On the Mantle Cavity and Its Contained Organs in the Loricata (Placophora)

Total Page:16

File Type:pdf, Size:1020Kb

On the Mantle Cavity and Its Contained Organs in the Loricata (Placophora) On the Mantle Cavity and its Contained Organs in the Loricata (Placophora). By C. M. Yonge, DJSe., University of Bristol. With 6 Text-figures. CONTENTS. PAGE 1. INTRODUCTION 367 2. THE MANTLE CAVITY 368 (a) Lepidochitona oinereus, p. 370; (6) Tonieella marmorea and AcanthocMtona crinitus, p. 373; (c) Lepidopleurus asellus, p. 374. 3. THE GILLS 376 4. Mucous GLANDS 382 5. OSPHRADIA AND OTHER SENSE OBGANS 383 6. DISCUSSION 386 7. SUMMARY 388 8. BEFERENCES 389 1. INTRODUCTION. The investigations described in this paper represent a con- tinuation of previous work on the mantle cavity and its con- tained organs in the Gastropoda (Yonge, 1937 c, 1938) and in the Scaphopoda (Yonge, 19376). They are intended to form part of a comprehensive survey, from the functional aspect, of these organs throughout the Mollusca. The structure and the anatomical relations of the organs contained in the mantle cavity of the Loricata are well known, as a result, in the main, of the morphological investigations of Haller (1882, 1884), Pelseneer (1898, 1899), and Plate (1898-1901). But only Arey and Crozier (1919) have made observations on the water cur- rents in the mantle cavity, and they failed to point out how these were brought about, giving no account either of the ciliation of the gills or of the manner in which the mantle cavity is divided into inhalant and exhalant chambers. 368 0. M. YONGB The greater part of this work has been carried out on two common British species, Lepidochitona cinereus (Lepi- dochitonidae) and Lepidopleurus asellus, which is one of the few representatives of the primitive order Lepidopleurida. Comparative data only has been obtained from Tonicella marmorea (Lepidochitonidae) and Acanthochitona crinitus (Oryptoplacidae).1 All of these species live between tide-marks with the exception of Lepidopleurus asellus, which, in the. English Channel, occurs at depths ranging from 15 to 43 fathoms. Comparative observations on the gills of the Gastropod, Haliotis tuberculata, were carried out at Naples during the course of other work. Acknowledgements are due to Dr. S. Kemp, F.E.S., and members of the staff of the Plymouth Laboratory, for assistance during a period spent there in connexion with this work, to Professor E. Dohm, Director of the Stazione Zoologica, Naples, to the Colston Eesearch Society of the University of Bristol for financial assistance, also to Mr. H. P. Steedman, Laboratory Steward in the Department of Zoology, University of Bristol, for cutting sections. 2. THE MANTLE CAVITY. The mantle cavity in the Loricata consists of lateral pallial grooves in communication posteriorly, and bounded internally by the sides of the foot and externally by the inner margin of the girdle. The mouth opens anteriorly and the anus posteriorly (Text-figs. 1 and 3, A.), both in the middle line. The sole of the foot frequently extends under the anus in life. Eeproductive and excretory pores open into the pallial groove on either side, near the posterior end but always in the region occupied by gills. The former openings are always the more anterior. The gills vary widely in number throughout the Loricata and are actually not constant for any one species. Thus, of the species here examined, Tonicella marmorea has between 19 and 26, Lepidochitona cinereus between 16 and 19, Acanthochitona crinitus about 15, and Lepido- pleurus asellus between 11 and 13. The gill series may be 1 The names used are those adopted by Wlnckworth (1932). MANTLE CAVITY IN LORICATA 869 holobranch or merobranch according as to whether or not they extend the full length of the pallial grooves. None of the species examined possesses gill series of the former type, although Tonicella marmorea and Lepidochitona cinereus (Text-fig. 1) approach this condition. The first-formed gill occurs in the region between plates seven and eight. According to Pelseneer (1898, 1899) the excretory pore invariably opens immediately anterior to this gill, which is morphologically, and also functionally as the present work reveals, of great significance. It will be termed throughout the post-renal gill. Pelseneer also states that it is invariably the largest gill, but, as Plate (1901) had pointed out, this is not always the case, although, if not actually the largest, it is always one of a group of especially large gills. This post-renal gill may be the last of the series, as in Lepidochitona cinereus (Text-fig. 1, GP.), in which case the condition is known as abanal. But, during development, gills may be added posteriorly as well as anteriorly to this gill. The former are termed adanal gills. There may or may not be a space between the last adanal gill and the anus. Of the species examined only Lepidopleurus asellus (Text-fig. 3) possesses adanal gills, and these extend up to the anus. Finally, the thin in- wardly projecting ridge which bounds the inner surface of the girdle is dilated on each side in the region opposite to the posterior margin of the foot. The pair of inwardly projecting mantle folds (Text-figs. 1-3, GP.) SO formed have been described by both Pelseneer and Plate.1 This investigation has revealed their function. Observations on the nature of the currents in the mantle cavity were carried out by placing animals on glass slides. When the animals had attached themselves the slides were inverted on. two pillars of plasticine in a shallow glass dish, the water in which just covered the slides. The dish was then placed on the 1 Plate (1901) states that the folds are absent in some species, but he includes amongst these Lepidopleurus asellus and Tonieella marmorea where it certainly occurs. It is probably of universal occur- rence, Plate being misled by contraction in the fixed material which he exclusively studied. NO. 323 B b 870 0. M. YONGE stage of a binocular microscope, carmine added to the water, and the nature of the water currents observed with the animal ventral side uppermost. The general observations of Arey and Crozier (1919) on Chiton tuberculatuj (a Bermudan species attaining a length of 9 cm.) were confirmed. The gills create a current of water which runs backward along the pallial grooves and out in the mid-line posteriorly (Text-figs. 1 and 8). The regions of intake vary, being created by local liftings of the girdle. When the animals are completely submerged these are usually anterior (Text-figs. 1 and 8, i.) but may be lateral, and there may be more than one opening on either side. When the anterior ©nd of an animal is out of water inhalant openings are created by a lifting of the girdle in the region still submerged. In this way a shorter, but still efficient, respiratory current is produced. The exhalant opening (Text-figs. 1-8, E.) is also created by a local raising of the girdle, in this case always at the posterior end. The full discussion of the mechanisms con- cerned in the maintenance of the respiratory currents demands separate consideration of the various species. (a) L©pidochitona cinereus.—Although this species belongs to the order Chitonida, and so is less primitive than Lepidopleurus asellus (order Lepidopleurida), the de- scription of conditions in both species will be easier if Lepi- dochitona cinereus is considered first. In the animal shown in Text-fig. 1 there are seventeen gills on each side extending along some four-fifths of the pallial grooves. They are attached to the roof of the grooves. All but the last and largest of these, the post-renal gill (GP.), bend inwards towards the sides of the foot, but the post-renal gill extends backwards with its (morphologically) posterior surface applied to the side of the girdle fold (GF.) and its anterior surface to the side of the foot. It thus blocks the pallial groove in this region. The five gills immediately anterior to it also bend backwards to a greater or less extent, but they lie against the sides of the foot only. Throughout the whole series the sides of adjacent gills are alwayi closely applied. Lateral cilia on the gills (described later) create a current of water which passes from their outer to their inner surfaces. IC o GF TBXT-HG. 1. Lepidochitona cinereus, ventral aspect, drawn from life: gills and boundaries of shell plates shown in left pallial groove, osphradium and division between inhalant and exhalant chambers (denoted by broken line) shown in right pallial groove, x 10. A., anus; E., exhalant current; EC, exhalant chamber; p., foot; o., girdle; GI., most anterior gill; GF., girdle fold; GP., post-renal gill; I., inhalant currents; M., mouth; o., osphradium. Arrows indicate direction of currents, broken arrows those in exhalant ohamber. 372 C. M. YONGB Owing to the arrangement of the post-renal gill across the pallial groove there is a complete separation of the mantle cavity into inhalant and exhalant chambers (Text-fig. 1, ic, BO.). The former consists of the pallial groove anterior to the first gill and the region outside the gills behind this. The exhalant chamber consists anteriorly of the region between the gills and the sides of the foot (and so bounded ventrally by the lateral extensions of the sole) and posteriorly of the entire pallial groove behind the post-renal gills. The boundary between these chambers is indicated by the broken line in the right pallial groove in Text-fig. 1. A powerful backwardly directed current runs along the in- halant chamber, water being drawn through the gills laterally into the exhalant chamber and also posteriorly between the filaments of the post-renal gills. This inhalant current is so powerful that suspended particles do not tend to settle on to the roof of the pallial groove when the animal is inverted for inspection.
Recommended publications
  • Some Aspects of the Biology of Three Northwestern Atlantic Chitons
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA) PAUL DAVID LANGER University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LANGER, PAUL DAVID, "SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA)" (1978). Doctoral Dissertations. 2329. https://scholars.unh.edu/dissertation/2329 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Enrico SCHWABE Zoologische Staatssammlung Muenchen
    . , E. SCHWABE NOVAPEX 6 (4): 89-105, 10 décembre 2005 A catalogue of Récent and fossil chitons (MoUusca: Polyplacophora) Addenda Enrico SCHWABE Zoologische Staatssammlung Muenchen, Muenchhausenstrasse 2 1 D-81247 Muenchen, Germany [email protected] KEYWORDS. MoUusca, Polyplacophora, taxon list, bibliography ABSTRACT. This paper lists species-group names of Récent and fossil Polyplacophora (MoUusca) that were published after 1998 (for the Récent species) and 1987 (for the fossil species). A total of 171 species were since then introduced, of which 123 are attributed to valid fossil taxa and 48 to valid Récent taxa. The authorship and complète références are provided for each species-group name. INTRODUCTION Considerazioni suUa famiglia Leptochitonidae Dali, 1889 (MoUusca: Polyplacophora). III. Le species Taxonomic work is impossible without an overview of terziarie e quatemarie Europee, con note sistematiche the scientific names existing in the particular taxon e filogenetiche. - Atti délia prima Giornata di Studi group. Catalogues generally are a great tool to obtain Malacologici Centra lîaliano di Studi Malacologici such overviews, as they often summarize information (1989): 19-140 (: 79; pi. 26). otherwise hard to gather and master. Type locality: Pezzo, near Villa S. Giovanni (Reggio Of the nearly 2600 taxa introduced on species level Calabria prov.); in material of upper Pleistocene, but within the Polyplacophora, 368 fossils and 914 Récent presumably originated from adjacent deposits of lower species are considered as valid (closing date: Pleistocene of bathyal faciès [Pezzo, presso Villa S. 31/10/2005). Giovanni (RC); in materiale del Pleistocene superiore, In the past, excellent catalogues of species-group ma presumibilmente originato da contigui depositi del names in Polyplacophora were compiled by Kaas & Pleistocene inferiore di faciès batiale].
    [Show full text]
  • Mollusca: Polyplacophora: Lepidopleurida)
    Life history, patchy distribution, and patchy taxonomy in a shallow- water invertebrate (Mollusca Polyplacophora: Lepidopleurida) Sigwart, J. D., & Chen, C. (2017). Life history, patchy distribution, and patchy taxonomy in a shallow-water invertebrate (Mollusca Polyplacophora: Lepidopleurida). Marine Biodiversity. https://doi.org/10.1007/s12526- 017-0688-1 Published in: Marine Biodiversity Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 The Authors. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:08.
    [Show full text]
  • Mollusca: Polyplacophora: Lepidopleurida)
    Ruthenica, 2016, vol. 26, No. 3-4: 145-151. © Ruthenica, 2016 Published online September 18, 2016. http: www.ruthenica.com A new South African Leptochiton (Mollusca: Polyplacophora: Lepidopleurida) Boris SIRENKO Zoological Institute, Russian Academy of Sciences, Universitetskaya nab.1, St. Petersburg, 199034, RUSSIAN FEDERATION, e-mail: marine@zin,ru urn:lsid:zoobank.org:pub:4B690F43-F5DC-402A-BFAB-6046A47B1855 ABSTRACT. A new chiton species of the genus Lepto- Systematics chiton is described from the intertidal zone of False Bay, South Africa. The new species is distinguishable Class Polyplacophora Gray, 1821 from other congeneric species by ribbed ventral scales, Subclass Loricata Schumacher, 1817 a wide tail valve and the number of micraesthetes per Order Lepidopleurida Thiele, 1909 each megalaesthete. Family Leptochitonidae Dall, 1889 Genus Leptochiton Gray, 1847 Introduction Type species: Chiton cinereus Montagu, 1803 There are 6 species in genus Leptochiton [L. (non Linnaeus, 1767) = Leptochiton asellus (Gme- sykesi (Sowerby III, 1903), L. chariessa (Bernard, lin, 1791) fide Lovén, 1846, subsequent designation 1963), L. dispersus Kaas 1985, L. permodestus by Gray, 1847. Kaas, 1985; L. meiringae Kaas, 1985 and L. hodg- Genus distribution: Worldwide, Carboniferous- soni (Sirenko, 2000)] [Kaas, 1985; Kaas, Van Belle, Recent. 1985, 1987; Sirenko, 2000, 2015] that inhabit the Leptochiton smirnovi sp. nov. sea floor near South Africa. Five of them live at (Figs 1-6) depths of 70 to 433 m. L. hodgsoni was found in the intertidal zone. This species was originally at- urn:lsid:zoobank.org:act:034AF8DF-EA96-45D5- tributed to the genus Parachiton Thiele, 1909 [Si- 8159-FDAE82365FCC renko, 2000]. However, later, Hiroshi Saito wrote me that the species belongs to the genus Leptochi- Type material.
    [Show full text]
  • Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight
    ISSN 0738-9388 THE FESTIVUS A publication of the San Diego Shell Club Volume XLI Special Issue June 11, 2009 Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight Timothy D. Stebbins and Douglas J. Eernisse COVER PHOTO Live specimen of Lepidozona sp. C occurring on a piece of metal debris collected off San Diego, southern California at a depth of 90 m. Photo provided courtesy of R. Rowe. Vol. XLI(6): 2009 THE FESTIVUS Page 53 CHITONS (MOLLUSCA: POLYPLACOPHORA) KNOWN FROM BENTHIC MONITORING PROGRAMS IN THE SOUTHERN CALIFORNIA BIGHT TIMOTHY D. STEBBINS 1,* and DOUGLAS J. EERNISSE 2 1 City of San Diego Marine Biology Laboratory, Metropolitan Wastewater Department, San Diego, CA, USA 2 Department of Biological Science, California State University, Fullerton, CA, USA Abstract: About 36 species of chitons possibly occur at depths greater than 30 m along the continental shelf and slope of the Southern California Bight (SCB), although little is known about their distribution or ecology. Nineteen species are reported here based on chitons collected as part of long-term, local benthic monitoring programs or less frequent region-wide surveys of the entire SCB, and these show little overlap with species that occur at depths typically encountered by scuba divers. Most chitons were collected between 30-305 m depths, although records are included for a few from slightly shallower waters. Of the two extant chiton lineages, Lepidopleurida is represented by Leptochitonidae (2 genera, 3 species), while Chitonida is represented by Ischnochitonidae (2 genera, 6-9 species) and Mopaliidae (4 genera, 7 species).
    [Show full text]
  • Introduction to the Symposium “Advances in Chiton Research”*
    Amer. Malac. Bull. 25: 21-24 (2008) Introduction to the symposium “Advances in Chiton Research”* Douglas J. Eernisse Department of Biological Science, California State University, Fullerton, California 92834, U.S.A., [email protected] The present volume features contributions from partici- elucidate the molecular evolution and systematics of mol- pants of the symposium, “Advances in Chiton Research,” in luscan hemocyanin (e.g., Bergmann et al. 2007), and his Seattle, Washington on 31 July 2006. As the organizer for forthcoming collaborative studies on chiton hemocyanin this symposium, I was impressed with the willingness of as a promising new phylogenetic marker are eagerly antici- national and international authorities or students whose pated. Those who have contributed articles for the present diverse research involves chitons to participate in these volume still represent an impressive cross-section of the di- meetings. The symposium was a tremendous success and verse, ongoing research on chitons. compared favorably to four previous meetings of interna- Pojeta and DuFoe (this volume) have extended what is tional scope that were devoted to chitons: (1) 1987 AMS known about the earlier described Ordovician spiny chiton, symposium on “Biology of the Polyplacophora” in Key West, Echinochiton dufoei Pojeta, Eernisse, Hoare, and Henderson, Florida (see American Malacological Bulletin 6(1), 1988); 2003. This fossil has already figured prominently in the on- (2) 1st International Chiton Symposium, 1991, Adelaide, going debate on the disparity
    [Show full text]
  • Macroalgal Canopies: Distribution and Diversity of Associated Invertebrates and Effects on the Recruitment and Growth of Mussels
    MARINE ECOLOGY PROGRESS SERIES Vol. 271: 121–132, 2004 Published April 28 Mar Ecol Prog Ser Macroalgal canopies: distribution and diversity of associated invertebrates and effects on the recruitment and growth of mussels Chantale Bégin, Ladd E. Johnson*, John H. Himmelman Département de biologie et Québec-Océan (GIROQ), Université Laval, Québec, Québec G1K 7P4, Canada ABSTRACT: We examined the invertebrate assemblages associated with macroalgal canopies in the Mingan Islands (northern Gulf of St. Lawrence, eastern Canada) in the summer and fall of 2001. Invertebrates were sampled in patches or beds of 4 species of macroalgae (Alaria esculenta, Agarum cribrosum, Desmarestia viridis and Ptilota serrata) as well as in adjacent urchin barrens. Multivariate analyses of the invertebrates on the algal fronds, those on the underlying substratum, and the 2groups together demonstrated differences in invertebrate assemblages among all 5 habitats. A. esculenta sheltered the most distinct invertebrate community due to the domination of the sub- stratum under this alga by the blue mussel Mytilus edulis. Differences among other canopy types were due to differences in invertebrate assemblages both on the algal fronds and on the substratum. A manipulative experiment involving the removal of the canopy of the 2 most abundant macroalgae, A. esculenta and A. cribrosum, was carried out to examine their effects on mussels. Recruitment of mussels onto ceramic tiles varied among treatments and was greatest in the A. esculenta zone with greater, but non-significant, recruitment under the canopy. The growth of mussels from early July to October was higher in the A. cribrosum zone than the A. esculenta zone.
    [Show full text]
  • Structure of Molluscan Communities in Shallow Subtidal Rocky Bottoms of Acapulco, Mexico
    Turkish Journal of Zoology Turk J Zool (2019) 43: 465-479 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1810-2 Structure of molluscan communities in shallow subtidal rocky bottoms of Acapulco, Mexico 1 1 2, José Gabriel KUK DZUL , Jesús Guadalupe PADILLA SERRATO , Carmina TORREBLANCA RAMÍREZ *, 2 2 2 Rafael FLORES GARZA , Pedro FLORES RODRÍGUEZ , Ximena Itzamara MUÑIZ SÁNCHEZ 1 Cátedras CONACYT-Marine Ecology Faculty, Autonomous University of Guerrero, Fraccionamiento Las Playas, Acapulco, Guerrero, Mexico 2 Marine Ecology Faculty, Autonomous University of Guerrero, Fraccionamiento Las Playas, Acapulco, Guerrero, Mexico Received: 02.10.2018 Accepted/Published Online: 10.07.2019 Final Version: 02.09.2019 Abstract: The objective of this study was to determine the structure of molluscan communities in shallow subtidal rocky bottoms of Acapulco, Mexico. Thirteen samplings were performed at 8 stations in 2012 (seven samplings), 2014 (four), and 2015 (two). The collection of the mollusks in each station was done at a maximum depth of 5 m for 1 h by 3 divers. A total of 2086 specimens belonging to 89 species, 36 families, and 3 classes of mollusks were identified. Gastropoda was the most diverse and abundant group. Calyptreaidae, Columbellidae, and Muricidae had >5 species, but Pisaniidae, Conidae, Fasciolariidae, and Muricidae had ≥15% of relative abundance. Most species found in this study were recorded in the rocky intertidal zone, and 10 species were restricted to the rocky subtidal zone. The affinity in the composition of the species during 2012–2015 had a low similarity (25%), but we could differentiate natural and anthropogenic effects according to malacological composition.
    [Show full text]
  • Similar but Different: Polyplacophoran (Mollusca) Tail Valve – What Is It? an Attempt to Find Answers
    Ruthenica, 2020, vol. 30, No. 1: 55-68. © Ruthenica, 2020 Published online 11.02.2020 http: ruthenica.net Similar but different: Polyplacophoran (Mollusca) tail valve – what is it? An attempt to find answers Enrico SCHWABE Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, GERMANY; E-mail: [email protected] ABSTRACT. The extant polyplacophoran tail valve is traditionally considered as a unity despite its clear separation into two distinct regions, which were in relation to the delimiting point – the mucro – termed the antemucronal area for the front part and the postmucronal area for the hindermost region. However, earlier conceptions do exist, which consider the postmucronal area as semiplate, with the antemucronal area as modified “intermediate” plate. To test the usefulness of the terms “antemucronal” and “postmucronal” in their traditionally sense, three independent attempts were made to demonstrate existing differences between the mucro-separated areas. Leptochiton rugatus was histologically examined allowing the confirmation of a cardial complex- antemucronal relation. Valve morphology of the brood of Radsia nigrovirescens not only confirms a tegmental development prior to the building of the articulamentum but shows that the postmucronal area develops to its final shape before the antemucronal area appears. For the first time it is demonstrated that the antemucronal area of Schizoplax brandtii shows a delayed splitting of the relevant area, characteristic for the conditions found in the intermediate valves of this species only. That leads to the assumption that the underlying valve build processes are of the same nature as in the intermediate valves. Additionally, literature data on valve characters were compiled that show a stronger relationship (61%) of the antemucronal area to the central area of intermediate valves rather than to the merged postmucronal area.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Moluscos Poliplacóforos Del Litoral Atlántico Del Sur De La Península Ibérica
    Graellsia, 56: 5-14 (2000) MOLUSCOS POLIPLACÓFOROS DEL LITORAL ATLÁNTICO DEL SUR DE LA PENÍNSULA IBÉRICA M. P. Carmona Zalvide (*) y F. J. García (**) RESUMEN Se aporta el catálogo de los Moluscos Poliplacóforos de las costas atlánticas del sur de la Península Ibérica, desde Sagres (Portugal) hasta Gibraltar. Se cita un total de 20 taxones (Lepidopleurus cajetanus, Leptochiton cancellatus, Leptochiton algesirensis, Leptochiton scabridus, Callochiton septemvalvis, Callochiton euplaeae, Lepidochitona cinerea, Lepidochitona corrugata, Lepidochitona canariensis, Lepidochitona montero- satoi, Lepidochitona kaasi, Lepidochitona severianoi, Chaetopleura angulata, Ischnochiton rissoi, Chiton olivaceus, Chiton corallinus, Chiton phaesolinus, Acanthochi-tona fascicularis y Acanthochitona crinita) todos ellos pertenecientes al dominio litoral. La captura de Lepidochitona canariensis y L. simrothi en aguas atlánti- cas ibéricas constituye la primera cita para el suratlántico ibérico. A su vez se amplía la distribución a esta zona de Callochiton septemvalvis y de Lepidochitona monterosatoi. Palabras claves: Moluscos poliplacóforos, catálogo faunístico, distribución litoral, SO Ibérico. ABSTRACT Catalogue of the Mollusca Polyplacophora from the Atlantic coast of Southern Iberian Peninsula In this paper, an updated check-list of the polyplacophoran species from Sagres (Portugal) to Strait of Gibraltar is present. Twenty taxa are recorded in this area: Lepidopleurus cajetanus, Leptochiton cancellatus, Leptochiton algesirensis, Leptochiton scabridus, Callochiton
    [Show full text]
  • Memoirs of the National Museum of Victoria 31
    ^MEMOIRS of the NATIONAL I MUSEUM of VICTORIA 18 May 1970 %^ Registered at the G.P.O., Me MEMOIRS of the NATIONAL MUSEUM OF VICTORIA MELBOURNE AUSTRALIA No. 31 Director J. McNally Deputy Director and Editor Edmund D. Gill PUBLISHED BY ORDER OF THE TRUSTEES 18 MAY 1970 NATIONAL MUSEUM OF VICTORIA Trustees Sir Robert Blackwood, MCE BEE FIE Aust (Chairman) Henry G. A. Osborne, BAgrSc (Deputy Chairman) James C. F. Wharton, BSc (Treasurer) Professor E. S. Hills, PhD (Lond) Hon DSc (Dunelm) DSc FIC FAA FRS Professor S. Sunderland, CMG MD BS DSc FRACP FRACS FAA The Hon. Sir Alistair Adam, MA LLM Sir Henry Somerset, CBE MSc FRACI MAIMM W. L. Drew, Secretary to Trustees Staff Director: John McNally, ED MSc Deputy Director: Edmund D. Gill, BA BD FGS FRGS Administration: A. G. Parsons (in charge) D. E. Quinn E. J. Peat G. H. Russell Patricia Rogers Nancie Wortley Gwenda Bloom Scientific Staff Geology and Palaeontology: Curator of Fossils: T. A. Darragh, MSc DipEd Curator of Minerals: A. W. Beasley, MSc PhD DIC Assistant Curator of Fossils: K. N. Bell, BSc DipEd Assistant: R. J. Evans Vertebrate Zoology: BSc (Hons) Curator of Vertebrates : Joan M. Dixon, Curator of Birds: A. R. McEvey, BA Assistant: A. J. Coventry Invertebrate Zoology: Curator of Insects: A. Neboiss, MSc FRES Curator of Invertebrates: B. J. Smith, BSc PhD Assistants: Elizabeth M. Matheson Ryllis J. Plant Anthropology: Curator of Anthropology: A. L. West, BA Dip Soc Stud Assistant: J. A. S. Holman Library: Librarian: Joyce M. Shaw, BA Assistant: Margret A. Stam, DipFDP Display and Preparation Staff: G.
    [Show full text]