bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.224873; this version posted July 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Concerted but segregated actions of oxytocin and vasopressin within the ventral and 2 dorsal lateral septum determine female aggression 3 4 Vinícius Elias de Moura Oliveira1, Michael Lukas3, Hannah Nora Wolf1, Elisa Durante1, 5 Alexandra Lorenz1, Anna-Lena Mayer1, Anna Bludau1, Oliver J. Bosch1, Valery Grinevich4, 6 Veronica Egger3, Trynke R. de Jong1,2, Inga D. Neumann1* 7 8 1Department of Neurobiology and Animal Physiology, Behavioural and Molecular 9 Neurobiology, University of Regensburg, Regensburg, Germany 10 2Medische Biobank Noord-Nederland B.V. Groningen, Netherlands 11 3Department of Neurobiology and Animal Physiology, Neurophysiology, University of 12 Regensburg, Regensburg, Germany 13 4Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, 14 Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany 15 *Corresponding author
[email protected] 16 17 18 ABSTRACT: 19 In contrast to males, aggression in females has been rarely studied. Here, we established a rat 20 model of enhanced female aggression using a combination of social isolation and aggression- 21 training to specifically investigate the involvement of the oxytocin (OXT) and vasopressin 22 (AVP) systems within the lateral septum (LS). Using neuropharmacological, optogenetic, 23 chemogenetic as well as microdialyses approaches, we revealed that enhanced OXT release 24 within the ventral LS (vLS), combined with reduced AVP release within the dorsal LS (dLS), 25 are required for female aggression.