Hazardous Marine Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Educators' Resource Guide
EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p -
Marine Envenomations
Environmental Marine envenomations Ingrid Berling Geoffrey Isbister Background The majority of marine envenomings are minor and do Marine stings are common but most are minor and do not not require medical intervention. Jellyfish stings are a require medical intervention. Severe and systemic marine frequent reason for presentation to first aid and primary envenoming is uncommon, but includes box jellyfish stings, healthcare providers. A knowledge of the variety of stings Irukandji syndrome, major stingray trauma and blue-ringed and envenoming syndromes that occur in Australia, octopus envenoming. Almost all marine injuries are caused including those that are clinically significant, and available by jellyfish stings, and penetrating injuries from spiny fish, treatments, is necessary for practitioners, particularly those stingrays or sea urchins. working in coastal regions. Objective This article describes the presentation and management Marine envenoming can be considered in two broad categories: of marine envenomations and injuries that may occur in jellyfish stings and penetrating venomous marine injuries. Jellyfish Australia. stings range from the life-threatening major box jellyfish (Chironex Discussion fleckeri) to painful, but generally benign, bluebottle stings common First aid for jellyfish includes tentacle removal, application to most southeastern Australian beaches (Figure 1). Penetrating of vinegar for box jellyfish, and hot water immersion (45°C venomous marine injuries often occur when handling fish, but can for 20 min) for bluebottle jellyfish stings. Basic life support occur to anyone involved in water activities, fresh water or marine. is essential for severe marine envenomings that result in They are typically more painful than just the trauma of the wound, and cardiac collapse or paralysis. -
Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c. -
Spider Bites
Infectious Disease Epidemiology Section Office of Public Health, Louisiana Dept of Health & Hospitals 800-256-2748 (24 hr number) www.infectiousdisease.dhh.louisiana.gov SPIDER BITES Revised 6/13/2007 Epidemiology There are over 3,000 species of spiders native to the United States. Due to fragility or inadequate length of fangs, only a limited number of species are capable of inflicting noticeable wounds on human beings, although several small species of spiders are able to bite humans, but with little or no demonstrable effect. The final determination of etiology of 80% of suspected spider bites in the U.S. is, in fact, an alternate diagnosis. Therefore the perceived risk of spider bites far exceeds actual risk. Tick bites, chemical burns, lesions from poison ivy or oak, cutaneous anthrax, diabetic ulcer, erythema migrans from Lyme disease, erythema from Rocky Mountain Spotted Fever, sporotrichosis, Staphylococcus infections, Stephens Johnson syndrome, syphilitic chancre, thromboembolic effects of Leishmaniasis, toxic epidermal necrolyis, shingles, early chicken pox lesions, bites from other arthropods and idiopathic dermal necrosis have all been misdiagnosed as spider bites. Almost all bites from spiders are inflicted by the spider in self defense, when a human inadvertently upsets or invades the spider’s space. Of spiders in the United States capable of biting, only a few are considered dangerous to human beings. Bites from the following species of spiders can result in serious sequelae: Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 14 The Brown Recluse: Loxosceles reclusa Photo Courtesy of the Texas Department of State Health Services The most common species associated with medically important spider bites: • Physical characteristics o Length: Approximately 1 inch o Appearance: A violin shaped mark can be visualized on the dorsum (top). -
Traveler Information
Traveler Information QUICK LINKS Marine Hazards—TRAVELER INFORMATION • Introduction • Risk • Hazards of the Beach • Animals that Bite or Wound • Animals that Envenomate • Animals that are Poisonous to Eat • General Prevention Strategies Traveler Information MARINE HAZARDS INTRODUCTION Coastal waters around the world can be dangerous. Swimming, diving, snorkeling, wading, fishing, and beachcombing can pose hazards for the unwary marine visitor. The seas contain animals and plants that can bite, wound, or deliver venom or toxin with fangs, barbs, spines, or stinging cells. Injuries from stony coral and sea urchins and stings from jellyfish, fire coral, and sea anemones are common. Drowning can be caused by tides, strong currents, or rip tides; shark attacks; envenomation (e.g., box jellyfish, cone snails, blue-ringed octopus); or overconsumption of alcohol. Eating some types of potentially toxic fish and seafood may increase risk for seafood poisoning. RISK Risk depends on the type and location of activity, as well as the time of year, winds, currents, water temperature, and the prevalence of dangerous marine animals nearby. In general, tropical seas (especially the western Pacific Ocean) are more dangerous than temperate seas for the risk of injury and envenomation, which are common among seaside vacationers, snorkelers, swimmers, and scuba divers. Jellyfish stings are most common in warm oceans during the warmer months. The reef and the sandy sea bottom conceal many creatures with poisonous spines. The highly dangerous blue-ringed octopus and cone shells are found in rocky pools along the shore. Sea anemones and sea urchins are widely dispersed. Sea snakes are highly venomous but rarely bite. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
The Polyp and the Medusa Life on the Move
The Polyp and the Medusa Life on the Move Millions of years ago, unlikely pioneers sparked a revolution. Cnidarians set animal life in motion. So much of what we take for granted today began with Cnidarians. FROM SHAPE OF LIFE The Polyp and the Medusa Life on the Move Take a moment to follow these instructions: Raise your right hand in front of your eyes. Make a fist. Make the peace sign with your first and second fingers. Make a fist again. Open your hand. Read the next paragraph. What you just did was exhibit a trait we associate with all animals, a trait called, quite simply, movement. And not only did you just move your hand, but you moved it after passing the idea of movement through your brain and nerve cells to command the muscles in your hand to obey. To do this, your body needs muscles to move and nerves to transmit and coordinate movement, whether voluntary or involuntary. The bit of business involved in making fists and peace signs is pretty complex behavior, but it pales by comparison with the suites of thought and movement associated with throwing a curve ball, walking, swimming, dancing, breathing, landing an airplane, running down prey, or fleeing a predator. But whether by thought or instinct, you and all animals except sponges have the ability to move and to carry out complex sequences of movement called behavior. In fact, movement is such a basic part of being an animal that we tend to define animalness as having the ability to move and behave. -
ALLERGIC REACTIONS/ANAPHYLAXIS Connie J
Northwest Community EMS System Paramedic Education Program ALLERGIC REACTIONS/ANAPHYLAXIS Connie J. Mattera, M.S., R.N., EMT-P Reading assignments Text-Vol.1 pp. 235, 1272-1276 SOP: Allergic Reactions/ Anaphylactic Shock Assumed knowledge: Drugs: Epinephrine 1:1,000, 1:10,000; albuterol, ipratropium, dopamine, glucagon KNOWLEDGE OBJECTIVES Upon reading the assigned text assignments and completion of the class and homework questions, each participant will independently do the following with at least an 80% degree of accuracy and no critical errors: 1. Define allergic reaction. 2. Describe the incidence, morbidity and mortality of allergic reactions and anaphylaxis. 3. Identify risk factors that predispose a patient to anaphylaxis. 4. Explain the physiology of the immune system following exposure to an allergen including activation of histamine receptors and the formation of antibodies. 5. Discuss the pathophysiology of allergic reactions and anaphylaxis. 6. Describe the common modes by which allergens enter the body. 7. Compare and contrast natural and acquired and active vs. passive immunity. 8. Identify antigens most frequently associated with anaphylaxis. 9. Differentiate the clinical presentation and severity of risk for a mild, moderate and severe allergic reaction with an emphasis on recognizing an anaphylactic reaction. 10. Integrate the pathophysiologic principles of anaphylaxis with treatment priorities. 11. Sequence care per SOP for patients with mild, moderate and severe allergic reactions. CJM: S14 NWC EMSS Paramedic Education Program ALLERGIC REACTIONS/ANAPHYLAXIS Connie J. Mattera, M.S., R.N., EMT-P I. Immune system A. Principal body system involved in allergic reactions. Others include the cutaneous, cardiovascular, respiratory, nervous, and gastrointestinal systems. -
Save the Reef
Save the Reef A member group of Lock the Gate Alliance www.savethereef.net.au Committee Secretary Senate Standing Committees on Environment and Communications PO Box 6100 Parliament House Canberra ACT 2600 Phone: +61 2 6277 3526 Fax: +61 2 6277 5818 [email protected] Submission to the Senate Inquiry on The adequacy of the Australian and Queensland Governments’ efforts to stop the rapid decline of the Great Barrier Reef, including but not limited to: Points a–k. Save the Reef would like to thank this committee for the opportunity to make a submission and would also like to speak further if there is an opportunity at any public hearings. The Great Barrier Reef is Australia’s greatest natural asset. It is a tourism mecca, a 6 billion dollar economic boon as well as a scientific wonderland. It is a World Heritage Listed property and an acknowledged world wonder. The Great Barrier Reef is part of Australia’s very identity. We are failing to protect the Great Barrier Reef. The efforts to stop the rapid decline of the Great Barrier Reef are grossly inadequate. It demonstrates that our current system for protecting the environment is broken. Environmental impact statements, conditions, offsets, regulations, enforcement and even the EPBC act, processes meant to protect the environment are being subverted and the impact is apparent. The holes in the “Swiss Cheese” are lining up and have allowed and are continuing to allow further destruction of the Great Barrier Reef when it needs our protection the most. The recent developments in Gladstone are a clear demonstration of the failure of our systems. -
Arthropod Envenomations: Immunologic and Toxicologic Considerations Cyrus Rangan, MD, FAAP, ACMT
Emergency Department Evaluation and Treatment for Children With Arthropod Envenomations: Immunologic and Toxicologic Considerations Cyrus Rangan, MD, FAAP, ACMT Arthropod envenomations are a significant cause of environmental injury in children. Bees, wasps, and spiders inflict injury via specialized venoms with a broad range of components, mechanisms, and potential treatments. Immunologic and toxicologic considerations in the evaluation and management of arthropod envenomations are important for the under- standing of the progression of envenomations, prompt diagnosis of severe conditions including anaphylaxis, and the use of antivenom in selected cases. Clin Ped Emerg Med 8:104-109 ª 2007 Published by Elsevier Inc. KEYWORDS envenomation, arthropod, arachnida, hymenoptera rthropod bites and stings accounted for more than ever, clinical symptoms of envenomation and treatment A75000 reports to poison control centers in the are similar. Bees are attracted to carbon dioxide (hence, United States in 2005 [1]. The phylum Arthropoda the predilection for bees to fly around the facial area), includes 2 clinically important classes: Insecta (order: bright colors (ie, clothing), and sweet odors (ie, Hymenoptera—bees, wasps, yellow jackets, and ants), perfumes, fragrances). Children commonly believe that and Arachnida (ticks, scorpions, and spiders). Virtually bees are aggressive insects, but they are mostly docile all arthropods possess some form of venom for immobi- creatures; indeed, the sometimes fearful behavior of lization and digestion of prey, yet only a select few species children around a nearby bee may increase the risk of a have developed venom delivery mechanisms capable of sting. Mass envenomations may occur when a hive is poisoning humans [2]. Pathophysiologic mechanisms of physically disturbed by children throwing rocks or other venom vary considerably among arthropods, and clinical objects at the hive [3]. -
Sample Chapter Algal Blooms
ALGAL BLOOMS 7 Observations and Remote Sensing. http://dx.doi.org/10.1109/ energy and material transport through the food web, and JSTARS.2013.2265255. they also play an important role in the vertical flux of Pack, R. T., Brooks, V., Young, J., Vilaca, N., Vatslid, S., Rindle, P., material out of the surface waters. These blooms are Kurz, S., Parrish, C. E., Craig, R., and Smith, P. W., 2012. An “ ” overview of ALS technology. In Renslow, M. S. (ed.), Manual distinguished from those that are deemed harmful. of Airborne Topographic Lidar. Bethesda: ASPRS Press. Algae form harmful algal blooms, or HABs, when either Sithole, G., and Vosselman, G., 2004. Experimental comparison of they accumulate in massive amounts that alone cause filter algorithms for bare-Earth extraction from airborne laser harm to the ecosystem or the composition of the algal scanning point clouds. ISPRS Journal of Photogrammetry and community shifts to species that make compounds Remote Sensing, 59,85–101. (including toxins) that disrupt the normal food web or to Shan, J., and Toth, C., 2009. Topographic Laser Ranging and Scanning: Principles and Processes. Boca Raton: CRC Press. species that can harm human consumers (Glibert and Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Pitcher, 2001). HABs are a broad and pervasive problem, Airborne laser swath mapping: achieving the resolution and affecting estuaries, coasts, and freshwaters throughout the accuracy required for geosurficial research. Geophysical world, with effects on ecosystems and human health, and Research Letters, 34,1–5. on economies, when these events occur. This entry Wehr, A., and Lohr, U., 1999. -
Darling Marine Center Local Shore Diving Guide
Darling Marine Center Local Shore Diving Guide University of Maine Scientific Diving Program Table of Contents Recommended Equipment List……………………………………………………………..2 Local Information…………………………………………………………………………...3 Recompression Chambers…………………………………………………………………..3 General Emergency Action Plan…………………………………………………………….3-4 Documentation……………………………………………………………………………….4 Dive Sites DMC Pier……………………………………………………………………………5-6 Kresge Point………………………………………………………………………….7-8 Lowes Cove Mooring Field…………………………………………………………..9-10 Pemaquid Point……………………………………………………………………….11-12 Rachel Carson Preserve………………………………………………………………13-15 Sand Cove…………………………………………………………………………….16-17 Thread of life…………………………………………………………………………18-19 Appendix………………………………………………………………………………………20 1 Recommended Equipment List • Dive flag • DAN oxygen and first aid kit • Spare tank • Extra weights • Save-a-dive kit • Dive slate/underwater paper (recording purposes) Recommended Personal Equipment • Exposure suit- minimum7mm wetsuit o Booties o Gloves o Hood o Wool socks • Fins • BCD • Mask, Snorkel • Weights • Surface marker buoy • Dive watch • Dive computer • Knife/cutting tool 2 Local Information: Fire, Medical, Police 911 Emergency Dispatch Lincoln County Emergency (207)563-3200 Center Nearest Hospital Lincoln Health-Miles (207)563-1234 Campus USCG Boothbay (207)633-2661 Divers Alert Network Emergency hotline 1-919-684-9111 Medical information 1-919-684-2948 Diving Safety Officer Christopher Rigaud (207)563-8273 Recompression Chambers: In the event of a diving accident, call 911 and facilitate transport of victim to a hospital or medical facility. The medical staff will determine whether hyperbaric treatment is needed. St. Mary’s Regional Lewiston, ME (207)777-8331 Will NOT accept Medical Center divers after 4:30pm St. Joseph’s Hospital Bangor, ME (207)262-1550 Typically, available after hours Wound and Beverly, MA (978)921-1210 Hyperbaric Medicine Basic Emergency Information: See Appendix for the approved Emergency Action Plan by the UMaine DCB.