Hymenoptera: Diaprioidea: Diapriidae) Associated with Ants (Hymenoptera: Formicidae) in Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Hymenoptera: Diaprioidea: Diapriidae) Associated with Ants (Hymenoptera: Formicidae) in Argentina Hindawi Publishing Corporation Psyche Volume 2013, Article ID 320590, 11 pages http://dx.doi.org/10.1155/2013/320590 Review Article Diapriinae Wasps (Hymenoptera: Diaprioidea: Diapriidae) Associated with Ants (Hymenoptera: Formicidae) in Argentina Marta S. Loiácono,1 Cecilia B. Margaría,1,2 and Daniel A. Aquino1 1 Division´ Entomolog´ıa, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina 2 Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina Correspondence should be addressed to Marta S. Loiacono;´ [email protected] Received 19 December 2012; Revised 15 February 2013; Accepted 20 February 2013 Academic Editor: Jean-Paul Lachaud Copyright © 2013 Marta S. Loiacono´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We provide an overview of diapriid wasps associated with ants in Argentina and the diversity of interactions they have developed with their hosts. As a result, we report 16 species of nine genera of Diapriinae, two new geographic distributions, three new association records, illustrations, and photographs. We highlight myrmecophile symphylic species, with a high degree of integration with the host ants, adaptation being morphological and behavioral. A table with diapriid species and ant hosts is given. 1. Introduction byhostants.Antsseemtohavepreferencetolickcertainparts of diapriid body to get exudates [2]. The adaptations include Diapriids are primary endoparasitoids of larvae-pupae or secondary apterism in which the wings of wasps are bitten pupae, principally of dipterans, but a number of species are off by either the parasite itself or its host. During the alate closely associated with ant nests. However, there are few phase, the adults probably disperse, as the alate individuals, behavioral data on host-diapriid myrmecophile interactions. caught by sweeping, in Malaise traps and significantly by light Huggert and Masner [1] hypothesized that the ancestors of traps indicating also the nocturnal activity in this phase of diapriines guests changed from Diptera to Formicidae. The life [2]. The secondary apterism occurs in several species of intermediates in the presumed sequence of hosts seem to diapriines, for example, Asolenopsia rufa Kieffer, Bruchopria be the numerous synoeketic Diptera living in the refuse pentatoma Kieffer, Bruchopria hexatoma Kieffer, Notoxoides depot and bivouacs of various army ants of the subfamily pronotalis (Borgmeier), herein studied. Ecitoninae. Diapriines females, in the search for potential The current knowledge indicates that only a few diapri- hosts, would have progressively integrated with formicids. ids are parasitoids of ant brood, attacking as solitary or According to Masner (personal communication) this change gregarious koinobiont endoparasitoids of the host larvae, would have occurred more frequently in the Neotropi- and worker and/or reproductive immature stages can be calregionwheretheseantshavehighdistribution.The parasitized. From 121 diapriine species in 34 genera that guests switch mechanism has determined morphological and behavioral specialization, manifested by the degree of had been collected in association with ants, development integration of diapriines to ant colonies. These symphyles are of immature stages as parasitoids of ant larvae has been often highly adapted to their hosts, exhibiting morphological demonstrated for only 26 species in seven genera, most of and behavioral adaptations to living with ants (extensive which are only known at the level of morphospecies [3]. morphological mimicry of the host ants coloration, ocellus There are only two species and one morphospecies recorded regression, similar sculpture, presence of appeasement sub- in Argentina as ant parasitoids [4]. stances in specialized structures and trichomes, trophallaxis, A large number of diapriine wasps became associated etc.), which aid them in avoiding detection and/or aggression withvariousgroupsofantsinCentralandSouthAmerica. 2 Psyche The associations are especially well developed with army the diversity of interactions they have developed with their ants (Ecitonini) and leaf cutting ants (Attini) with some 20 hosts. genera of Diapriinae already involved [5]. The vast majority of these species belong to Diapriini, although there are some 2. Material and Methods exceptions like Bruchopria species that belong to the tribe Spilomicrini [6]. Specimens for this study were reared in laboratory [4]orcol- The New World fungus-growing ants (Hymenoptera: lected from ant nests, killed in alcohol, and mounted on cards Formicidae: Attini) are especially diverse in the tropics. As or microscopic slides for further studies. Observations of true for the most social insects, they accumulate significant the specimens were made through a stereomicroscope Leica stores of resources within their nests, attracting a diverse S8APO. The photographs were taken by Daniel A. Aquino array of predators, microbial pathogens, and parasites [7]. We with a Leica DFC295 camera attached to the stereomicro- studiedaspectsoftheintensityandprevalenceoftheselittle- scope. Digital images were mounted using open software CombineZM [30] and enhanced using Photoshop. Scanning known diapriine wasps that attack the larvae of the fungus- micrographs were taken with a JEOL JSMT100 at Museo de growing ant, Acromyrmex lobicornis Emery, and noted a La Plata operating at 15 KV. remarkably diverse community of parasitoids within host Sharkey [31] was followed for the higher-level phylogeny population from four localities of La Pampa, Argentina [4, 8]. of the Hymenoptera order, Bolton for ant valid names [32], In some cases, the rates of parasitoidism can reach high levels. Masner and Garc´ıa [5] for diapriid systematics, and Yoder et Loiacono´ et al. [4] collected 1560 wasps (adults and imma- al. web site [33] for interactive keys and links. tures) from 430 parasitized larvae from three partial colonies Diapriid and ant specimens examined in this study are of Acromyrmex, which shows how prevalent these wasps can deposited at Museo de La Plata (Buenos Aires, Argentina). be in attacking the ants. Fernandez-Marin´ et al. [9]found Most of them were collected and determined by Bruch that between 27% and 70% of the colonies of two species andOgloblininArgentina.TypematerialofSzelenyiopria of Cyphomyrmex Mayr were parasitized by one species in reinchenspergeri (Ferriere)` was loan by Hungarian Natural Puerto Rico and by up to four concurrent morphospecies History Museum. of diapriids in Panama. Similarly, Perez-Ortega´ et al. [7] Biology Section includes “hosts” wasps emerged from reported that another fungus-growing ant, Trachymyrmex cf. antlarvaeor“associated”waspsfoundinornearnestsor zeteki, was attacked by a diverse community of diapriids in emigration columns of army ants. Panama, with a mean intensity of larval parasitism per ant colony of 33.9%, and prevalence across all ant populations of 3. Results 27.2%. Lachaud and Perez´ Lachaud [3], based on the abun- dance and success in attacking ants, considered that diapriids 3.1. Tribe Diapriini Ashmead, 1893 [34] and another group of microhymenopterans, the eucharitids, seem excellent potential models to explore how parasitoids 3.1.1. Asolenopsia Kieffer, 192112 [ ]. Asolenopsia Kieffer, impact ant colony demography, population biology, and ant 1921: 36 [12]. community structure [3]. Euplacopria Ferriere,` 1929: 157 [35]. In Argentina, the study of myrmecophiles has attracted the attention of several scientists in the last two centuries. Distribution. Tropical lowlands of Central and South America Carlos Bruch (1869–1943), a German naturalist selected by [5]. F. Moreno—first Director of Museo de La Plata—to organize Biology. Associated with ecitonini ants of genus Eciton its collections, was a pioneer of the entomological studies; Latreille, Labidus Jurine and Neivamyrmex Borgmeier [5]. it is important to remark his ability as a photographer and scientific illustrator, and his observations regarding special Remarks. Members of Asolenopsia are moderately to highly associations and behaviors of ants and beetles: termitophily specialized associates to ecitonine ants [20]. Their wings are and myrmecophily [10, 11]. Jean-Jacques Kieffer (1857–1925), primarily developed but subsequently bitten off by ants or aFrenchentomologistwhospecializedinthestudyof cast off spontaneously (alectomy). Winged adults are also parasitoids of insects, based his studies on Bruch’s material collected in light traps [5]. and published articles about diapriines associated with ants [12, 13]. Alejandro Ogloblin (1891–1967), a Russian ento- 3.1.2. Asolenopsia rufa Kieffer, 1921 [12](Figure 1(a)). mologist researcher at “Estacion´ Experimental de Loreto” Asolenopsia rufa Kieffer, 1921: 37 [12]. (Misiones, Argentina), collected there numerous diapriid wasps associated specially with myrmicine ants [14, 15]. Distribution. Argentina (Cordoba,´ Entre R´ıos, and Santa Fe) Luis De Santis (1914–2000) catalogued associations between [12, 17]. diapriids and ants [16, 17] and reported new geographic Biology. Associated with Neivamyrmex carettei (Forel) [12] distributions [18]. Marta Loiacono´ and colleagues studied (Figure 1(b)). Neotropical myrmecophiles diapriids and their interactions with ants [4, 7, 8, 15, 19–29]. Material
Recommended publications
  • Hymenoptera: Ceraphronoidea), with Notes on Two Non-Ceraphronoid Families: Radiophronidae and Stigmaphronidae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KITopen A new megaspilid wasp from Eocene Baltic amber (Hymenoptera: Ceraphronoidea), with notes on two non-ceraphronoid families: Radiophronidae and Stigmaphronidae István Mikó1, Thomas van de Kamp2, Carolyn Trietsch1, Jonah M. Ulmer1, Marcus Zuber2, Tilo Baumbach2,3 and Andrew R. Deans1 1 Frost Entomological Museum, Department of Entomology, Pennsylvania State University, University Park, PA, United States of America 2 Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 3 Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany ABSTRACT Ceraphronoids are some of the most commonly collected hymenopterans, yet they remain rare in the fossil record. Conostigmus talamasi Mikó and Trietsch, sp. nov. from Baltic amber represents an intermediate form between the type genus, Megaspilus, and one of the most species-rich megaspilid genera, Conostigmus. We describe the new species using 3D data collected with synchrotron-based micro-CT equipment. This non-invasive technique allows for quick data collection in unusually high resolution, revealing morphological traits that are otherwise obscured by the amber. In describing this new species, we revise the diagnostic characters for Ceraphronoidea and discuss possible reasons why minute wasps with a pterostigma are often misidentified as cer- aphronoids. Based on the lack of
    [Show full text]
  • Hymenoptera: Ceraphronoidea) of the Neotropical Region
    doi:10.12741/ebrasilis.v10i1.660 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Taxonomy and Systematic / Taxonomia e Sistemática Annotated keys to the species of Megaspilidae (Hymenoptera: Ceraphronoidea) of the Neotropical Region Registered on ZooBank: urn:lsid:zoobank.org:pub: 4CD7D843-D7EF-432F-B6F1-D34F1A100277 Cleder Pezzini¹ & Andreas Köhler² 1. Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Departamento de Fitossanidade. 2. Universidade de Santa Cruz do Sul, Departamento de Biologia e Farmácia, Laboratório de Entomologia. EntomoBrasilis 10 (1): 37-43 (2017) Abstract. A key to the species of Megaspilidae occurring in Neotropical Region is given, and information on the 20 species in four genera is provided, including data on their distribution and host associations. The Megaspilidae fauna is still poorly known in the Neotropical region and more studies are necessary. Keywords: Biodiversity; Insect; Megaspilid; Parasitoid wasps; Taxonomy. Chaves de identificação para as espécies de Megaspilidae (Hymenoptera: Ceraphronoidea) na Região Neotropical Resumo. É fornecida chave de identificação para os quatro gêneros e 20 espécies de Megaspilidae que ocorrem na Região Neotropical assim como dados sobre as suas distribuições e associações. A fauna de Megaspilidae da Região Neotropical é pouco conhecida e mais estudos são necessários. Palavras-Chave: Biodiversidade; Inseto; Megaspilídeos; Taxonomia; Vespas parasitoides. pproximately 800 species of Ceraphronoidea are Typhlolagynodes Dessart, 1981, restricted to Europe; Holophleps described worldwide, although it is estimated that Kozlov, 1966, to North America and Europe; Lagynodes Förster, there are about 2,000 (MASNER 2006).
    [Show full text]
  • Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected]
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected] Michael S. Engel University of Kansas, Lawrence David A. Grimaldi American Museum of Natural History Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Liu, Zhiwei; Engel, Michael S.; and Grimaldi, David A., "Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea)" (2007). Faculty Research & Creative Activity. 197. http://thekeep.eiu.edu/bio_fac/197 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3583, 48 pp., 27 figures, 4 tables September 6, 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) ZHIWEI LIU,1 MICHAEL S. ENGEL,2 AND DAVID A. GRIMALDI3 CONTENTS Abstract . ........................................................... 1 Introduction . ....................................................... 2 Systematic Paleontology . ............................................... 3 Superfamily Cynipoidea Latreille . ....................................... 3
    [Show full text]
  • Genomes of the Hymenoptera Michael G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes.
    [Show full text]
  • Biocontrol Characteristics of the Fruit Fly Pupal Parasitoid Trichopria Drosophilae (Hymenoptera: Diapriidae) Emerging from Diff
    www.nature.com/scientificreports OPEN Biocontrol characteristics of the fruit fy pupal parasitoid Trichopria drosophilae (Hymenoptera: Received: 17 April 2018 Accepted: 20 August 2018 Diapriidae) emerging from diferent Published: xx xx xxxx hosts Jiani Chen1,2, Sicong Zhou1,2, Ying Wang1,2, Min Shi1,2, Xuexin Chen1,2,3 & Jianhua Huang 1,2 Trichopria drosophilae (Hymenoptera: Diapriidae) is an important pupal endoparasitoid of Drosophila melanogaster Meigen (Diptera: Drosophilidae) and some other fruit fy species, such as D. suzukii, a very important invasive and economic pest. Studies of T. drosophilae suggest that this could be a good biological control agent for fruit fy pests. In this research, we compared the parasitic characteristics of T. drosophilae reared in D. melanogaster (TDm) with those reared in D. hydei (TDh). TDh had a larger size than TDm. The number of maximum mature eggs of a female TDh was 133.6 ± 6.9, compared with the signifcantly lower value of 104.8 ± 11.4 for TDm. Mated TDh female wasp continuously produced female ofspring up to 6 days after mating, compared with only 3 days for TDm. In addition, the ofspring female ratio of TDh, i.e., 82.32%, was signifcantly higher than that of TDm, i.e., 61.37%. Under starvation m treatment, TDh survived longer than TDm. TDh also survived longer than TD at high temperatures, such as 37 °C, although they both survived well at low temperatures, such as 18 °C and 4 °C. Old-age TDh females maintained a high parasitism rate and ofspring female ratio, while they were declined in old-age TDm.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • DNA Barcoding Reveals Diversity of Hymenoptera and the Dominance of Parasitoids in a Sub-Arctic Environment
    Stahlhut et al. BMC Ecology 2013, 13:2 http://www.biomedcentral.com/1472-6785/13/2 RESEARCH ARTICLE Open Access DNA barcoding reveals diversity of Hymenoptera and the dominance of parasitoids in a sub-arctic environment Julie K Stahlhut1*, José Fernández-Triana1,4, Sarah J Adamowicz1, Matthias Buck5, Henri Goulet4, Paul DN Hebert1, John T Huber3,4, Mark T Merilo1, Cory S Sheffield6, Thomas Woodcock2 and M Alex Smith1 Abstract Background: Insect diversity typically declines with increasing latitude, but previous studies have shown conflicting latitude-richness gradients for some hymenopteran parasitoids. However, historical estimates of insect diversity and species richness can be difficult to confirm or compare, because they may be based upon dissimilar methods. As a proxy for species identification, we used DNA barcoding to identify molecular operational taxonomic units (MOTUs) for 7870 Hymenoptera specimens collected near Churchill, Manitoba, from 2004 through 2010. Results: We resolved 1630 MOTUs for this collection, of which 75% (1228) were ichneumonoids (Ichneumonidae + Braconidae) and 91% (1484) were parasitoids. We estimate the total number of Hymenoptera MOTUs in this region at 2624-2840. Conclusions: The diversity of parasitoids in this sub-Arctic environment implies a high diversity of potential host species throughout the same range. We discuss these results in the contexts of resolving interspecific interactions that may include cryptic species, and developing reproducible methods to estimate and compare species richness across
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Hymenoptera: Chalcidoidea: Pteromalidae) of Kurdistan Province, Western Iran Including New Records
    BIHAREAN BIOLOGIST 7 (2): pp.90-93 ©Biharean Biologist, Oradea, Romania, 2013 Article No.: 131116 http://biozoojournals.3x.ro/bihbiol/index.html A contribution to the knowledge of the pteromalid wasps (Hymenoptera: Chalcidoidea: Pteromalidae) of Kurdistan Province, Western Iran including new records Kolsoum DEHDAR and Seyed Massoud MADJDZADEH* Department of Biology, Shahid Bahonar University of Kerman, Po.Box 76175-14111. Kerman, Iran. Emails: [email protected], [email protected], *Corresponding author, S.M. Madjdzadeh, Email: [email protected] Received: 26. March 2013 / Accepted: 11. November 2013 / Available online: 15. November 2013 / Printed: December 2013 Abstract. In the present paper a preliminary study of the pteromalid fauna (Hymenoptera: Chalcidoidea: Pteromalidae) in Kurdistan Province, Western Iran is provided. The specimens were collected using sweeping nets and Malaise traps during 2009- 2010. Nine species belonging to 9 genera and to the following subfamilies are identified: Asaphinae (1 species), Miscogasterinae (1 species), Ormocerinae (1 species) and Pteromalinae (6 species). Two species, Callitula bicolor Spinola, 1811 and Stenoselma nigrum Delucchi, 1956 are recorded for the first time from Iran. Short taxonomic comments for each species are briefly mentioned. Key words: Hymenoptera, Pteromalidae, parasitoids, Western Iran, distribution, new records. Introduction Materials and Methods Pteromalidae is the largest family in the Chalcidoidea mem- The study area is located on the western margin of the Iranian Pla- teau between 34°44' to 36°30' N and 45°31' to 48°16' E. The region is bers of which are distributed in all the zoogeographical re- bordered in the north by Western Azerbaijan Province, from the gions of the world (Noyes 2012).
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • The Biology of Szelenyiopria Talitae (Hymenoptera: Diapriidae): Larval Parasitoid of the Leaf-Cutting Ant Acromyrmex Subterraneus (Hymenoptera: Formicidae)
    Advances in Entomology, 2021, 9, 131-145 https://www.scirp.org/journal/ae ISSN Online: 2331-2017 ISSN Print: 2331-1991 The Biology of Szelenyiopria talitae (Hymenoptera: Diapriidae): Larval Parasitoid of the Leaf-Cutting Ant Acromyrmex subterraneus (Hymenoptera: Formicidae) Thalles Cardoso Mattoso1, Denise Delores Oliveira Moreira1, Thais Berçot Pontes Teodoro1, Claudio Luiz Moreira de Souza1,2, Rita de Kássia Guarnier da Silva1, Veronica de Morais1, Carlos Peres Silva3, Milton Erthal Jr.2,4, Richard Ian Samuels1* 1Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil 2Universidade Candido Mendes, Campos dos Goytacazes, Rio de Janeiro, Brazil 3Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil 4Instituto Federal Fluminense Campos dos Goytacazes, Rio de Janeiro, Brazil How to cite this paper: Mattoso, T.C., Abstract Moreira, D.D.O., Teodoro, T.B.P., Souza, C.L.M., Silva, R.K.G., Morais, V., Silva, C.P., The biology of a koinobiont parasitoid of leaf-cutting ant larvae, Szelenyio- Erthal Jr., M. and Samuels, R.I. (2021) The pria talitae (Hymenoptera: Diapriidae), was studied from naturally infested Biology of Szelenyiopria talitae (Hymenop- Acromyrmex subterraneus (Hymenoptera: Formicidae) nests. Nests were tera: Diapriidae): Larval Parasitoid of the Leaf-Cutting Ant Acromyrmex subterra- collected in the field from the Atlantic rainforest biome in the state of Rio de neus (Hymenoptera: Formicidae). Advances Janeiro. A total of fifty-three nests were collected from 2015 to 2018. Parasi- in Entomology, 9, 131-145. tized nests were only found during the months of September and October. https://doi.org/10.4236/ae.2021.93012 Approximately 22% of the nests collected over a four-year period were found Received: June 25, 2021 to have been parasitized by S.
    [Show full text]
  • Scientific Publications* of James P. O'connor MRIA for the Years 1977
    Scientific publications* of James P. O’Connor MRIA for the years 1977-2015. Emeritus Entomologist and former Keeper of Natural History, National Museum of Ireland – Natural History, Dublin. *book reviews are not included 495. Ashe, P., O’Connor, J. P. and Murray, D. A. (2015) A review of the distribution and ecology of Buchonomyia thienemanni Fittkau (Diptera: Chironomidae) including a first record for Russia. European Journal of Environmental Sciences 5: 5-11. 496. O’Connor, J. P., Bond, K. G. M and O’Connor, M. A. (2015) Records of Potamophylax cingulatus (Stephens) and P. latipennis (Curtis) (Trichoptera: Limnephilidae) from Northern Ireland. Irish Naturalists’ Journal 34: 136-137. 497. O’Connor, J. P. and O’Connor, M. A. (2015) Three species of caddisfly (Trichoptera) new to Northern Ireland, including Apatania wallengreni McLachlan, 1871. Entomologist’s Monthly Magazine 151: 281-282. 498. Murray, D. A., Langton, P. H., O’Connor, J. P. and Ashe, P. (2014) Distribution records of Irish Chironomidae (Diptera): part 3 – Chironominae. Bulletin of the Irish Biogeographical Society 39: 7-192. 499. O’Connor, J. P. and O’Connor, M. A. (2015) Additional caddisfly (Trichoptera) records from County Fermanagh including Hydroptila cornuta and Ceraclea senilis new to Northern Ireland. Bulletin of the Irish Biogeographical Society 39: 203-208. 500. O’Connor, J. P. (2015) A catalogue and atlas of the caddisflies (Trichoptera) of Ireland. Occasional Publication of the Irish Biogeographical Society Number 11. viii + 646pp. Published by the Irish Biogeograpical Society in association with the National Museum of Ireland. List compiled 1 January 2016 and the pages are shown in reverse chronological order.
    [Show full text]