -5400 -5350 -300 -250 0.22 0.25 0.07 0.08 3200 3250 -5350 -5300 -300 -250 0.21 0.24 0.06 0.07 3200 3250 -5300 -5250 -300 -250 0.24 0.28 0.06 0.07 3200 3250 -5250 -5200 -300 -250 0.17 0.20 0.06 0.06 3200 3250 -5200 -5150 -300 -250 0.22 0.25 0.06 0.07 3200 3250 -5150 -5100 -300 -250 0.20 0.23 0.06 0.07 3200 3250 -5100 -5050 -300 -250 0.20 0.22 0.06 0.06 3200 3250 -5050 -5000 -300 -250 0.19 0.21 0.05 0.06 3250 3300 -6000 -5950 -300 -250 0.18 0.18 0.05 0.05

201 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3250 3300 -5950 -5900 -300 -250 0.14 0.13 0.05 0.04 3250 3300 -5900 -5850 -300 -250 0.15 0.13 0.05 0.04 3250 3300 -5850 -5800 -300 -250 0.22 0.18 0.06 0.05 3250 3300 -5800 -5750 -300 -250 0.22 0.18 0.06 0.05 3250 3300 -5750 -5700 -300 -250 0.18 0.15 0.05 0.04 3250 3300 -5700 -5650 -300 -250 0.16 0.13 0.04 0.04 3250 3300 -5650 -5600 -300 -250 0.17 0.15 0.05 0.04 3250 3300 -5600 -5550 -300 -250 0.24 0.22 0.06 0.06 3250 3300 -5550 -5500 -300 -250 0.28 0.29 0.07 0.08 3250 3300 -5500 -5450 -300 -250 0.30 0.33 0.08 0.09 3250 3300 -5450 -5400 -300 -250 0.46 0.52 0.13 0.15 3250 3300 -5400 -5350 -300 -250 0.24 0.27 0.07 0.08 3250 3300 -5350 -5300 -300 -250 0.20 0.23 0.06 0.06 3250 3300 -5300 -5250 -300 -250 0.18 0.20 0.05 0.06 3250 3300 -5250 -5200 -300 -250 0.26 0.29 0.07 0.08 3250 3300 -5200 -5150 -300 -250 0.13 0.15 0.05 0.05 3250 3300 -5150 -5100 -300 -250 0.10 0.11 0.04 0.05 3250 3300 -5100 -5050 -300 -250 0.16 0.18 0.05 0.05 3250 3300 -5050 -5000 -300 -250 0.21 0.23 0.05 0.06 3300 3350 -6000 -5950 -300 -250 0.18 0.20 0.05 0.05 3300 3350 -5950 -5900 -300 -250 0.13 0.13 0.04 0.04 3300 3350 -5900 -5850 -300 -250 0.15 0.14 0.05 0.04 3300 3350 -5850 -5800 -300 -250 0.17 0.13 0.04 0.03 3300 3350 -5800 -5750 -300 -250 0.15 0.12 0.04 0.03 3300 3350 -5750 -5700 -300 -250 0.06 0.04 0.02 0.01 3300 3350 -5700 -5650 -300 -250 0.06 0.04 0.02 0.01 3300 3350 -5650 -5600 -300 -250 0.13 0.11 0.05 0.04 3300 3350 -5600 -5550 -300 -250 0.17 0.15 0.05 0.05 3300 3350 -5550 -5500 -300 -250 0.34 0.37 0.09 0.09 3300 3350 -5500 -5450 -300 -250 0.19 0.21 0.06 0.07 3300 3350 -5450 -5400 -300 -250 0.28 0.32 0.08 0.09 3300 3350 -5400 -5350 -300 -250 0.20 0.23 0.06 0.06

202 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3300 3350 -5350 -5300 -300 -250 0.25 0.29 0.06 0.07 3300 3350 -5300 -5250 -300 -250 0.18 0.20 0.05 0.05 3300 3350 -5250 -5200 -300 -250 0.18 0.21 0.06 0.06 3300 3350 -5200 -5150 -300 -250 0.11 0.12 0.04 0.05 3300 3350 -5150 -5100 -300 -250 0.08 0.08 0.04 0.04 3300 3350 -5100 -5050 -300 -250 0.13 0.15 0.05 0.05 3300 3350 -5050 -5000 -300 -250 0.23 0.26 0.06 0.07 3350 3400 -6000 -5950 -300 -250 0.23 0.25 0.07 0.08 3350 3400 -5950 -5900 -300 -250 0.17 0.16 0.05 0.05 3350 3400 -5900 -5850 -300 -250 0.15 0.14 0.04 0.04 3350 3400 -5850 -5800 -300 -250 0.18 0.15 0.05 0.04 3350 3400 -5800 -5750 -300 -250 0.15 0.13 0.04 0.03 3350 3400 -5750 -5700 -300 -250 0.10 0.06 0.03 0.02 3350 3400 -5700 -5650 -300 -250 0.09 0.05 0.04 0.02 3350 3400 -5650 -5600 -300 -250 0.09 0.07 0.04 0.03 3350 3400 -5600 -5550 -300 -250 0.11 0.10 0.05 0.04 3350 3400 -5550 -5500 -300 -250 0.20 0.21 0.06 0.07 3350 3400 -5500 -5450 -300 -250 0.33 0.37 0.09 0.10 3350 3400 -5450 -5400 -300 -250 0.43 0.49 0.10 0.11 3350 3400 -5400 -5350 -300 -250 0.34 0.38 0.07 0.08 3350 3400 -5350 -5300 -300 -250 0.34 0.38 0.07 0.08 3350 3400 -5300 -5250 -300 -250 0.17 0.20 0.05 0.05 3350 3400 -5250 -5200 -300 -250 0.17 0.19 0.05 0.06 3350 3400 -5200 -5150 -300 -250 0.11 0.13 0.04 0.05 3350 3400 -5150 -5100 -300 -250 0.12 0.13 0.05 0.05 3350 3400 -5100 -5050 -300 -250 0.15 0.17 0.06 0.06 3350 3400 -5050 -5000 -300 -250 0.23 0.26 0.07 0.08 3400 3450 -5400 -5350 -300 -250 0.30 0.34 0.06 0.07 3400 3450 -5350 -5300 -300 -250 0.25 0.29 0.06 0.07 3400 3450 -5300 -5250 -300 -250 0.21 0.24 0.06 0.07 3400 3450 -5250 -5200 -300 -250 0.18 0.20 0.06 0.06 3400 3450 -5200 -5150 -300 -250 0.24 0.27 0.08 0.09

203 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3400 3450 -5150 -5100 -300 -250 0.17 0.19 0.07 0.08 3400 3450 -5100 -5050 -300 -250 0.32 0.35 0.10 0.11 3400 3450 -5050 -5000 -300 -250 0.25 0.26 0.08 0.09 3450 3500 -5400 -5350 -300 -250 0.20 0.23 0.05 0.06 3450 3500 -5350 -5300 -300 -250 0.25 0.28 0.06 0.07 3450 3500 -5300 -5250 -300 -250 0.23 0.26 0.06 0.07 3450 3500 -5250 -5200 -300 -250 0.24 0.28 0.08 0.09 3450 3500 -5200 -5150 -300 -250 0.21 0.23 0.08 0.09 3450 3500 -5150 -5100 -300 -250 0.28 0.31 0.09 0.10 3450 3500 -5100 -5050 -300 -250 0.39 0.40 0.12 0.13 3450 3500 -5050 -5000 -300 -250 0.27 0.23 0.11 0.09 3500 3550 -5400 -5350 -300 -250 0.21 0.24 0.06 0.07 3500 3550 -5350 -5300 -300 -250 0.22 0.25 0.06 0.07 3500 3550 -5300 -5250 -300 -250 0.24 0.28 0.07 0.08 3500 3550 -5250 -5200 -300 -250 0.24 0.28 0.08 0.09 3500 3550 -5200 -5150 -300 -250 0.28 0.32 0.10 0.11 3500 3550 -5150 -5100 -300 -250 0.57 0.64 0.15 0.17 3500 3550 -5100 -5050 -300 -250 0.51 0.51 0.16 0.16 3500 3550 -5050 -5000 -300 -250 0.30 0.23 0.12 0.09 3550 3600 -5400 -5350 -300 -250 0.20 0.23 0.06 0.07 3550 3600 -5350 -5300 -300 -250 0.21 0.24 0.06 0.07 3550 3600 -5300 -5250 -300 -250 0.21 0.24 0.08 0.09 3550 3600 -5250 -5200 -300 -250 0.22 0.24 0.08 0.09 3550 3600 -5200 -5150 -300 -250 0.46 0.51 0.15 0.17 3550 3600 -5150 -5100 -300 -250 0.40 0.45 0.14 0.16 3550 3600 -5100 -5050 -300 -250 0.61 0.67 0.17 0.19 3550 3600 -5050 -5000 -300 -250 0.56 0.55 0.16 0.16 3600 3650 -5400 -5350 -300 -250 0.19 0.22 0.05 0.06 3600 3650 -5350 -5300 -300 -250 0.20 0.23 0.06 0.07 3600 3650 -5300 -5250 -300 -250 0.22 0.25 0.07 0.09 3600 3650 -5250 -5200 -300 -250 0.20 0.22 0.08 0.09 3600 3650 -5200 -5150 -300 -250 0.35 0.39 0.11 0.12

204 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3600 3650 -5150 -5100 -300 -250 0.56 0.63 0.17 0.20 3600 3650 -5100 -5050 -300 -250 0.60 0.64 0.16 0.17 3600 3650 -5050 -5000 -300 -250 0.47 0.43 0.12 0.11 3650 3700 -5400 -5350 -300 -250 0.21 0.24 0.06 0.07 3650 3700 -5350 -5300 -300 -250 0.18 0.21 0.06 0.07 3650 3700 -5300 -5250 -300 -250 0.19 0.22 0.07 0.08 3650 3700 -5250 -5200 -300 -250 0.24 0.26 0.09 0.10 3650 3700 -5200 -5150 -300 -250 0.42 0.46 0.13 0.15 3650 3700 -5150 -5100 -300 -250 0.38 0.42 0.12 0.14 3650 3700 -5100 -5050 -300 -250 0.46 0.44 0.13 0.13 3650 3700 -5050 -5000 -300 -250 0.21 0.14 0.06 0.04 3700 3750 -5400 -5350 -300 -250 0.24 0.28 0.06 0.07 3700 3750 -5350 -5300 -300 -250 0.19 0.22 0.06 0.07 3700 3750 -5300 -5250 -300 -250 0.20 0.23 0.07 0.08 3700 3750 -5250 -5200 -300 -250 0.28 0.31 0.10 0.11 3700 3750 -5200 -5150 -300 -250 0.31 0.35 0.11 0.12 3700 3750 -5150 -5100 -300 -250 0.38 0.42 0.13 0.14 3700 3750 -5100 -5050 -300 -250 0.33 0.33 0.09 0.09 3700 3750 -5050 -5000 -300 -250 0.17 0.14 0.05 0.04 3750 3800 -5400 -5350 -300 -250 0.29 0.33 0.07 0.08 3750 3800 -5350 -5300 -300 -250 0.24 0.27 0.07 0.08 3750 3800 -5300 -5250 -300 -250 0.20 0.23 0.07 0.08 3750 3800 -5250 -5200 -300 -250 0.16 0.17 0.06 0.07 3750 3800 -5200 -5150 -300 -250 0.21 0.23 0.08 0.09 3750 3800 -5150 -5100 -300 -250 0.27 0.27 0.09 0.09 3750 3800 -5100 -5050 -300 -250 0.18 0.13 0.05 0.03 3750 3800 -5050 -5000 -300 -250 0.10 0.06 0.04 0.02 3800 3850 -5400 -5350 -300 -250 0.33 0.36 0.08 0.09 3800 3850 -5350 -5300 -300 -250 0.25 0.28 0.07 0.08 3800 3850 -5300 -5250 -300 -250 0.21 0.23 0.07 0.08 3800 3850 -5250 -5200 -300 -250 0.18 0.20 0.07 0.07 3800 3850 -5200 -5150 -300 -250 0.26 0.28 0.09 0.10

205 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 3800 3850 -5150 -5100 -300 -250 0.33 0.32 0.10 0.10 3800 3850 -5100 -5050 -300 -250 0.16 0.11 0.04 0.03 3800 3850 -5050 -5000 -300 -250 0.11 0.05 0.04 0.02 3850 3900 -5400 -5350 -300 -250 0.40 0.44 0.10 0.11 3850 3900 -5350 -5300 -300 -250 0.35 0.40 0.10 0.11 3850 3900 -5300 -5250 -300 -250 0.27 0.31 0.09 0.10 3850 3900 -5250 -5200 -300 -250 0.26 0.29 0.09 0.10 3850 3900 -5200 -5150 -300 -250 0.31 0.35 0.10 0.11 3850 3900 -5150 -5100 -300 -250 0.32 0.36 0.10 0.11 3850 3900 -5100 -5050 -300 -250 0.28 0.29 0.08 0.09 3850 3900 -5050 -5000 -300 -250 0.24 0.24 0.08 0.08 3900 3950 -5400 -5350 -300 -250 0.45 0.50 0.12 0.13 3900 3950 -5350 -5300 -300 -250 0.45 0.51 0.12 0.14 3900 3950 -5300 -5250 -300 -250 0.29 0.33 0.09 0.10 3900 3950 -5250 -5200 -300 -250 0.26 0.28 0.07 0.08 3900 3950 -5200 -5150 -300 -250 0.31 0.33 0.08 0.09 3900 3950 -5150 -5100 -300 -250 0.27 0.30 0.09 0.10 3900 3950 -5100 -5050 -300 -250 0.37 0.40 0.11 0.12 3900 3950 -5050 -5000 -300 -250 0.34 0.35 0.10 0.10 3950 4000 -5400 -5350 -300 -250 0.53 0.56 0.13 0.13 3950 4000 -5350 -5300 -300 -250 0.50 0.57 0.13 0.15 3950 4000 -5300 -5250 -300 -250 0.34 0.37 0.09 0.10 3950 4000 -5250 -5200 -300 -250 0.18 0.16 0.05 0.05 3950 4000 -5200 -5150 -300 -250 0.17 0.14 0.05 0.04 3950 4000 -5150 -5100 -300 -250 0.30 0.29 0.08 0.08 3950 4000 -5100 -5050 -300 -250 0.30 0.25 0.08 0.07 3950 4000 -5050 -5000 -300 -250 0.18 0.10 0.07 0.04 4000 4050 -5400 -5350 -300 -250 0.49 0.52 0.13 0.13 4000 4050 -5350 -5300 -300 -250 0.50 0.57 0.13 0.15 4000 4050 -5300 -5250 -300 -250 0.35 0.38 0.09 0.10 4000 4050 -5250 -5200 -300 -250 0.23 0.20 0.06 0.05 4000 4050 -5200 -5150 -300 -250 0.17 0.14 0.05 0.04

206 Min Max Min Max Min Max Cu Ni East East North North Elev Elev Cu % S.D. Ni % S.D. 4000 4050 -5150 -5100 -300 -250 0.30 0.30 0.08 0.08 4000 4050 -5100 -5050 -300 -250 0.31 0.26 0.09 0.07 4000 4050 -5050 -5000 -300 -250 0.18 0.11 0.07 0.04 4050 4100 -5400 -5350 -300 -250 0.53 0.60 0.15 0.17 4050 4100 -5350 -5300 -300 -250 0.78 0.89 0.19 0.22 4050 4100 -5300 -5250 -300 -250 0.65 0.73 0.16 0.18 4050 4100 -5250 -5200 -300 -250 0.45 0.48 0.12 0.13 4050 4100 -5200 -5150 -300 -250 0.36 0.39 0.10 0.10 4050 4100 -5150 -5100 -300 -250 0.45 0.50 0.13 0.14 4050 4100 -5100 -5050 -300 -250 0.52 0.56 0.14 0.15 4050 4100 -5050 -5000 -300 -250 0.35 0.37 0.11 0.12

207 APPENDIX 8

RELOGGED UNDERGROUND DRILL HOLES

208 Number of polished sections collected from each hole in parenthesis. 10015 10049 10157 10192 10016 10050 10168 10193 (12) 10017 10051 (7) 10169 10194 (11) 10018 10052 10170 10195 (5) 10019 10053 10171 10196 10020 10054 10172 10197 (6) 10021 10055 10173 10198 (43) 10022 10056 10174 10199 10023 10057 10175 10200 (6) 10024 10058 10176 10201 10025 10059 10177 10207 10036 10070 10179 10208 10037 10072 10180 10209 10038 10134 10181 10210 10039 10145 10182 10211 10040 10147 10183 (12) 10212 10041 10148 10184 10213 10042 10149 10185 10214 10043 10150 10186 10215 10044 10151 10187 10216 (18) 10045 10152 10188 10217 (5) 10046 (3) 10153 10189 10218 10047 10155 10190 10219 (6) 10048 10156 10191

Pertinent surface drill holes (with number of massive sulfide polished sections): B1-105 (4) B1-135 (9) B1-140 (2) B1-160 (12) B1-116 (9) B1-136 (5) B1-146 (6)

209 APPENDIX 9

Pt, Pd, AND Au VALUES EXCEEDING 500 ppb IN THE LOCAL BOY AREA

210 Drill Hole From To Thickness Cu % Ni % S % Au ppb Pd ppb Pt ppb 10017 19 27.8 8.8 2.49 0.28 3.38 76 610 140 10017 49.6 56.7 7.1 2.98 1.80 20.11 180 1600 190 10018 9.5 11.5 2.0 3.05 0.10 2.84 42 570 200 10021 8 11 3.0 2.16 0.10 2.27 460 6700 740 10021 122.5 130.4 7.9 2.12 0.23 1.71 600 3400 300 10022 10.7 16.4 5.7 14.05 0.20 16.05 67 680 220 10036 23.9 29.5 5.6 1.95 0.12 2.44 100 680 40 10036 39 50.6 11.6 10.55 1.62 15.00 480 1000 230 10037 0 11.3 11.3 2.40 0.10 2.33 1300 7100 210 10037 32.3 40 7.7 4.20 0.20 5.62 440 850 140 10037 40 50 10.0 2.90 0.42 5.67 65 790 80 10038 29.3 32 2.7 5.13 0.11 6.93 61 1200 240 10038 91 96.5 5.5 5.96 0.50 8.36 290 5200 180 10038 121 129 8.0 10.20 0.53 12.22 45 680 220 10040 40 51 11.0 2.93 0.56 5.37 660 820 40 10040 90 96 6.0 4.45 0.52 9.12 100 550 40 10041 12 17 5.0 5.83 0.57 9.64 45 570 460 10041 45 59 14.0 3.13 0.71 10.92 51 570 30 10041 89 96 7.0 6.39 0.42 10.13 430 1300 40 10046 9.8 13 3.2 9.75 1.80 15.19 270 >11100 460 10047 17.7 25 7.3 2.70 0.25 4.84 100 220 1100 10047 25 35 10.0 10.48 0.94 15.39 600 1600 260 10047 68 76 8.0 3.13 0.55 14.41 87 1400 30 10051 41 47 6.0 8.50 1.57 20.67 270 1900 8300 10052 56 65.5 9.5 8.88 1.43 18.08 1700 4000 80 10052 87.5 95.5 8.0 6.40 1.75 19.48 140 660 60 10052 133 145 12.0 5.43 1.60 17.63 50 760 90 10052 145 155 10.0 2.85 0.49 6.30 210 890 60 10052 155 165 10.0 4.29 0.44 6.75 120 860 160 10052 195 205 10.0 1.59 0.15 2.05 110 660 230 10056 35.5 42 6.5 7.35 0.91 14.18 580 550 160 10057 42 49 7.0 4.95 1.16 16.42 66 510 50

211 Drill Hole From To Thickness Cu % Ni % S % Au ppb Pd ppb Pt ppb 10058 141 151.3 10.3 2.17 0.19 4.16 160 520 30 10058 163 170 7.0 8.38 1.34 19.33 97 1500 50 10078 179 186 7.0 3.29 0.21 3.88 50 520 80 10078 213 220.5 7.5 4.18 0.27 5.15 76 500 40 10117 39 47 8.0 4.19 1.04 13.88 83 660 10 10126 99 110 11.0 4.28 0.75 10.32 1200 260 20 10134 147 159 12.0 4.75 1.54 23.37 23 710 30 10134 194 203 9.0 3.50 0.43 5.15 71 660 60 10134 203 213 10.0 5.60 0.20 7.81 530 370 50 10136 52 67 15.0 1.57 0.16 3.16 43 190 520 10142 89 97.2 8.2 5.58 1.32 22.48 11 690 40 10142 97.2 105 7.8 4.04 0.74 12.32 120 860 <30 10142 162.6 171 8.4 3.81 2.38 28.65 290 510 10 10143 257.5 266 8.5 5.20 0.74 12.99 77 730 40 10148 34.6 40 5.4 3.57 0.44 6.07 10 510 60 10148 75 88 13.0 6.30 0.30 8.53 100 2200 140 10148 98 105 7.0 2.99 0.59 8.09 76 520 30 10149 90 98 8.0 11.00 0.23 13.94 56 1100 310 10149 175 185 10.0 0.86 0.16 2.81 22 99 700 10149 272 278 6.0 6.60 1.06 19.37 31 570 60 10151 88 100 12.0 1.12 0.26 4.07 12 68 550 10152 87 95.6 8.6 5.87 1.43 16.03 21 640 80 10156 102 110 8.0 6.75 0.56 10.89 43 890 120 10171 225 235 10.0 2.05 0.29 3.84 83 980 130 10172 255 264 9.0 2.56 0.18 7.22 49 530 60 10172 264 270 6.0 7.93 2.88 27.37 42 720 40 10172 270 282 12.0 5.40 1.22 24.08 150 810 40 10175 35 45.4 10.4 2.33 0.63 6.09 500 470 270 10179 10 20 10.0 13.98 1.58 21.35 57 510 140 10179 30 38.7 8.7 6.40 1.05 10.61 190 780 430 10179 38.7 45 6.3 3.43 0.44 6.20 58 550 40 10179 45 55 10.0 6.90 1.28 19.42 49 780 100

212 Drill Hole From To Thickness Cu % Ni % S % Au ppb Pd ppb Pt ppb 10181 142 155 13.0 5.25 0.29 8.34 820 480 50 10182 155 161 6.0 1.77 0.66 9.44 85 1400 40 10182 200 211 11.0 2.75 0.12 3.90 140 510 60 10183 7 14 7.0 4.99 0.41 9.73 140 500 40 10183 217 225 8.0 2.45 0.30 5.94 56 1000 20 10183 225 235 10.0 4.98 1.12 13.26 530 270 10 10183 303 310 7.0 7.48 0.59 9.92 240 3300 270 10183 310 320 10.0 6.30 0.50 9.45 120 710 110 10183 320 330 10.0 9.05 1.04 17.03 77 540 150 10186 0 11.6 11.6 4.63 0.91 9.70 130 520 210 10188 140 150 10.0 1.75 0.23 2.77 54 510 30 10192 0 10 10.0 9.30 1.49 20.05 33 680 140 10193 0 10 10.0 6.15 0.88 15.42 49 850 80 10193 10 22 12.0 8.55 1.11 19.15 43 8400 240 10193 22 28.5 6.5 3.60 0.44 5.84 41 700 <50 10193 28.5 37 8.5 5.45 3.18 30.50 4 520 90 10194 0 10 10.0 4.35 1.53 14.53 32 550 100 10194 10 20 10.0 6.05 0.44 10.43 54 600 120 10194 110 120 10.0 10.50 1.78 17.76 34 610 400 10194 147 162 15.0 1.77 0.16 1.72 77 510 90 10195 0 15 15.0 6.10 0.75 14.18 81 1100 130 10195 15 25 10.0 2.40 0.41 4.79 19 150 1200 10197 14.5 27 12.5 5.40 1.83 15.51 20 820 580 10198 10 20 10.0 0.94 0.03 0.91 560 3800 280 10198 20 25 5.0 14.00 0.28 15.24 250 1700 260 10198 25 35 10.0 0.26 <0.01 0.25 860 110 <40 10198 35 47 12.0 0.79 0.03 0.73 2500 1500 110 10198 47 52 5.0 19.00 0.30 23.46 170 6100 3100 10198 73 80 7.0 4.00 0.17 3.81 530 7000 1300 10198 96 103 7.0 7.65 0.28 7.34 13100 2900 200 10198 120 130.5 10.5 3.50 0.19 3.52 4100 740 160 10198 130.5 140 9.5 6.65 2.43 26.10 85 2000 1800

213 Drill Hole From To Thickness Cu % Ni % S % Au ppb Pd ppb Pt ppb 10198 140 150 10.0 5.65 2.85 25.89 63 1400 80 10198 150 156 6.0 3.80 3.93 30.00 37 810 <20 10198 175 185 10.0 0.83 0.15 1.48 2300 170 <40 10198 251 260 9.0 5.58 0.94 10.36 10900 1200 240 10198 260 267 7.0 1.85 0.18 2.85 250 800 280 10198 267 277 10.0 3.45 0.92 8.08 150 1300 340 10199 10 20 10.0 4.38 0.39 4.93 350 510 230 10199 20 32.5 12.5 3.23 0.65 4.95 140 970 330 10199 54 62.5 8.5 5.40 0.26 4.62 73 940 710 10200 10 16 6.0 7.88 1.73 18.03 160 5500 1100 10200 16 22 6.0 6.80 0.66 9.00 320 1800 380 10200 37 45 8.0 8.15 1.63 14.36 55 620 230 10200 45 50.6 5.6 15.65 3.30 23.34 45 630 460 10216 113 120 7.0 2.49 0.84 7.27 110 2900 1500 10216 134.7 143 8.3 14.80 0.42 17.82 250 1000 430 10216 290 302 12.0 2.12 .10 1.40 260 570 210 10216 302 313 11.0 6.25 2.60 14.77 880 1300 420 10217 153 161 8.0 3.33 0.22 3.17 170 520 110 10217 176 179 3.0 15.50 1.58 21.94 40 310 2800 10219 0 265 265.0 6.40 1.73 13.52 19 480 500 10219 136 140 4.0 4.23 1.49 9.07 44 620 260 10219 163.5 167 3.5 5.50 1.31 18.00 67 780 70 105 1659 1667 8.0 0.49 0.08 1.18 350 1900 170 105 1773 1778 5.0 5.10 0.28 7.35 810 1600 80 105 1842 1849 7.0 5.82 1.08 17.79 51 460 1200 116 1660 1665 5.0 5.60 0.27 3.94 600 900 220 116 1665 1670 5.0 16.40 .50 18.41 1400 1100 120 116 1670 1675 5.0 24.40 0.83 27.02 67 260 610 116 1675 1680 5.0 4.30 1.30 8.46 120 520 90 116 1680 1685 5.0 19.60 0.68 22.71 420 1400 290 116 1685 1690 5.0 11.20 1.97 22.53 320 1100 60 116 1709 1711.8 2.8 6.70 2.27 19.84 30 840 190

214 Drill Hole From To Thickness Cu % Ni % S % Au ppb Pd ppb Pt ppb 129 1905 1909 4.0 1.71 0.21 4.16 610 290 10 134 1706 1716 10.0 0.63 0.12 0.81 71 500 140 135 1650 1655 5.0 1.60 0.07 1.89 1400 700 190 135 1670 1675 5.0 3.59 0.27 7.66 74 1200 30 135 1695 1702 7.0 4.85 0.91 14.07 27 700 40 136 1728.5 1735 6.5 9.90 0.73 19.35 960 3300 40 138 1655 1660 5.0 1.29 0.24 2.60 67 150 700 138 1705 1710 5.0 1.52 0.17 2.13 120 760 30 138 1766 1774 8.0 3.40 0.33 7.23 2100 880 1700 139 1699 1705 6.0 4.52 0.58 6.63 120 2300 110 139 1710 1715 5.0 14.25 1.40 20.99 670 4800 210 139 1721 1725 4.0 12.00 2.91 23.97 260 640 270 139 1730 1735 5.0 4.45 2.80 26.26 140 860 70 140 1888 1892 4.0 2.95 0.08 3.07 46 1400 130 140 1914 1916.5 2.5 6.50 1.31 14.94 46 380 670 159 1760 1765 5.0 1.54 .20 2.59 83 540 1400 159 1860 1865 5.0 0.98 0.16 2.49 210 1200 20 197 1536 1540 4.0 1.43 0.34 2.50 120 770 230

215