Integrated Ocean Drilling Program Expedition 312 Preliminary Report (Including Expedition 309 Accomplishments)

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Ocean Drilling Program Expedition 312 Preliminary Report (Including Expedition 309 Accomplishments) Integrated Ocean Drilling Program Expedition 312 Preliminary Report (including Expedition 309 accomplishments) Superfast Spreading Rate Crust 3 A complete in situ section of upper oceanic crust formed at a superfast spreading rate 28 October–28 December 2005 Expedition 309 and 312 Scientists PUBLISHER’S NOTES Material in this publication may be copied without restraint for library, abstract service, educational, or personal research purposes; however, this source should be appropriately acknowledged. Citation: Expedition 309 and 312 Scientists, 2006. Superfast spreading rate crust 3: a complete in situ section of upper oceanic crust formed at a superfast spreading rate. IODP Prel. Rept., 312. doi:10:2204/ iodp.pr.312.2006 Distribution: Electronic copies of this series may be obtained from the Integrated Ocean Drilling Program (IODP) Publication Services homepage on the World Wide Web at iodp.tamu.edu/publications. This publication was prepared by the Integrated Ocean Drilling Program U.S. Implementing Organization (IODP-USIO): Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, and Texas A&M University, as an account of work performed under the international Integrated Ocean Drilling Program, which is managed by IODP Management International (IODP-MI), Inc. Funding for the program is provided by the following agencies: European Consortium for Ocean Research Drilling (ECORD) Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan Ministry of Science and Technology (MOST), People’s Republic of China U.S. National Science Foundation (NSF) DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, IODP Management International, Inc., Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, Texas A&M University, or Texas A&M Research Foundation. April 2006 Expedition 309/312 Preliminary Report The following scientists and personnel were aboard the JOIDES Resolution for Expeditions 309 and 312 of the Integrated Ocean Drilling Program. Expedition Scientists Damon A.H. Teagle Jeffrey C. Alt Co-Chief Scientist (Exp. 309) Co-Chief Scientist (Exp. 312) School of Ocean and Earth Science Department of Geological Sciences National Oceanography Centre, Southampton 2534 C.C. Little Building University of Southampton University of Michigan European Way 1000 North University Southampton SO14-3ZH Ann Arbor MI 48109-1005 United Kingdom USA [email protected] [email protected] Work: (44) 23-8059-2723 Work: (734) 764-8380 Fax: (44) 23-8059-3052 Fax: (734) 763-4690 Susumu Umino Sumio Miyashita Co-Chief Scientist (Exp. 309) Co-Chief Scientist (Exp. 312) Institute of Geosciences Department of Geology Shizuoka University Niigata University Ohya 836, Suruga-ku 8050 Ikarashi Shizuoka 422-8529 Niigata 950-2181 Japan Japan [email protected] [email protected] Work: (81) 54-238-4789 Work: (81) 25-262-6193 Fax: (81) 54-238-0491 Fax: (81) 25-262-6194 Neil R. Banerjee Staff Scientist/Expedition Project Manager (Exp. 309 and 312) Integrated Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA [email protected] Work: (979) 845-0506 Fax: (979) 845-0876 Expedition 309 Scientists Florence Einaudi Akram Belghoul Logging Staff Scientist Logging Trainee Laboratoire de Géophysique et d’Hydrodynamique Laboratoire de Géophysique et d’Hydrodynamique en Forage en Forage ISTEEM, cc 056 ISTEEM, cc 056 34095 Montpellier Cedex 5 34092 Montpellier Cedex 5 France France [email protected] [email protected] Work: (33) 4 6714 9309 Work: (33) 4 6714 9336 Fax: (33) 4 6714 9308 Fax: (33) 4 6714 9308 3 Expedition 309/312 Preliminary Report Carole Cordier Lisa A. Gilbert Igneous Petrologist Physical Properties Specialist Earth Sciences Maritime Studies Program Universite de Bretagne Occidentale, IVEM Williams College and Mystic Seaport 1 Place Copernic 75 Greenmanville Avenue UMR 6538 Domaines Océaniques Mystic CT 06355 29280 Plouzané USA France [email protected] [email protected] Work: (860) 572-5302, ext 5048 Work: (33) 29 801 7289 Fax: (860) 572-5329 Fax: (33) 29 801 6620 Emilio Herrero-Bervera Laura Crispini Paleomagnetist Structural Geologist Hawaii Institute of Geophysics and Planetology Dipartimento per lo Studio del Territorio e delle sue University of Hawaii at Manoa Risorse Petrofabrics and Paleomagnetics Laboratory Università degli Studi di Genova 1680 East West Road Corso Europa 26 Honolulu HI 96822 16132 Genova USA Italy [email protected] [email protected] Work: (808) 956-6192 Work: (39) 010 353 8204 Fax: (808) 956-3188 Fax: (39) 010 352169 Sara Ann Holter Laura Galli Student Trainee Metamorphic Petrologist Department of Geology Department of Earth Sciences University of St. Thomas Università degli Studi di Milano 2115 Summit Avenue Via Mangiagalli, 34 St. Paul MN 55105 20133 Milano USA Italy [email protected] [email protected] Work: (763) 350-6258 Work: (39) 02 5031 5524 Fax: (651) 962-5209 Fax: (39) 02 5031 5494 Christine Laverne Yongjun Gao Metamorphic Petrologist Geochemist/Igneous Petrologist Université Paul Cézanne Aix-Marseille III Department of Geosciences Laboratoire de Pétrologie Magmatique-Case 441 University of Houston Faculté des Sciences de Marseille Saint Jérome 4800 Calhoun Road, SR1 Building Avenue Escadrille, Normandie Nieman Houston TX 77204 13397 Marseille Cedex 20 USA France [email protected] [email protected] Work: (713) 743-9312 Work: (33) 4-91-28-85-18 Fax: (713) 748-7906 Fax: (33) 4-91-28-80-30 Jörg Geldmacher Igneous Petrologist IFM-GEOMAR Leibniz Institute for Marine Sciences Kiel Wischhofstrasse 1-3 24148 Kiel Germany [email protected] Work: (49) 431-600-2641 Fax: (49) 431-600-2978 4 Expedition 309/312 Preliminary Report Haroldo L. Lledo Vasquez Takashi Sano Inorganic Geochemist Igneous Petrologist Geological Sciences and Environmental Studies College of Environment and Disaster Research Binghamton University Fuji Tokoha University 4400 Vestal Parkway East 325 Ohbuchi Binghamton NY 13902-6000 Fuji 417-0801 USA Japan Present address: [email protected] Department of Geoscience Work: (81) 545-37-2007 University of Las Vegas Fax: (81) 545-36-2651 4505 Maryland Parkway Present address: Box 454010 National Science Museum, Tokyo Las Vegas NV 89154-4010 Christopher E. Smith-Duque [email protected] Metamorphic Petrologist Work: (702) 895-1753 School of Ocean and Earth Science Fax: (702) 895-4064 National Oceanography Centre, Southampton Sedelia Rodriguez Durand University of Southampton Igneous Petrologist European Way Department of Earth Sciences, PC 344 Southampton SO14 3ZH Florida International University United Kingdom University Park Campus [email protected] 11200 Southwest 8th Street Work: (44) 23-8059-6634 Miami FL 33199 Fax: (44) 23-8059-3052 USA Masako Tominaga [email protected] Physical Properties Specialist Work: (305) 348-2365 Department of Oceanography Fax: (305) 348-3877 Texas A&M University Tetsuya Sakuyama 3146 TAMU Inorganic Geochemist College Station TX 77843-3146 Earth and Planetary Science USA University of Tokyo [email protected] 7-3-1 Hongo Work: (979) 204-2854 Bunkyo-ku, Tokyo 113-0033 Fax: (979) 845-6331 Japan Paola Tartarotti [email protected] Structural Geologist Work: (81) 3-5841-4670 Department of Earth Sciences Fax: (81) 3-5841-8378 Università degli Studi di Milano Via Mangiagalli, 34 20133 Milano Italy [email protected] Work: (39) 02 5031 5524 Fax: (39) 02 5031 5494 5 Expedition 309/312 Preliminary Report Eugenio A. Veloso Espinosa Douglas S. Wilson Paleomagnetist Geophysicist Graduate School of Life and Environmental Department of Geological Sciences Sciences University of California, Santa Barbara University of Tsukuba 1006 Webb Hall Tennodai 1-1-1 Santa Barbara CA 93106-9630 Tsukuba Science City, Ibaraki 305-8572 USA Japan [email protected] [email protected] Work: (805) 893-8033 Work: (81) 29-853-9888 Fax: (805) 893-2314 Fax: (81) 29-853-6888 Teacher at Sea (Expedition 309) Alan C. Gelatt Romulus Central School 5705 Main Street Romulus NY 14541 USA Work: (866) 810-0345 [email protected] Expedition 312 Scientists Marc K. Reichow David M. Christie Logging Staff Scientist Igneous Petrologist Department of Geology College of Oceanic and Atmospheric Sciences University of Leicester Oregon State University University Road 104 Ocean Administration Building Leicester LE1 7RH Corvallis OR 97331-5503 United Kingdom USA [email protected] [email protected] Work: (44) 116 252 3785 Work: (541) 737-5205 Fax: (44) 116 252 3918 Fax: (541) 737-2064 Ryo Anma Present address (1 June 2006): Structural Geologist Global Undersea Research Unit Graduate School of Earth and Environmental School of Fisheries and Ocean Sciences Sciences University of Alaska University of Tsukuba PO Box 757220 Ten-no dai 1-1-1 Fairbanks AK 99775-220 Tsukuba, Ibaraki 305-8572 [email protected] Japan Work: (907) 474-5870 [email protected] Fax: (907) 474-5804 Work: (81) 29-853-4012 Rosalind Coggon Fax: (81) 29-853-4012 Metamorphic Petrologist Julie Carlut Department of Geological Sciences Paleomagnetist 2534 C.C. Little Building Laboratoire de Geologie University of Michigan École Normale Supérieure 1000 North University 24 rue Lhomond Ann Arbor MI 48109-1005 75231
Recommended publications
  • Geophysical Signatures of Oceanic Core Complexes
    Geophys. J. Int. (2009) 178, 593–613 doi: 10.1111/j.1365-246X.2009.04184.x REVIEW ARTICLE Geophysical signatures of oceanic core complexes Donna K. Blackman,1 J. Pablo Canales2 and Alistair Harding1 1Scripps Institution of Oceanography, UCSD La Jolla, CA, USA. E-mail: [email protected] 2Woods Hole Oceanographic Institution, Woods Hole, MA, USA Accepted 2009 March 16. Received 2009 February 15; in original form 2008 July 25 SUMMARY Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between mag- matism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent GJI Geodesy, potential field and applied geophysics of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified.
    [Show full text]
  • Enhanced Mantle Upwelling/Melting Caused Segment Propagation, Oceanic Across the Ridge Crest of the TAMMAR Segment
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Enhanced Mantle Upwelling/Melting Caused Segment 10.1002/2017JB014273 Propagation, Oceanic Core Complex Die Off, Key Points: and the Death of a Transform Fault: • Seismic data confirm ridge propagation induced by increased The Mid-Atlantic Ridge at 21.5°N melt supply due to increased fertility or upwelling of the asthenosphere A. Dannowski1 , J. P. Morgan2, I. Grevemeyer1 , and C. R. Ranero3,4 • Source of melt supply is migrating, ended a transform fault, and possibly 1GEOMAR/Helmholtz-Centre for Ocean Research Kiel, Kiel, Germany, 2Earth Sciences Department, Royal Holloway stopped OCC formation 3 • The growth direction of the enhanced University of London, London, UK, Barcelona Centre for Subsurface Imaging, Institut de Ciencias del Mar, Barcelona, Spain, 4 melt supply region is influenced by ICREA, Barcelona, Spain the distance to “colder” mantle zones Abstract Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic Correspondence to: A. Dannowski, processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The [email protected] TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°250N and 22°N is a magmatically active segment. At ~4.5 Ma this segment started to propagate south, causing the termination of the transform fault Citation: at 21°400N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the Dannowski, A., Morgan, J. P., south. Here a segment center with a high magmatic budget has replaced a transform fault region with Grevemeyer, I., & Ranero, C.
    [Show full text]
  • Role of Late Jurassic Intra-Oceanic Structural Inheritance in the Alpine Tectonic Evolution of the Monviso Meta-Ophiolite Complex (Western Alps)
    Geol. Mag. 155 (2), 2018, pp. 233–249. c Cambridge University Press 2017 233 doi:10.1017/S0016756817000553 Role of Late Jurassic intra-oceanic structural inheritance in the Alpine tectonic evolution of the Monviso meta-ophiolite Complex (Western Alps) ∗ ∗ ∗ GIANNI BALESTRO , ANDREA FESTA †, ALESSANDRO BORGHI , ∗ ∗ DANIELE CASTELLI , MARCO GATTIGLIO & PAOLA TARTAROTTI‡ ∗ Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso, 35, 10125 – Torino, Italy ‡Dipartimento di Scienze della Terra, Università di Milano, Via Mangiagalli, 34, 20133 – Milano, Italy (Received 31 October 2016; accepted 2 June 2017; first published online 17 July 2017) Abstract – The eclogite-facies Monviso meta-ophiolite Complex in the Western Alps represents a well-preserved fragment of oceanic lithosphere and related Upper Jurassic – Lower Cretaceous sed- imentary covers. This meta-ophiolite sequence records the evolution of an oceanic core complex formed by mantle exhumation along an intra-oceanic detachment fault (the Baracun Shear Zone), re- lated to the opening of the Ligurian–Piedmont oceanic basin (Alpine Tethys). On the basis of detailed geological mapping, and structural, stratigraphic and petrological observations, we propose a new interpretation for the tectonostratigraphic architecture of the Monviso meta-ophiolite Complex, and discuss the role played by structural inheritance in its formation. We document that subduction- and exhumation-related Alpine tectonics were strongly influenced by the inherited Jurassic intra-oceanic tectonosedimentary physiography. The latter, although strongly deformed during a major Alpine stage of non-cylindrical W-verging folding and faulting along exhumation-related Alpine shear zones (i.e. the Granero–Casteldelfino and Villanova–Armoine shear zones), was not completely dismembered into different tectonic units or subduction-related mélanges as suggested in previous interpretations.
    [Show full text]
  • Fluid Evolution in an Oceanic Core Complex: a Fluid Inclusion Study from IODP Hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge
    This is a repository copy of Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80181/ Version: Published Version Article: Castelain, T, McCaig, AM and Cliff, RA (2014) Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 15 (4). 1193 - 1214. ISSN 1525-2027 https://doi.org/10.1002/2013GC004975 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Fluid evolution in an Oceanic Core Complex: A fluid inclusion 10.1002/2013GC004975 study from IODP hole U1309 D—Atlantis Massif, 30N, Key Points: Mid-Atlantic Ridge The TAG model is a good analog for fluid evolution at Atlantis Massif Teddy Castelain1, Andrew M.
    [Show full text]
  • Fossil Oceanic Core Complexes in the Alps. New Field, Geochemical And
    Decrausaz et al. Swiss J Geosci (2021) 114:3 https://doi.org/10.1186/s00015-020-00380-4 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Fossil oceanic core complexes in the Alps. New feld, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’Hérens, Western Alps, Switzerland) Thierry Decrausaz1,2* , Othmar Müntener1, Paola Manzotti3, Romain Lafay2 and Carl Spandler4 Abstract Exhumation of basement rocks on the seafoor is a worldwide feature along passive continental margins and (ultra-) slow-spreading environments, documented by dredging, drilling or direct observations by diving expeditions. Com- plementary observations from exhumed ophiolites in the Alps allow for a better understanding of the underlying processes. The Aiguilles Rouges ophiolitic units (Val d’Hérens, Switzerland) are composed of kilometre-scale remnants of laterally segmented oceanic lithosphere only weakly afected by Alpine metamorphism (greenschist facies, Raman thermometry on graphite: 370–380 °C) and deformation. Geometries and basement-cover sequences comparable to the ones recognized in actual (ultra-) slow-spreading environments were observed, involving exhumed serpentinized and carbonatized peridotites, gabbros, pillow basalts and tectono-sedimentary cover rocks. One remarkable feature is the presence of a kilometric gabbroic complex displaying preserved magmatic minerals, textures and crosscutting relationships between the host gabbro and intruding diabase, hornblende-bearing dikelets or plagiogranite. The bulk major and trace element chemistry of mafc rocks is typical of N-MORB magmatism (Ce N/YbN: 0.42–1.15). This is supported by in-situ isotopic signatures of magmatic zircons (εHf 13 0.6) and apatites (εNd 8.5 0.8), determined for gabbros and plagiogranites.
    [Show full text]
  • Implications for the Rheological Behavior of Oceanic Detachment Faults
    Article Volume 14, Number 8 28 August 2013 doi: 10.1002/ggge.20184 ISSN: 1525-2027 Mylonitic deformation at the Kane oceanic core complex: Implications for the rheological behavior of oceanic detachment faults Lars N. Hansen Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California, 94305, USA ([email protected]) Michael J. Cheadle, Barbara E. John, and Susan M. Swapp Department of Geology and Geophysics, University of Wyoming, Wyoming, USA Henry J. B. Dick, Brian E. Tucholke, and Maurice A. Tivey Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA [1] The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23300N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a 450 m thick zone of high-temperature mylonitization overprinted by a 200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of 7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT).
    [Show full text]
  • Drilling the Crust at Mid-Ocean Ridges
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of Th e Oceanography Society. Send all correspondence to: [email protected] or Th eOceanography PO Box 1931, Rockville, USA.Society, MD 20849-1931, or e to: [email protected] Oceanography correspondence all Society. Send of Th approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution articleis has been published in Th SPECIAL ISSUE FEATURE Oceanography Drilling the Crust Threproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved. e is rights granted All OceanographyPermission Society. by 2007 eCopyright Oceanography Society. journal of Th 20, Number 1, a quarterly , Volume at Mid-Ocean Ridges An “in Depth” perspective BY BENOÎT ILDEFONSE, PETER A. RONA, AND DONNA BLACKMAN In April 1961, 13.5 m of basalts were drilled off Guadalupe In the early 1970s, almost 15 years after the fi rst Mohole Island about 240 km west of Mexico’s Baja California, to- attempt, attendees of a Penrose fi eld conference (Confer- gether with a few hundred meters of Miocene sediments, in ence Participants, 1972) formulated the concept of a layered about 3500 m of water. This fi rst-time exploit, reported by oceanic crust composed of lavas, underlain by sheeted dikes, John Steinbeck for Life magazine, aimed to be the test phase then gabbros (corresponding to the seismic layers 2A, 2B, for the considerably more ambitious Mohole project, whose and 3, respectively), which themselves overlay mantle perido- objective was to drill through the oceanic crust down to tites.
    [Show full text]
  • Tectonic Versus Magmatic Extension in the Presence of Core Complexes at Slow-Spreading Ridges from a Visualization of Faulted Seafl Oor Topography
    Tectonic versus magmatic extension in the presence of core complexes at slow-spreading ridges from a visualization of faulted seafl oor topography Hans Schouten1, Deborah K. Smith1, Johnson R. Cann2, and Javier Escartín3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 3Groupe de Geosciences Marines, CNRS–IPGP, F-75252 Paris, France ABSTRACT assume symmetrical spreading. Taking a simple We develop a forward model of the generation of faulted seafl oor topography (visualiza- model that each dike is rooted in a magma body, tion) to estimate the relative roles of tectonic and magmatic extension in the presence of core we examine how gabbro would be partitioned to complexes at slow-spreading ridges. The visualization assumes fl exural rotation of 60° normal both sides of the axis as M varies through time. faults, a constant effective elastic thickness, Te, of young lithosphere, and a continuous infi ll of Our visualization of the 13°20′N topography pre- the depressed hanging wall by lava fl owing from the spreading axis. We obtain a new estimate dicts a high probability of fi nding gabbro beneath of Te = 0.5–1 km from the shapes of the toes of 6 well-documented oceanic core complexes. the surface of the 13°20′N core complex. We model an 80-km-long bathymetric profi le in the equatorial Atlantic across a core complex and the ridge axis at 13°20′N and estimate the variation in tectonic extension, which yields the OCEANIC CORE COMPLEX variation in the fraction of upper crust extension, M, by magmatic diking at the ridge axis.
    [Show full text]
  • IODP Expedition 305 Preliminary Report
    Integrated Ocean Drilling Program Expedition 305 Preliminary Report Oceanic Core Complex Formation, Atlantis Massif Oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation 8 January–2 March 2005 Expedition Scientific Party PUBLISHER’S NOTES Material in this publication may be copied without restraint for library, abstract service, educational, or personal research purposes; however, this source should be appropriately acknowledged. Citation: Expedition Scientific Party, 2005. Oceanic core complex formation, Atlantis Massif—oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Prel. Rept., 305. http://iodp.tamu.edu/publications/PR/305PR/305PR.PDF. Distribution: Electronic copies of this series may be obtained from the Integrated Ocean Drilling Program (IODP) Publication Services homepage on the World Wide Web at iodp.tamu.edu/publications. This publication was prepared by the Integrated Ocean Drilling Program U.S. Implementing Organization (IODP-USIO): Joint Oceanographic Institutions, Inc., Lamont-Doherty Earth Observatory of Columbia University, and Texas A&M University, as an account of work performed under the international Integrated Ocean Drilling Program, which is managed by IODP Management International (IODP-MI), Inc. Funding for the program is provided by the following agencies: European Consortium for Ocean Research Drilling (ECORD) Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan Ministry of Science and Technology (MOST), People’s Republic of China U.S.
    [Show full text]
  • Slow Spreading Ridges of the Indian Ocean: an Overview of Marine Geophysical Investigations K
    J. Ind. Geophys.Slow Union Spreading ( April Ridges 2015 of the ) Indian Ocean: An Overview of Marine Geophysical Investigations v.19, no.2, pp:137-159 Slow Spreading Ridges of the Indian Ocean: An Overview of Marine Geophysical Investigations K. A. Kamesh Raju*, Abhay V. Mudholkar, Kiranmai Samudrala CSIR-National Institute of Oceanography, Dona Paula, Goa – 403004, India *Corresponding author: [email protected] ABSTRACT Sparse and non-availability of high resolution geophysical data hindered the delineation of accurate morphology, structural configuration, tectonism and spreading history of Carlsberg Ridge (CR) and Central Indian Ridges (CIR) in the Indian Ocean between Owen fracture zone at about 10oN, and the Rodriguez Triple Junction at ~25oS. Analysis of available multibeam bathymetry, magnetic, gravity, seabed sampling on the ridge crest, and selected water column data suggest that even with similar slow spreading history the segmentation significantly differ over the CR and CIR ridge systems. Topography, magnetic and gravity signatures indicate non-transform discontinuity over CR and suggest that it has relatively slower spreading history than CIR. Magmatic and less magmatic events characterize CR and CIR respectively and well defined oceanic core complex (OCC) are confined only to segments of the CIR. The mantle Bouguer anomaly signatures over the ridges suggest crustal accretion and pattern of localized magnetic anomalies indicate zones of high magnetization coinciding with the axial volcanic ridges. Geophysical investigations /
    [Show full text]
  • Mantle Rock Exposures at Oceanic Core Complexes Along Mid-Ocean Ridges
    Geologos 21, 4 (2015): 207–231 doi: 10.1515/logos-2015-0017 Mantle rock exposures at oceanic core complexes along mid-ocean ridges Jakub Ciazela1,2*, Juergen Koepke2, Henry J.B. Dick3 & Andrzej Muszynski1 1Institute of Geology, Adam Mickiewicz University, Institute of Geology, Maków polnych 16, 61-606 Poznań, Poland 2Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany 3Department of Geology and Geophysics, Woods Hole Oceanographic Institution, MS #8, McLean Laboratory, Woods Hole MA 02543-1539, USA * corresponding author, e-mail: [email protected] Abstract The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs), which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3–18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites.
    [Show full text]
  • Oceanic Detachment Faults Generate Compression in Extension
    Oceanic detachment faults generate compression in extension R. Parnell-Turner1, R.A. Sohn1, C. Peirce2, T.J. Reston3, C.J. MacLeod4, R.C. Searle2, and N.M. Simão2. 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK 4School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK ABSTRACT and sampled oceanic core complexes located In extensional geologic systems such as mid-ocean ridges, deformation is typically accom- at 13°20′N and 13°30′N (Smith et al., 2006; modated by slip on normal faults, where material is pulled apart under tension and stress MacLeod et al., 2009; Mallows and Searle, 2012; is released by rupture during earthquakes and magmatic accretion. However, at slowly Escartín et al., 2017). Both core complexes have spreading mid-ocean ridges where the tectonic plates move apart at rates <80 km m.y.–1, well-developed, domed, corrugated surfaces and these normal faults may roll over to form long-lived, low-angled detachments that exhume are accompanied by a high level of hydroacous- mantle rocks and form corrugated domes on the seabed. Here we present the results of a local tically recorded seismicity, suggesting that they micro-earthquake study over an active detachment at 13°20′N on the Mid-Atlantic Ridge are currently active or have been in the recent to show that these features can give rise to reverse-faulting earthquakes in response to plate geological past (Smith et al., 2008; MacLeod et bending.
    [Show full text]