The Chemical Bulletin OCTOBER • 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fall 2019 SPECIAL DAY/TIME/LOCATION: Friday
The Chemistry and Biochemistry Departmental Seminar Series covers a broad range of fields in the Chemical and Biochemical Sciences. In past seminars, scientists from Academia, Government, and Industry have presented their most recent discoveries and contributions in their respective areas. This Seminar Series offers students and faculty the opportunity to interact directly with other leaders in their specializations and to gain a good overview of the entire range of fields in Chemistry and Biochemistry. Fall 2019 Seminars are held on Tuesdays in CL 1009 (Clendenin Building, Room 1009 on the Kennesaw Campus), 12:30 - 1:30pm, unless otherwise noted with special day/time/location information. All are invited to attend. SPECIAL DAY/TIME/LOCATION: Friday, September 20, 2019 – 2:30pm in CL 2003 Dr. Jeffrey I. Seeman, Department of Chemistry, University of Richmond Title: Was Plagiarism Involved in the Conceptualization of the Woodward-Hoffmann Rules? Abstract: In 1981, Roald Hoffmann and Kenichi Fukui shared the Nobel Prize in Chemistry “for their theories, developed independently, concerning the course of chemical reactions.” Had Robert B. Woodward (1917 – 1979) lived two years longer, he would surely have received his second Nobel Prize in Chemistry for his contributions to the Woodward-Hoffmann rules. In the March 29, 2004 issue of Chemical & Engineering News, E. J. Corey wrote in his Priestley Medal Address, “On May 4, 1964, I suggested to my colleague R. B. Woodward a simple explanation involving the symmetry of the perturbed (HOMO) molecular orbitals for the stereoselective cyclobutene/1,3-butadiene and 1,3,5-hexatriene/cyclohexadiene conversions that provided the basis for the further development of these ideas into what became known as the Woodward-Hoffmann rules.” Letters between Corey and Hoffmann in 1981 and 1984 and other relevant information will be shown and discussed. -
Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S. -
Henry Taube Papers SC0731SC0731
http://oac.cdlib.org/findaid/ark:/13030/kt329035mg No online items Guide to the Henry Taube Papers SC0731SC0731 Stanford University Archives staff Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Henry Taube Papers SC073117755 1 SC0731SC0731 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Henry Taube papers Creator: Taube, Henry Identifier/Call Number: SC0731 Identifier/Call Number: 17755 Physical Description: 65.25 Linear Feet(56 boxes) Date (inclusive): 1941-2003 Abstract: Collection pertains to his teaching and research, primarily while at Stanford University, and includes grant files, articles and papers, reprints, class files, correspondence, travel records, and biographical materials. Information about Access This collection is open for research; materials must be requested at least 48 hours in advance of intended use. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials. -
Nobel Lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y
BUILDING BRIDGES BETWEEN INORGANIC AND ORGANIC CHEMISTRY Nobel lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y. 14853 R. B. Woodward, a supreme patterner of chaos, was one of my teachers. I dedicate this lecture to him, for it is our collaboration on orbital symmetry conservation, the electronic factors which govern the course of chemical reac- tions, which is recognized by half of the 1981 Nobel Prize in Chemistry. From Woodward I learned much: the significance of the experimental stimulus to theory, the craft of constructing explanations, the importance of aesthetics in science. I will try to show you how these characteristics of chemical theory may be applied to the construction of conceptual bridges between inorganic and organic chemistry. FRAGMENTS Chains, rings, substituents - those are the building blocks of the marvelous edifice of modern organic chemistry. Any hydrocarbon may be constructed on paper from methyl groups, CH 3, methylenes, CH 2, methynes, CH, and carbon atoms, C. By substitution and the introduction of heteroatoms all of the skeletons and functional groupings imaginable, from ethane to tetrodotoxin, may be obtained. The last thirty years have witnessed a remarkable renaissance of inorganic chemistry, and the particular flowering of the field of transition metal organo- metallic chemistry. Scheme 1 shows a selection of some of the simpler creations of the laboratory in this rich and ever-growing field. Structures l-3 illustrate at a glance one remarkable feature of transition metal fragments. Here are three iron tricarbonyl complexes of organic moie- ties - cyclobutadiene, trimethylenemethane, an enol, hydroxybutadiene - which on their own would have little kinetic or thermodynamic stability. -
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
HENRY TAUBE Department of Chemistry, Stanford University, Stanford, CA 94305
ELECTRON TRANSFER BETWEEN METAL COMPLEXES - RETROSPECTIVE Nobel lecture, 8 December, 1983 by HENRY TAUBE Department of Chemistry, Stanford University, Stanford, CA 94305 This will be an account in historical perspective of the development of part of the field of chemistry that I have been active in for most of my professional life, the field that is loosely described by the phrase “electron transfer in chemical reactions”. In the short time available to me for the preparation of this paper, I can’t hope to provide anything significant in the way of original thought. But I can add some detail to the historical record, especially on just how some of the contributions which my co-workers and I have made came about. This kind of information may have some human interest and may even have scientific interest of a kind which cannot easily be gathered from the scientific journals. For publication there, the course of discovery as it actually took place may be rewritten to invest it with a logic that it did not fully acquire until after the event. Simple electron transfer is realized only in systems such as Ne + Ne +. The + physics already becomes more complicated when we move to N 2 + N 2 for example, and with the metal ion complexes which I shall deal with, where a 2+ typical reagent is Ru(NH 3)6 , and where charge trapping by the solvent, as well as within the molecule, must be taken into account, the complexity is much greater. Still, a great deal of progress has been made by a productive interplay of experiment, qualitative ideas, and more sophisticated theory, involving many workers. -
Named Organic Reactions (U – Z)
Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 1 NAMED ORGANIC REACTIONS (U – Z) © Dr. John Andraos, 2000 - 2014 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ Sakae Uemura Japanese, b. Japan Uemura oxidation Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. Tetrahedron Lett. 1998 , 39 , 6011 Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. J. Org. Chem. 1999 , 64 , 6750 Biographical references: Ivar Karl Ugi 5 September 1930 – 29 September 2005 German, b. Kuressaare, Estland, Germany Ugi condensation Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrueckner, C. Angew. Chem. 1959 , 71 , 386 Urban, R.; Ugi, I., Angew. Chem. Int. Engl. Ed . 1975 , 14 , 61 Biographical references: Chemical Research Faculties: An International Directory 1996 , American Chemical Society: Washington, D.C., 1996 Wer ist Wer? Das Deutsche Who’s Who 1999/2000 , Schmidt-Römhild: Lübeck, 1999 Lemmen, P.; Fontain, E.; Bauer, J. Angew. Chem. Int. Ed. 2006 , 45 , 193 Fritz Ullmann 2 July 1875 - 17 March 1939 German, b. Fürth, Germany Ullmann reaction Ullmann, F. Ann. Chem . 1904 , 332 , 38 Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 2 Biographical references: Meyer, K.H., Helv. Chim. Acta 1940 , 23 , 93 Upjohn reaction Van Rheenen, V.; Kelly, R.C.; Cha, D.Y. Tetrahedron Lett. 1976 , 1973 A. Verley French, b. ? Meerwein-Pondorff-Verley reduction see Hans Leberecht Meerwein Biographical references: Victor Villiger 1 September 1868 - 1934 Swiss, b. -
Spring 2015 Message from the Chair Chemistry Welcomes New Faculty Member Dr
CHEM Discovery chemistry.clemson.edu Spring 2015 Message from the Chair CHEMISTRY WELCOMES NEW FACULTY MEMBER DR. CARLOS GARCIA I hope that your spirits have been re- freshed and renewed by the arrival of Spring. This is the season that brings forth budding hopes and promises of Dr. Carlos Garcia is the newest rejuvenation and new growth even addition to our program and joined though T. S. Eliot tells us “April is the the Department of Chemistry in cruelest month, … mixing memory and August of 2015. Dr. Garcia’s desire”. research lies at the interface between microfluidics and nanomaterials and is focused on the development of The faculty’s hard work over the years novel analytical has blossomed into a number of awards. strategies to The New England Regional Section of d e t e r m i n e the Society for Applied Spectroscopy biomedically- announced that Professor Ken Marcus r e l e v a n t will receive the 2015 Lester W. Strock molecules. Dr. Award at its national meeting in Sep- retiring, the department is in the midst Garcia’s group tember for “the development of the of a search for two new instructors. will continue liquid sampling-atmospheric pressure i n v e s t i g a t i n g glow discharge ionization source”. Pro- In August 2014, the department held a the driving fessor Emeritus Dwaine Eubanks was retreat to develop a new strategic plan forces and awarded the George C. Pimentel Award and a re-examination of both the un- consequences in Chemical Education for his work as dergraduate and graduate programs in of the interaction of proteins with director of the ACS Examinations In- chemistry was conducted during the nanostructured surfaces and in stitute and his work in developing text- current academic year. -
Otto Hahn Otto Hahn
R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively. -
Robert Burns Woodward
The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C. -
Wilhelm Ostwald – the Scientist
ARTICLE-IN-A-BOX Wilhelm Ostwald – The Scientist Friedrich Wilhelm Ostwald was born on September 2, 1853 at Riga, Latvia, Russia to Gottfried Ostwald, a master cooper and Elisabeth Leuckel. He was the second son to his parents who both were descended from German immigrants. He had his early education at Riga. His subsequent education was at the University of Dorpat (now Tartu, Estonia) where he enrolled in 1872. At the university he studied chemistry under the tutelage of Carl ErnstHeinrich Schmidt (1822– 1894) who again was a pupil of Justus von Liebig. Besides Schmidt, Johannes Lemberg (1842– 1902) and Arthur von Oettingen (1836–1920) who were his teachers in physical chemistry were also principal influences. It was in 1877 that he defended his thesis ‘Volumchemische Studien über Affinität’. Subsequently he taught as Privatdozent for a couple of years. During this period, his personal life saw some changes as well. He wedded Helene von Reyher (1854–1946) in 1880. With Helene, he had three sons, and two daughters. Amongst his children, Wolfgang went on to become a famous colloid chemist. On the strength of recommendation from Dorpat, Ostwald was appointed as a Professor at Riga Polytechnicum in 1882. He worked on multiple applications of the law of mass action. He also conducted measurements in chemical reaction kinetics as well as conductivity of solutions. To this end, the pyknometer was developed which was used to determine the density of liquids. He also had a thermostat built and both of these were named after him. He was prolific in his teaching and research which helped establish a school of science at the university. -
Henry Taube by J
Chemical Education Today Nobel Centennial Essays A Century of Chemical Dynamics Traced through the Nobel Prizes W 1983: Henry Taube by J. Van Houten Nobel Prize in Chemistry 1983 Photo by Rudy Baum Henry Taube (1915– ) for his work on the mechanisms of electron transfer Henry Taube, shown on reactions, especially in metal complexes the cover of C&E News. This is the eighth in a series of essays (1) written in com- Reprinted with permis- memoration of the centennial of the Nobel Prize, examin- sion from Chemical & ing the history of chemical dynamics in the 20th century.W Engineering News, May 21, 1984. © As his Nobel citation (2) states, Henry Taube studied elec- Copyright 1984 Ameri- tron transfer reactions of transition metal complexes. The can Chemical Society. Nobel Prize to Taube came exactly seventy years after it was awarded to Alfred Werner (3) for developing the structural chemistry of inorganic transition metal complexes. During the entire 20th century, Taube and Werner are the only in- to Werner’s. His early mechanistic studies relied heavily on organic transition metal chemists to win a Nobel Prize.1 In isotope tracer techniques developed by George de Hevesy, the fact, many of the complexes that Taube studied were first 1943 Nobel Laureate (1d). The second of the 100 references prepared or characterized by Werner. in Taube’s Nobel lecture (6) is to a 1920 paper where de Taube’s citation (2) concludes with the statement: “There Hevesy used naturally occurring lead isotopes to follow the is no doubt that Henry Taube is one of the most creative exchange reaction between Pb2+ and Pb4+ (7).