Articles Into the Strato- for Example (Mills Et Al., 2016)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iturup Island Pink and Chum Salmon Fishery
ITURUP ISLAND PINK AND CHUM SALMON FISHERY 2010 MSC Surveillance Visit Report Certificate Code: SCS-MFCP-F-0011 Scientific Certification Systems 2000 Powell Street, Suite 600 Emeryville, CA 94608, USA 4 January 2011 0 Prepared for: Polar Bear Enterprise, LLC (for JSC Gidrostroy) 2101 55th Ave N Suite #2 Seattle, WA 98103 General Information Date of Issue 5 January 2011 Prepared by SCS Jason Swecker Certification Date 9 September 2009 Certification Expiration Date 8 September 2014 Surveillance Team SCS Dr. Chet Chaffe Mr. Ray Beamesderfer Surveillance Stage 1st Annual Surveillance Methodologies MSC Accreditation Manual Issue 5.1, MSC Fisheries Certification Methodology (FCM) Version 6.1 MSC Fisheries Assessment Manual (FAM) Version 2.1 1 Contents Preface .......................................................................................................................................................................... 3 1. Executive summary ............................................................................................................................................... 4 1.1 General background about the fishery ........................................................................................................... 4 2. Assessment overview ............................................................................................................................................ 5 2.1 Methodology .................................................................................................................................................. -
30-Year Lidar Observations of the Stratospheric Aerosol Layer State Over Tomsk (Western Siberia, Russia) Vladimir V
Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-792, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 13 October 2016 c Author(s) 2016. CC-BY 3.0 License. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia) Vladimir V. Zuev1,2,3, Vladimir D. Burlakov4, Aleksei V. Nevzorov4, Vladimir L. Pravdin1, Ekaterina S. Savelieva1, and Vladislav V. Gerasimov1,2 5 1Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, 634055, Russia 2Tomsk State University, Tomsk, 634050, Russia 3Tomsk Polytechnic University, Tomsk, 634050, Russia 4V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, 634055, Russia Correspondence to: Vladislav V. Gerasimov ([email protected]) 10 Abstract. There are only four lidar stations in the world, which have almost continuously performed observations of the stratospheric aerosol layer (SAL) state for over the last 30 years. The longest time series of the SAL lidar measurements have been accumulated at the Mauna Loa Observatory (Hawaii) since 1973, the NASA Langley Research Center (Hampton, Virginia) since 1974, and Garmisch-Partenkirchen (Germany) since 1976. The fourth lidar station we present started to perform routine observations of the SAL parameters in Tomsk (56.48 N, 85.05 E, Western Siberia, Russia) in 1986. In this 15 paper, we mainly focus on and discuss the stratospheric background period from 2000 to 2005 and the causes of the SAL perturbations over Tomsk in the 2006–2015 period. During the last decade, volcanic aerosol plumes from tropical Mt. Manam, Soufriere Hills, Rabaul, Merapi, Nabro, and Kelut, and extratropical (northern) Mt. -
Gmd-14-409-2021.Pdf
Geosci. Model Dev., 14, 409–436, 2021 https://doi.org/10.5194/gmd-14-409-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation Andrew T. Prata1, Leonardo Mingari1, Arnau Folch1, Giovanni Macedonio2, and Antonio Costa3 1Barcelona Supercomputing Center (BSC), Barcelona, Spain 2Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy 3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy Correspondence: Andrew T. Prata ([email protected]) Received: 27 May 2020 – Discussion started: 17 June 2020 Revised: 4 November 2020 – Accepted: 19 November 2020 – Published: 25 January 2021 Abstract. This paper presents model validation results for and FMS scores greater than 0.40 indicate acceptable agree- the latest version release of the FALL3D atmospheric trans- ment with satellite retrievals of volcanic ash and SO2. In ad- port model. The code has been redesigned from scratch to dition, we show very good agreement, across several orders incorporate different categories of species and to overcome of magnitude, between the model and observations for the legacy issues that precluded its preparation towards extreme- 2013 Mt. Etna and 1986 Chernobyl case studies. Our results, scale computing. The model validation is based on the new along with the validation datasets provided in the publicly FALL3D-8.0 test suite, which comprises a set of four real available test suite, form the basis for future improvements case studies that encapsulate the major features of the model; to FALL3D (version 8 or later) and also allow for model in- namely, the simulation of long-range fine volcanic ash dis- tercomparison studies. -
USGS Open-File Report 2009-1133, V. 1.2, Table 3
Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041 -
Alaska Interagency Operating Plan for Volcanic Ash Episodes
Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 COVER PHOTO: Ash, gas, and water vapor cloud from Redoubt volcano as seen from Cannery Road in Kenai, Alaska on March 31, 2009. Photograph by Neil Sutton, used with permission. Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Warning Dissemination ............................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) ......................................................................................................... 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO) ........................................................... 6 2.2.1 Organization ...................................................................................................... 7 2.2.2 General Operational Procedures ...................................................................... 8 -
Book of Abstracts
PICES-2009 Understanding ecosystem dynamics and pursuing ecosystem approaches to management North Pacific Marine Science Organization October 23 – November 1, 2009 Jeju, Republic of Korea Table of Contents Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � v Meeting Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �vi Keynote Lecture � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Schedules and Abstracts S1: Science Board Symposium Understanding ecosystem dynamics and pursuing ecosystem approaches to management � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5 S2: FIS Topic Session Ecosystem-based approaches for the assessment of fisheries under data-limited situations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 23 S3: FIS/BIO Topic Session Early life stages of marine resources as indicators of climate variability and ecosystem resilience � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 35 S4: MEQ Topic Session Mitigation of harmful algal blooms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 51 S5: MEQ Topic Session The role of submerged aquatic vegetation in the context of climate change -
Global Volcanic Earthquake Swarm Database 1979-1989
U- S- Department of the Interior U. S. Geological Survey GLOBAL VOLCANIC EARTHQUAKE SWARM DATABASE 1979-1989 by John P. Benoit1 '2 and Stephen R. McNutt1 '2 Open-File Report 96-69 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, of firm names is for the descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Geophysical Institute at the University of Alaska Fairbanks 903 Koyukuk Dr. P.O. Box 757320 Fairbanks, Alaska 99775-7320 2 Alaska Volcano Observatory 1996 CONTENTS DEVELOPMENT AND DESCRIPTION OF THE GLOBAL VOLCANIC EARTHQUAKE SWARM DATABASE...................................................................................................^^ INTRODUCTION .......................................................................................................................................................A DATABASE STRUCTURE AND D£5c/?/pr/o^...................................................................................................................5 Volcano Table ....................................................................................................................................................6 Earthquake Swarm Table....................................................................................................................................6 Eruption Table ...................................................................................................................................................7 -
Newell, J. 2004. the Russian Far East: a Reference Guide for Conservation and Development
Appendix A Major topological features in the RFE Size Maximum Elevation (m Last Seas (000 sq. km) depth (m) Active volcanoes Location above sea level) eruption Beringovo (Bering Sea) 2,315 5,500 Kamchatka Okhotskoe (Sea of Okhotsk) 1,603 3,521 Klyuchevskoi Vostochny Yaponskoe (Sea of Japan) 1,602 3,720 (Eastern) Range 4,800 ongoing Vostochno-Sibirskoe (East Siberian Sea) 913 915 Tolbachik Vostochny Range 3,682 1976 Laptevykh (Laptev Sea) 662 3,385 Ichinsky Sredinny (Central) Range 3,621 unknown Chukotskoe (Chukchi Sea) 595 1,256 Kronotsky Gamchen Ridge 3,528 1923 Koryaksky Vostochny Range 3,456 1957 Length Basin size Shiveluch Vostochny Range 3,283 2001 Rivers and tributaries (km) (000 sq. km) Bezymyanny Vostochny Range 3,085 1998 Zhupanovsky Vostochny Range 2,927 1956 Amur (with Argun) 4,444 1,855 Avacha Vostochny Range 2,750 1991 Lena 4,400 2,490 Mutnovsky Vostochny Range 2,323 1999 Olenyok 2,270 219 Maly (Lesser) Kolyma 1,870 422 Semlyachik Vostochny Range 1,560 1952 Indigirka 1,726 360 Karymsky Vostochny Range 1,486 2001 Anadyr 1,150 191 Vilyui (tributary of Lena) 2,650 454 Kuril Islands Aldan (tributary of Lena) 2,273 729 Alaid Atlasov I. 2,339 2000 Olyokma (tributary of Lena) 1,436 210 Tyatya Kunashir I. 1,819 1973 Zeya (tributary of Amur) 1,242 233 Chikurachki Paramushir I. 1,816 1995 Markha (tributary of Vilyui) 1,181 99 Fussa Paramushir I. 1,772 1984 Omolon (tributary of Kolyma) 1,114 113 Sarychev Matua I. 1,446 1976 Krenitsyn Onekotan I. -
Alaska Interagency Operating Plan for Volcanic Ash Episodes
Alaska Interagency Operating Plan for Volcanic Ash Episodes April 1, 2004 Alaska Interagency Operating Plan for Volcanic Ash Episodes April 1, 2004 Table of Contents 1.0 INTRODUCTION ..........................................................1 1.1 INTEGRATED RESPONSE TO VOLCANIC ASH ..............................1 1.2 DATA COLLECTION AND PROCESSING ..................................2 1.3 INFORMATION MANAGEMENT AND COORDINATION ........................2 1.4 DISTRIBUTION AND DISSEMINATION ...................................3 2.0 RESPONSIBILITIES OF THE PARTIES ...........................................3 2.1 DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) . 3 2.2 ALASKA VOLCANO OBSERVATORY (AVO) .................................4 2.2.1 ORGANIZATION .................................................4 2.2.2 GENERAL OPERATIONAL PROCEDURES ..............................5 2.2.2.1 EARLY ERUPTION PREDICTION, WARNING & CALL-DOWN: SEISMICALLY INSTRUMENTED VOLCANOES ......................................6 2.2.2.1.1 KAMCHATKAN VOLCANIC ERUPTION RESPONSE TEAM (KVERT) . 8 2.2.2.2 SEISMICALLY UNMONITORED VOLCANOES ...........................9 2.2.2.3 UPDATES AND INFORMATION RELEASES .............................9 2.2.2.4 COMMUNICATION WITH OTHER AGENCIES ...........................10 2.2.2.5 LEVEL OF CONCERN COLOR CODE SYSTEM ..........................10 2.2.2.6 DESIGNATION OF AUTHORITY ....................................12 2.3 DEPARTMENT OF DEFENSE .............................................12 2.3.1 PROCEDURES .................................................12 -
75 Quaternary Eruptive History of Sarychev Peak Volcano, Matua Island, Kuril Islands
75 Quaternary eruptive history of Sarychev Peak volcano, Matua Island, Kuril Islands A.V. Degterev1, A.V. Rybin1, I.V. Melekescev2, N.G. Razjigaeva3 1Institute of Marine Geology and Geophysics FEB RAS 2Institute of volcanology and seismology FEB RAS 3Pacific Institute of Geography FEB RAS Eruptive history of Quaternary volcanoes of the Kurile Island Arc including active and potentially active are now studied poorly. The researches on reconstruction of Pleistocene-Holocene volcanism were done only in southern (Kunashir, Iturup) and northern (Paramushir, Onekotan) parts of the arc. So, the Central Kurile Islands is a real “white spot”- remote and almost inaccessible region. Strong explosive-effusive eruption of Sarychev Peak volcano (fig. 1) in June 2009 initiated the beginning of special geology-volcanological works directed to detailed reconstruction of eruptive history of this volcano (Levin at el. 2010). Sarychev Peak volcano (coordinates 48°05′24.49″ N. and 153°12′08.18″ E; absolute height 1446 m) represents intercalderal stratovolcano with summit crater (fig. 1). The volcano is located in caldera (D=3.5-4 km) of ancient (probably Pleistocene age) volcano Matua formed north-western part of the island (the Central Kurile Islands) (Gorshkov 1967; Laverov at el. 2005). Sarychev Peak volcano is one of the active volcanoes of the Kurile Arc; it is fixed not less than 10 its eruptions: in 1760th, 1878-1879, 1923, 1928, 1930, 1946, 1954, 1960, 1976, 2009 years. (Andreev at el., 1978; 1967; Levin at el. 2010; Shilov, 1962; Rybin et al., 2011). The works on study of eruptive history of Sarychev Peak volcano included the complex of geologo- and geomorphologic–volcanological researches under the leading role of tephrachronology (Thorainsson, 1944; Braitseva at el., 1978). -
PDF for Print
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 10, ES4002, doi:10.2205/2007ES000224, 2008 The deep structure of active continental margins of the Far East (Russia) A. G. Rodnikov,1 N. A. Sergeyeva,1 L. P. Zabarinskaya,1 N. I. Filatova,2 V. B. Piip,3 and V. A. Rashidov4 Received 6 March 2008; accepted 20 March 2008; published 24 May 2008. [1] In the frame of the international project “InterMARGINS”, the research in the deep structure of active continental margins of the transition zone from the Eurasian continent to the Pacific was conducted along the deep cross-section of the tectonosphere including the lithosphere and the asthenosphere. The deep section profile runs across the Mesozoic structures of Sikhote Alin, rift structure of Tatar Strait, Cenozoic formations of Sakhalin, Kuril Basin of the Sea of Okhotsk, volcanic structures of Kuril Island Arc, Kuril deep trench and the Mesozoic plate of Northwest Pacific Basin. The length of the profile is 2000 km. The depth of penetration into the earth’s interior is 100 km. A distinctive feature of the transition zone structure is the asthenospheric layer occurrence in the upper mantle; diapirs of hot anomalous mantle branch off from this layer and processes going on in them cause the formation of the region geological structures. A correlation is noted between geological structures, tectonic and magmatic activity and the upper mantle structure. Tectonically active regions like island arcs and rift structures of marginal seas correspond to thick and most distinct asthenosphere generating magma. INDEX TERMS: 0905 Exploration Geophysics: Continental structures; 0930 Exploration Geophysics: Oceanic structures; 1645 Global Change: Solid Earth; 3001 Marine Geology and Geophysics: Back-arc basin processes; 3002 Marine Geology and Geophysics: Continental shelf and slope processes; KEYWORDS: deep structure, active continental margins, transition zone, upper mantle, marginal seas. -
Article Radius, and Mass Quantitative Geophysical Analysis
Atmos. Chem. Phys., 21, 12189–12206, 2021 https://doi.org/10.5194/acp-21-12189-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology Ákos Horváth1, James L. Carr2, Olga A. Girina3, Dong L. Wu4, Alexey A. Bril5, Alexey A. Mazurov5, Dmitry V. Melnikov3, Gholam Ali Hoshyaripour6, and Stefan A. Buehler1 1Meteorological Institute, Universität Hamburg, Hamburg, Germany 2Carr Astronautics, Greenbelt, MD, USA 3Institute of Volcanology and Seismology, Far East Branch of the Russian Academy of Sciences (IVS FEB RAS), Petropavlovsk-Kamchatsky, Russia 4NASA Goddard Space Flight Center, Greenbelt, MD, USA 5Space Research Institute of the Russian Academy of Sciences (SRI RAS), Moscow, Russia 6Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Correspondence: Ákos Horváth ([email protected], [email protected]) Received: 21 February 2021 – Discussion started: 23 March 2021 Revised: 2 July 2021 – Accepted: 6 July 2021 – Published: 16 August 2021 Abstract. A geometric technique is introduced to estimate atmospheric dispersion models, which require the eruptive the height of volcanic eruption columns using the gener- source parameters, especially plume height and the mass ally discarded near-limb portion of geostationary imagery. eruption rate (MER), as key inputs (Peterson et al., 2015). Such oblique observations facilitate a height-by-angle esti- Plume height and MER are related by dynamics, and the lat- mation method by offering close-to-orthogonal side views ter scales approximately as the fourth power of the former.