Relative Abundance of Lizards and Marine Toads on Saipan, Mariana Islands 1

Total Page:16

File Type:pdf, Size:1020Kb

Relative Abundance of Lizards and Marine Toads on Saipan, Mariana Islands 1 Pacific Science (1996), vol. 50, no. 3: 274-284 © 1996 by University of Hawai'i Press. All rights reserved Relative Abundance of Lizards and Marine Toads on Saipan, Mariana Islands 1 GARY J. WILES AND JESSE P. GUERRER0 2 ABSTRACT: Twelve species of lizards and the marine toad (Bufo marinus L.) were surveyed in six habitat types at three sites on the island of Saipan, Mar­ iana Islands, using visual censuses, hand captures, and adhesive traps. Toads were rare on each of the study sites. Anolis carolinensis Cuvier was most com­ mon in disturbed forests. Four species of geckos, Gehyra mutilata (Wiegmann), G. oceanica (Lesson), Lepidodactylus lugubris (Dumeril & Bibron), and Pero­ chirus ateles Dumeril, were most abundant in forests and abandoned build­ ings, and a fifth species, Hemidactylus frenatus Dumeril & Bibron, occurred most frequently on structures of all types and in open fields. The skink Carlia fusca Dumeril & Bibron was the most abundant diurnal lizard in all habitats. Emoia caeruleocauda de Vis occurred in all habitat types surveyed except open fields and was usually much less common than C. fusca. Emoia atrocostata (Lesson) was documented for the first time on Saipan, with a population found on a small offshore islet with scrubby strand vegetation. Lamprolepis smarag­ dina (Lesson) was relatively common at only one of three study sites, where it was seen primarily on large tree trunks. Varanus indicus (Daudin) displayed broad habitat use, but also was common in only one study area. At least five of these species are introductions, with C. fusca suspected of causing population reductions of other terrestrial skinks on the island. INCREASING AlTENTION has been focused on species, the skink Carlia fusca Dumeril & the diversity, abundance, and ecology of Bibron, has been implicated in the declines of reptile and amphibian communities in the native skinks elsewhere in the island chain Mariana Islands of Micronesia (Sabath 1981, (Rodda et al. 1991). Finally, most of Saipan Wiles et al. 1989, 1990b, Rodda et al. 1991, is occupied by highly disturbed vegetation, Rodda and Fritts 1992). However, no studies which likely has altered its lizard popula­ have examined the herpetofauna of Saipan, tions. Native plant communities currently which is the second largest and second most cover less than 8% of the island (Engbring populous island in the archipelago. A better et al. 1986). The goals of our study were understanding of the reptiles on the island is to document lizard and marine toad (Bufo desirable because of accelerated habitat loss marinus L.) abundance and habitat use at associated with recent economic growth and several locations on Saipan. the island's high risk of obtaining a breed­ ing population of brown tree snakes [Boiga Study Area irregularis (Merrem)]. Saipan's reptile fauna is also of interest because of the introduction Saipan (15 0 10' N, 145 0 45' E) is located in of several lizard species during the last few the central Mariana Islands and has a land 2 decades (Rodda et al. 1991). One of these area of 123 km • The east-central portion of Saipan, where this study took place, is domi­ nated by a series of rugged uplifted terraces and steep hillsides that culminate in a tall 1 Manuscript accepted 25 October 1995. 2 Division of Aquatic and Wildlife Resources, 192 ridge running north-south along the center Dairy Rd., MangiJao, Guam 96923. of the island. Maximum elevation is 466 m. 274 Herpetofauna of Saipan-WILES AND GUERRERO 275 Surveys were made at three sites, Hakmang island, Isleta Maigo Luao (= Forbidden Is­ (= Kagman) Peninsula, Laolao Bay, and land), occurs off the southeastern tip of the Kannat I Pitot, all located along or near the peninsula, separated by a narrow, shallow coast (Figure 1). Hakmang Peninsula con­ channel (about 15-20 m wide at low tide) sists of a large, low plateau bounded by strewn with boulders. The island is 3.2 ha in coastal escarpments on several sides. A small area and has steep sides with a flattened Saipan I) Isleta Maigo o Fahang Isleta Managaha _~r..o--O 0 1----: Isleta Maigo Luao N , km 1 o 3 FIGURE I. Map of Saipan, Mariana Islands, with locations of the three study sites. 276 PACIFIC SCIENCE, Volume 50, July 1996 summit at an elevation of 41 m. The locality obtusifolia R. Brown. The vines Flagellaria at Laolao Bay features a narrow coastal flat indica L., lasminum marianum, and Alyxia bordered by steep hills to the north. Kannat I torresiana Gaudichaud were also common. Pitot is composed of a gently sloping hillside Numerous rock outcrops and boulders typify cut by several small stream valleys. Eleva­ this habitat. tions of the study sites occur from 0 to 150 m. Weedy open fields frequently occupy re­ Soils are thin and derived from limestone cent agricultural lands. Weed growth may be rock, except for one area of volcanic earth on thick or fairly open, and 0.5-1.5 m high. the north side of Laolao Bay. Common plants are Sida acuta Burmann, Saipan's climate is tropical and temper­ fil., Mimosa invisa Martins, Mikania scan­ atures remain warm and relatively constant dens, Bidens alba (L.) DC., Lantana camara during the year, ranging from 22 to 33°C. L., Stachytarpheta sp., Cassia alata L., and Annual rainfall averages about 2000 mm, Chromolaena odorata. An area of savanna most of which falls from July to November with Miscanthus floridulus (Labill.) at Laolao (van der Brug 1985). A dry season occurs Bay was lumped with this habitat category. between January and May, when rain dimin­ Strand vegetation occurs as a narrow band ishes to a mean of about 90 mm per month. on limestone substrates along the shore ofthe Descriptions of plant communities on ocean. It is usually stunted and windswept, Saipan appeared in Fosberg (1960), Engbring being 0.5-3 m tall and commonly includes et al. (1986), and Falanruw et al. (1989). Six Scaevola sericea Vehl, Wollastonia bifiora (L.) habitat types were recognized for our study, DC., Pemphis acidula Forst., Zoysia matrella with secondary forest and tangantangan (L.) Merrill, Bikkia tetrandra Brongniart, [Leuceana leucocephala (Lam.) de Wit] forest and Ipomea pes-caprae (L.) Roth. Bare rock being the most common communities. Sec­ faces and boulders are often present. ondary forest is variable in nature and is Abandoned concrete and tin buildings composed largely of introduced species. The were a final habitat type. A few of these most numerous trees are Leucaena leuco­ structures were located in secondary forest, cephala, Acacia confusa Merrill, Albizia leb­ tangantangan, or open fields on each study beck (L.) Bentham, Cocos nucifera L., Carica area. None were lighted. papaya L., Barringtonia asiatica L. (Kurz), Most of the study sites exhibited little evi­ and Melanolepis multiglandulosa Reinw., and dence of cattle grazing, but a few fields and Mikania scandens (L.) Willd and other vines groves of tangantangan were apparently used are also common. The canopy ranges in regularly. This activity altered the amounts height from 5 to 20 m, and the understory and types of ground cover and therefore po­ may be dense or relatively open. tentially changed the lizard communities at a Large, nearly pure forests of tangantangan few locations. grow on sizable portions of the study area. Canopy height is usually 4-5 m. The vines lasminum marianum DC., Mikania scandens, and Passifiora suberosa L. are often present, MATERIALS AND METHODS and a dense herbaceous or grassy ground cover sometimes exists. Field surveys were made on Hakmang Limestone forest is characterized by sparse Peninsula from 11 January to 3 February to moderate undergrowth, a canopy 10-15 m 1991, at Laolao Bay from 15 February to 14 high, and scattered taller emergent trees. This April 1991, at Kannat I Pitot from 17 to 26 vegetation type was found primarily on hill­ January 1992, and at Isleta Maigo Luao on sides where clearing had not occurred in the 10 October 1992 and 20 August 1994. Count past. Common tree species include Cyno­ sites were selected to provide wide coverage metra ramifiora L., Barringtonia asiatica, of the common or unique natural habitats at Guamia mariannae (Safford) Merrill, Pisonia each location. One or two observers partici­ grandis R. Brown, Ochrosia mariannensis A. pated in surveys at each site. Observers cen­ DC., Pandanus dub ius Sprengel, and Premna sused lizards by walking slowly through each Herpetofauna of Saipan-WILES AND GUERRERO 277 site and counting the number of animals seen BUFONIDAE on the ground and in trees. Every lizard ob­ served was recorded by species, date, time, Bufo marinus L. locality, microhabitat, and in the case of Marine toads were rare at each study site, Emoia caeruleocauda de Vis, by the color of with only a few individuals seen per location. its tail and posterior portion of its body. Liz­ Toads were recorded in all habitats except ards not positively identified by sight during coastal strand and old buildings (Table 1). censuses were classified as being either un­ Hilly terrain and porous soils in the east­ known skinks or geckos. Animals were cap­ central part of the island probably result in a tured whenever possible to obtain accurate scarcity of breeding sites for this species. This identifications. Skinks were caught by shoot­ was despite the presence of several ephemeral ing them with a heavy rubber band; geckos were captured by hand. Species identities streams that ran through the Laolao Bay and Kannat I Pitot sites, which were expected to were determined with an unpublished identi­ retain pools of standing water long enough to fication key produced by G. H. Rodda and permit breeding and growth of tadpoles. B.
Recommended publications
  • <I>ANOLIS</I> LIZARDS in the FOOD WEBS of STRUCTURALLY
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA Nathan W. Turnbough University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Turnbough, Nathan W., "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4174 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nathan W. Turnbough entitled "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • For Submission As a Note Green Anole (Anolis Carolinensis) Eggs
    For submission as a Note Green Anole (Anolis carolinensis) Eggs Associated with Nest Chambers of the Trap Jaw Ant, Odontomachus brunneus Christina L. Kwapich1 1Department of Biological Sciences, University of Massachusetts Lowell One University Ave., Lowell, Massachusetts, USA [email protected] Abstract Vertebrates occasionally deposit eggs in ant nests, but these associations are largely restricted to neotropical fungus farming ants in the tribe Attini. The subterranean chambers of ponerine ants have not previously been reported as nesting sites for squamates. The current study reports the occurrence of Green Anole (Anolis carolinensis) eggs and hatchlings in a nest of the trap jaw ant, Odontomachus brunneus. Hatching rates suggest that O. brunneus nests may be used communally by multiple females, which share spatial resources with another recently introduced Anolis species in their native range. This nesting strategy is placed in the context of known associations between frogs, snakes, legless worm lizards and ants. Introduction Subterranean ant nests are an attractive resource for vertebrates seeking well-defended cavities for their eggs. To access an ant nest, trespassers must work quickly or rely on adaptations that allow them to overcome the strict odor-recognition systems of ants. For example the myrmecophilous frog, Lithodytes lineatus, bears a chemical disguise that permits it to mate and deposit eggs deep inside the nests of the leafcutter ant, Atta cephalotes, without being bitten or harassed. Tadpoles inside nests enjoy the same physical and behavioral protection as the ants’ own brood, in a carefully controlled microclimate (de Lima Barros et al. 2016, Schlüter et al. 2009, Schlüter and Regös 1981, Schlüter and Regös 2005).
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • There's a New Kid in Town – How Native Anoles Avoid Competition From
    THERE’S A NEW KID IN TOWN – HOW NATIVE ANOLES AVOID COMPETITION FROM INVASIVE ANOLES Anolis carolinensis, commonly called the Green anole (Fig. 1), is a small lizard that lives in the southeast United States. It is active during the day in vegetation close to the ground. In the 1950s, another anole lizard, the Brown anole (Anolis sagrei; Fig. 2) arrived in Florida from Cuba, probably on ships that moved between the two countries. The Brown anole became invasive, rapidly spreading its species range from South Florida into the rest of Florida as well as into parts of Georgia, Alabama, Louisiana, and Texas. Figure 1. Anolis carolinensis male on a fallen tree Figure 2. Anolis sagrei male, perching on a log. trunk. (Photo by Euku/Wikimedia Commons) The Brown anole is very similar to the Green anole. Like the Green anole, it is a few inches long, eats insects, is active during the day, and favors living on the ground and low down on bushes and tree trunks. However, the Brown anole is a little bit heavier than the Green anole and also more aggressive when forming and defending territories. Given that both species have such similar ecological niches, the question arises what effect the invasive Brown anole might have on the native Green anole. In Cuba, for example, where close relatives of the Green anole live together with the Brown anole (i.e. both species are sympatric), the Green anoles spend most of their time higher up in the trees, probably because of competition with the more aggressive Brown anole.
    [Show full text]
  • WAPA Reptile Survey 2001 Final Report
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 169 Inventory of the reptiles of the War in the Pacific National Historical Park, Guam October 2001* Gordon H. Rodda1, and Kathy Dean-Bradley1 *Published on-line February 2010 1U.S. Geological Survey 2150 Centre Ave., Building C, Fort Collins, CO 80526-8118 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: U.S. Geological Survey 2150 Centre Ave., Building C, Fort Collins, CO 80526-8118, phone: (970) 226- 9471 http://www.fort.usgs.gov/ Recommended Citation: Rodda, G.H and K. Dean-Bradley. 2001. Inventory of the reptiles of the War in the Pacific National Historical Park Guam. Pacific Cooperative Studies Unit Technical Report 169. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 41 pg. Key words: Anolis carolinensis, Brown Treesnake Carlia fusca, Emoia caeruleocauda, Gehyra mutilata, Hemidactylus frenatus, Ramphotyphlops braminus, reptile inventory Place key words: War in the Pacific National Historical Park, Guam Editor: Clifford W. Morden, PCSU Deputy Director (e-mail: [email protected]) Executive summary – There are no native amphibians on Guam. Reptile species of offshore islets were reported in an earlier paper (Perry et al.1998). In February through April 2001 we intensively sampled the reptiles of the mainland portions of War in the Pacific National Historical Park (WAPA).
    [Show full text]
  • Supplementary Table 3. List of Highly Threatened Predicted Eradication Beneficiaries
    Supplementary Table 3. List of highly threatened predicted eradication beneficiaries. * indicates populations found in both predicted beneficiaries and demonstrated beneficiaries analysis. Island name Country or Territory Common name Scientific name Animal Type IUCN Red List Status Amsterdam French Southern Territories Amsterdam albatross Diomedea Seabird CR amsterdamensis Amsterdam French Southern Territories Northern rockhopper penguin Eudyptes moseleyi Seabird EN Amsterdam French Southern Territories Sooty albatross Phoebetria fusca Seabird EN Amsterdam French Southern Territories Indian yellow-nosed albatross Thalassarche carteri Seabird EN Anacapa East United States Ashy storm-petrel Oceanodroma Seabird EN homochroa Anacapa Middle United States Ashy storm-petrel Oceanodroma Seabird EN homochroa Anacapa West United States Ashy storm-petrel* Oceanodroma Seabird EN homochroa Anatahan Northern Mariana Islands Micronesian megapode Megapodius laperouse Landbird EN Anatahan Northern Mariana Islands Marianas flying fox Pteropus mariannus Mammal EN Anchor New Zealand Yellowhead (mohua) Mohoua ochrocephala Landbird EN Anchor New Zealand Kakapo Strigops habroptila Landbird CR Aride Seychelles Seychelles magpie-robin* Copsychus sechellarum Landbird EN Aride Seychelles Seychelles wolf snake Lycognathophis Reptile EN seychellensis Attu United States Marbled murrelet Brachyramphus Seabird EN marmoratus Baltra Ecuador Galápagos martin Progne modesta Landbird EN Bay Cay Turks And Caicos Islands Turks and Caicos ground Cyclura carinata Reptile CR iguana Bench New Zealand Yellow-eyed penguin Megadyptes antipodes Seabird EN Bernier Australia Banded hare wallaby Lagostrophus fasciatus Mammal EN Bernier Australia Western barred bandicoot Perameles bougainville Mammal EN Big South Cape New Zealand New Zealand greater short- Mystacina robusta Mammal CR tailed bat Breaksea New Zealand Yellowhead (mohua)* Mohoua ochrocephala Landbird EN Browns New Zealand New Zealand dotterel Charadrius obscurus Landbird EN Buck (St.
    [Show full text]
  • Reptiles of Ngulu Atoll, Yap State, Federated States of Micronesia1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa Reptiles of Ngulu Atoll, Yap State, Federated States of Micronesia1 Donald W. Buden2 Abstract: Fourteen species of reptiles (two sea turtles, six geckos, six skinks) are recorded from Ngulu Atoll, Yap, Micronesia, all but the turtles for the first time. None is endemic and most occur widely in Oceania; the phylogenetic status of an undescribed species of Lepidodactylus is undetermined, and a phenotypically male Nactus cf. pelagicus is recorded from Micronesia for the first time. Lepido- dactylus moestus is the most common gecko on Ngulu Island, and Emoia caeruleo- cauda, E. impar, and E. jakati are the most abundant skinks. The islands are an important nesting site for green turtles, Chelonia mydas. Isolation, a small resi- dent human population, and traditional conservation practices contribute to sustaining turtle populations, although occasional poaching by outside visitors persists. The report of a small snake on Ylangchel Island, possibly a species of Ramphotyphlops, requires confirmation. Many of the west-central Pacific islands distribution and relative abundance of the composing Micronesia are poorly known bio- reptiles of Ngulu, and it is based largely on logically, especially the numerous, small, low- my personal observations and specimens that lying, and faunistically impoverished coralline I collected during approximately a month- atolls. These islands are difficult to reach. long field study, mainly on Ngulu Island, Those that have been studied appear to be in- and with brief visits to adjacent Ylangchel habited largely by widespread, weedy species and Wachlug islands.
    [Show full text]
  • American Memorial Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Natural Resource Condition Assessment American Memorial Park Natural Resource Report NPS/AMME/NRR—2019/1976 ON THIS PAGE A traditional sailing vessel docks in American Memorial Park’s Smiling Cove Marina Photograph by Maria Kottermair 2016 ON THE COVER American Memorial Park Shoreline and the Saipan Lagoon, looking north to Mañagaha Island. Photograph by Robbie Greene 2013 Natural Resource Condition Assessment American Memorial Park Natural Resource Report NPS/AMME/NRR—2019/1976 Robbie Greene1, Rebecca Skeele Jordan1, Janelle Chojnacki1, Terry J. Donaldson2 1 Pacific Coastal Research and Planning Saipan, Northern Mariana Islands 96950 USA 2 University of Guam Marine Laboratory UOG Station, Mangilao, Guam 96923 USA August 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations.
    [Show full text]
  • University of California Santa Cruz
    UNIVERSITY OF CALIFORNIA SANTA CRUZ THREATENED INSULAR VERTEBRATES: A GLOBAL ASSESSMENT OF ISLANDS, THREATS AND CONSERVATION OPPORTUNITIES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Dena R. Spatz December 2016 The Dissertation of Dena R. Spatz is approved: _____________________________ Professor Donald A. Croll, Chair _____________________________ Professor Ingrid M. Parker _____________________________ Professor Peter T. Raimondi _____________________________ Professor Daniel Simberloff _____________________________ Nick D. Holmes, Ph.D __________________________ Tyrus Miller, Vice Provost and Dean of Graduate Studies Copyright © by Dena R. Spatz 2016 Table of Contents List of Tables ................................................................................................................ v List of Figures ............................................................................................................. vii List of Appendices ....................................................................................................... ix Abstract ......................................................................................................................... x Acknowledgements ..................................................................................................... xii Introduction ................................................................................................................... 1 Chapter
    [Show full text]
  • Invasive Reptiles and Amphibians of Florida!
    1 Invasive Reptiles and Amphibians of Florida! 2 Created by: Thompson Antony Lauren Diaz Sean McKnight Alana Palau JoAnna Platzer Illustrated by Lauren Diaz Invasive Ecology of Reptiles and Amphibians Dr. Steven Johnson & Dr. Christina Romagosa University of Florida 2014 ---------------------------------------------------------------------------------------------------------------------------- Welcome What is an invasive species? Where are they found in Florida? What do they look like? How can I help? You came to the right coloring book, my friend! These questions and so many more can be answered by grabbing some crayons and turning the page. Things you will need: Your favorite coloring utensils Thinking cap 3 What is an INVASIVE SPECIES ??? An invasive species is a plant or animal that is moved from its native area to another and causes economic or environmental harm to the new area. There are 6 main ways a plant or animal can move from its native home to a non-native area: 1. Biological control: moved by humans to help control other animals 2. Hitchhike: catches a free ride on cars, boats, or planes 3. Food: Some people eat frog legs or other animal parts 4. Plant trade: hiding in a plant is a sneaky way to travel 5. Pet Trade: people want animals they can’t find in their backyard 6. Intentional: Someone brought it for some specific reason For many invasive reptiles and amphibians in Florida, the animals came through the pet trade. 4 Brown Anole Anolis sagrei This is a Cuban Brown Anole! The brown anole is originally from Cuba, but came to Florida when it hitched a ride on some cargo.
    [Show full text]