PCT/US2020/0393 12 (22) International Filing Da

Total Page:16

File Type:pdf, Size:1020Kb

PCT/US2020/0393 12 (22) International Filing Da ( (51) International Patent Classification: A61K 31/55 (2006.01) (21) International Application Number: PCT/US2020/0393 12 (22) International Filing Date: 24 June 2020 (24.06.2020) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/865,5 14 24 June 2019 (24.06.2019) US (71) Applicant: CAAMTECH LLC [US/US]; 58 E . Sunset Way, Suite 208, Issaquah, WA 98027 (US). (72) Inventor: CHADEAYNE, Andrew, R.; 13200 Squak Mt. Road S.E., Issaquah, WA 98027 (US). (74) Agent: LINDEMAN, Jeffrey, A.; J.A.lindeman & Co., PLLC, 3190 Fairview Park Drive, Suite 1070, Falls Church, VA 22042 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) (54) Title: IBOGAINE FORMULATIONS (57) Abstract: Disclosed herein are new compositions and methods comprising a combination of active ingredients that includes at least one ibogaine derivative. Several selected examples of non-naturally occurring ibogaine derivative formulations are also disclosed. The ibogaine derivatives are combined into formulations via human ingenuity to arrive at compositions and formulations that are not found in nature. These formulations have different physical properties from those found in nature and also provide different pharmacological properties. In many cases, the below disclosed combinations provide different clinical effects when administered to a subject. The disclosed compositions are useful in many contexts, including treating addictions, such as alcohol, nicotine, and opiate addictions. IBOGAINE FORMULATIONS Cross-Reference to Related Application This application claims priority to U.S. Application No. 62/865,514, filed June 24, 2019, which is incorporated herein by reference. Technical Field This disclosure relates to non-natural forms of natural medicines, in particular new formulations of ibogaine derivatives. Background Addiction affects millions of people worldwide. The abuse of legal and illegal drugs, tobacco, and alcohol take their toll on individuals, families, communities, and society. The addiction problem extends to dysfunctional behaviors involving gambling, food, sex, exercise, shopping, etc. According to the Addiction Center, in 2011 there were 20.6 million people in the United States over the age of 12 with an addiction (excluding tobacco). 1 Mental health conditions often accompany addiction. 2 This is often seen with substance abuse disorders and gambling addictions. Almost half of the substance abusers in the United States have mental disorders. 3 Psychology Today says addiction is "a condition in which a person engages in the use of a substance or in a behavior for which the rewarding effects provide a compelling incentive to repeatedly pursue the behavior despite detrimental consequences." Addictive substances and behaviors share the neurological feature of activating the reward and reinforcement pathways in the brain. These pathways often use the neurotransmitter dopamine. There are an estimated 38 million adult smokers in the United States.4 This is about 15.5% of the population. The World Health Organization (WHO) estimates there are 1.1 billion people worldwide who smoke.5 In addition, tobacco is considered the leading cause of death, illness, and impoverishment in the world. The WHO reports more than 7 million people worldwide die from tobacco-related illnesses each year. According to the National Institute on Drug Abuse, opioid overdoses account for more than 130 deaths every day in the United States.6 In 2017, over 47,000 Americans died of an opiate overdose. Using data from 2007-2013, the National Institute on Drug Abuse estimated that tobacco, illicit drugs, and alcohol combined to cost the United States over $740 billion annually. 7 These costs are related to lost work productivity, crime, and healthcare expenses. The costs continue to skyrocket. The estimated cost of America's drug epidemic alone in 2017 exceeded $1.0 trillion. 8 Historically, addiction was often thought of as a pleasure-seeking activity undertaken by people with a weak personal constitution and insufficient self-control. However, the current concept of addiction is changing based on scientific findings. It is now understood that a main driver of addictive behaviors is t o escape physical and/or emotional discomfort. 9 This is called self-medication. It is interesting t o note that the term addiction did not appear in the diagnostic manual of the American Psychiatric Association (Diagnostic and Statistical Manual of Mental Disorders, the DSM) until the recent 5t h edition update. Addiction experts now recognize that substance abuse disorders and non-substance abuse disorders have a lot in common. They have grouped them into the Syndrome Model of Addiction This model suggests there is one addiction which is associated with multiple expressions. The scientific basis of this model includes imaging data that shows the brain responds similarly t o different pleasurable experiences whether ingesting alcohol, shopping, sex, or gambling. In addition, studies have shown that some people are genetically predisposed t o addiction but not t o a specific type of addiction. Overall, it appears the object of a person's addiction (a substance or behavior) is less important than experts originally thought. Ibogaine (CAS 83-74-9) is a psychedelic tryptamine alkaloid first isolated in 1901 from the root bark of the Tabernanthe iboga shrub (also called iboga) of Central Africa 10 and the root bark of a shrub in the genus Tabernaemontana found in the Congo. 11 Since that time, ibogaine has been isolated from several plant species particularly those in the family Apocynaceae t o which T. iboga belongs. The crystalline structure of ibogaine was determined in I960. 12 It was first synthesized in 1966. 13 Ibogaine has two separate chiral centers and four stereoisomers but they are difficult t o resolve. 14 Plants containing ibogaine as well as extracts and preparations made from them include many other active and inactive molecules including several different ibogaine derivatives. Historically, iboga plants have been used for centuries in the religious rituals of people living the western part of Central Africa in countries such as the Republic of the Congo, Gabon, and Cameroon. 15 The ceremonial cocktails contained a mixture of the naturally-occurring molecules found in the plant. Harrison G. Pope of the Harvard Botanical Museum theorized in 1969 that humans learned about the effects of iboga by watching the behavior of animals. 16 First-hand accounts describe native animals like porcupines, boars, and gorillas digging up and eating iboga roots. After ingesting the roots they would enter " a wild frenzy." These indigenous people also use less potent versions of ibogaine cocktails t o treat fatigue, hunger, and thirst. In the 1930s, French pharmacists developed ibogaine as a drug which was sold as a stimulant under the trade name Lambarene. 17 Here, ibogaine was taken in its pure form without all the other active molecules and modulators of those molecules that are present in the plant. The drug was taken off the market in the 1960s when France declared ibogaine illegal. Howard Lotsof was the first person to realize the potential of ibogaine t o treat substance addictions. 18 He was a heroin addict when he tried ibogaine in 1962 with several of his friends who were also addicts. They were surprised to find it caused marked reductions in their cravings and withdrawal symptoms. All of them quit using heroin as a result. Lotsof went on t o become a scientist and dedicated his life to studying ibogaine for treating addiction. Ibogaine exhibits relatively low potency at target sites. Studies in rats suggest high doses may cause adverse effects. In minor treatment, high doses of 5.0 mg/kg body weight are used and up t o 30 mg/kg body weight for intense poly-substance addiction management. In 1988, Dzoljic et al. were the first to publish on the ability of ibogaine to relieve withdrawal from narcotics addiction. 19 Maisonneuve et al. elucidated the pharmacological interactions between ibogaine and morphine in 1991. After this, several other researchers showed ibogaine's ability to reduce or interrupt the self-administration of opiates in rats and mice and alter their behaviors. 21-25 Additional study results showed ibogaine was more effective in multiple administrations over time than from a single dose. 21,22 Recent review papers and meta-analyses have concluded that ibogaine is effective for treating substance addiction and warrants further investigation. 26-28 Several current studies have found ibogaine effective for treating opioid addiction. 29-32 There is also experimental evidence indicating that ibogaine and ibogaine derivatives help in relieving depressive symptoms.
Recommended publications
  • Development and Validation of an Ultra-Fast and Sensitive Microflow
    Drug Testing Research article and Analysis Received: 6 June 2016 Revised: 9 July 2016 Accepted: 10 July 2016 Published online in Wiley Online Library: 10 August 2016 (www.drugtestinganalysis.com) DOI 10.1002/dta.2042 Development and validation of an ultra-fast and sensitive microflow liquid chromatography- tandem mass spectrometry (MFLC-MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in humans Andrea E. Steuer,a* Michael Poetzsch,a Lorena Stock,a Lisa Eisenbeiss,a Yasmin Schmid,b Matthias E. Liechtib and Thomas Kraemera Lysergic acid diethylamide (LSD) is a semi-synthetic hallucinogen that has gained popularity as a recreational drug and has been investigated as an adjunct to psychotherapy. Analysis of LSD represents a major challenge in forensic toxicology due to its insta- bility, low drug concentrations, and short detection windows in biological samples. A new, fast, and sensitive microflow liquid chromatography (MFLC) tandem mass spectrometry method for the validated quantification of LSD, iso-LSD, 2-oxo 3-hydroxy- LSD (oxo-HO-LSD), and N-desmethyl-LSD (nor-LSD) was developed in plasma and applied to a controlled pharmacokinetic (PK) study in humans to test whether LSD metabolites would offer for longer detection windows. Five hundred microlitres of plasma were extracted by solid phase extraction. Analysis was performed on a Sciex Eksigent MFLC system coupled to a Sciex 5500 QTrap. The method was validated according to (inter)-national guidelines. MFLC allowed for separation of the mentioned analytes within 3 minutes and limits of quantification of 0.01 ng/mL.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • Determination of Cytotoxic Activity of Sanguinaria Canadensis Extracts
    molecules Article Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs Tomasz Tuzimski 1,* , Anna Petruczynik 2,* , Tomasz Plech 3 , Barbara Kapro ´n 4, Anna Makuch-Kocka 3 , Małgorzata Szultka-Mły ´nska 5 , Justyna Misiurek 2 and Bogusław Buszewski 5 1 Department of Physical Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland 2 Department of Inorganic Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] 3 Department of Pharmacology, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] (T.P.); [email protected] (A.M.-K.) 4 Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; [email protected] 5 Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; [email protected] (M.S.-M.); [email protected] (B.B.) * Correspondence: [email protected] (T.T.); [email protected] (A.P.) Abstract: Melanoma is an enormous global health burden, and should be effectively addressed with Citation: Tuzimski, T.; Petruczynik, A.; better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of Plech, T.; Kapro´n,B.; Makuch-Kocka, this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline A.; Szultka-Mły´nska,M.; Misiurek, J.; alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, Buszewski, B. Determination of and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3).
    [Show full text]
  • European Journal of Biomedical and Pharmaceutical Sciences
    ejbps, 2016, Volume 3, Issue 1, 62-83. Review Article SJIF Impact Factor 2.062 Kumar et al. European Journal European ofJournal Biomedical of Biomedical and Pharmaceutical ISSNSciences 2349 -8870 Volume: 3 AND Pharmaceutical sciences Issue: 1 62-83 http://www.ejbps.com Year: 2016 A REVIEW ON THE PHYTOCONSTITUENTS AND PHARMACOLOGICAL ACTIONS IN THE MEDICINAL PLANTS OF BEDABUNA FOREST, JIMMA ZONE, SOUTH WEST ETHIOPIA REPORTED EFFECT ON EXPERIMENTAL MODELS Kumar Ganesan1*, Suresh Kumar P. Nair1, Melese Sinaga1, Sharmila Banu Gani2* 1Department of Biomedical Sciences, School of Public Health and Medical Sciences, Jimma University, Jimma 378, Ethiopia 2Department of Zoology, NKR Government Arts College for Women, Namakkal-637001, Tamilnadu, India *Author for Correspondence: Dr. Kumar Ganesan Department of Biomedical Sciences, School of Public Health and Medical Sciences, Jimma University, Jimma 378, Ethiopia Article Received on 03/11/2015 Article Revised on 24/11/2015 Article Accepted on 15/12/2015 ABSTRACT Ethiopia is sixth largest biodiversity centre in the world having numerous ethinic cultures, climate and topographies. The present paper reviews on medicinal properties along with atypical Phytoconstituents and pharmacological actions of various plants in bedabuna forest, Zimma zone, Southwest Ethiopia, which has been reported effect on experimental models. This study is very authentic and helpful to find richest bioresources like identification of medicinal plants, documentation, protection and sustainable usages. This study will helpful to not only a native people of Jimma, southwest Ethiopia but also the other part of the Ethiopia to explore the indigenous medicinal plants used in the treatment of various ailments for human and livestock. In the present study totally 49 species of traditional medicinal plants belonging to 31 families were come across by regular ground visits and arbitrarily interviewed with native participants.
    [Show full text]
  • Stability Study of Cannabidiol in the Form of Solid Powder and Sunflower Oil Solution
    pharmaceutics Article Stability Study of Cannabidiol in the Form of Solid Powder and Sunflower Oil Solution Ema Kosovi´c 1,2 , David Sýkora 2 and Martin Kuchaˇr 3,* 1 Institute of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; [email protected] 2 Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; [email protected] 3 Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic * Correspondence: [email protected] Abstract: Stability studies represent an essential component of pharmaceutical development, en- abling critical evaluation of the therapeutic potential of an active pharmaceutical ingredient (API) or a final pharmaceutical product under the influence of various environmental factors. The aim of the present study was to investigate the chemical stability of cannabidiol (CBD) in the form of a solid powder (hereinafter referred to as CBD powder) and also dissolved in sunflower oil. We performed stress studies in accordance with the International Conference on Harmonization (ICH) guidelines, where 5 mg of marketed CBD in the form of a solid powder and in form of oil solution were exposed for 7 and 14, 30, 60, 90, 180, 270, and 365 days to precisely defined temperature and humidity conditions, 25 ◦C ± 2 ◦C/60% RH ± 5% and 40 ◦C ± 2 ◦C/75% RH ± 5% in both open and closed vials in the dark. CBD powder was significantly more stable than CBD in oil solution. Such finding is important because CBD is often administered dissolved in oil matrix in practice due to Citation: Kosovi´c,E.; Sýkora, D.; very good bioavailability.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • Microgram Journal, Vol 3, Number 2
    MICROGRAM Laboratory Operations Division Office Of Science And Drug Abuse Prevention BUREAU OF NARCOTICS & DANGEROUS DRUGS / U.S. DEPARTMENT OF JUSTICE / WASHINGTION, D.C. 20537 Vol.III, No. 2 March-April, 1970 STP (4-Methyl-2,5-dimethoxyamphetamine) hydrochloride was found coating the inside of capsules sent to BNDDfrom Germany. The capsules were clear, hard gelatin, standard shape size No. o. Average weight was 114 milligrams. Each capsule had a white crystalline coating on inner surface of capsule body. Apparently a measu~ed amount of solution had been placedin the cap·sule body, after which it was rotated to spread the solution on the inner surface. The substance contained 8. 7 milli­ grams STP (DOM)HCl per ca·psule. · These were the first STP capsules of this type seen by our laboratory. A few years ago, capsules were ob­ tained in the U.S. similarly coated with LSD. STP (Free Base) on laboratory filter paper, also from Germany, was seen for the first time in our laboratory. The STP spots, containing approxi­ mately 8 miliigrams STP base each, were 5/8 to 3/4 inch in diameter. The paper was 1\ inches square. Phencyclidine (Free Base) was recently analyzed on parsley leaves. Called "Angel DUst, 11 the phencyclidine on two samples of leaves was 2.6% and 3.6%. Approximately thirty pounds of 94% pure powder was also analyzed. (For identification of phencyclidine base, see Microgram, II, 1, p.3 (Jan 1969). IMITATIONSof well-known drug products are examined frequently in our Special Testing and Research Laboratory. Many of these are well made preparations and closely resemble the imitated product.
    [Show full text]
  • Endocannabinoid Stimulated Release of Nitric Oxide and Its Mitochondrial
    A tica nal eu yt c ic a a m A r a c t Stefano et al., Pharm Anal Acta 2015, 6:6 h a P Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000378 ISSN: 2153-2435 Review Article Open Access Endocannabinoid Stimulated Release of Nitric Oxide and its Mitochondrial Influence Triggering Vascular Pathology George B Stefano*, Erin Quinn and Richard M Kream MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY 11735, USA Abstract Endocannabinoids, and their respective receptors, are involved in a host of cellular regulatory activities. In part, some of these mediated effects occur by way of stimulating constitutive nitric oxide release. This occurs in endothelia, certain white blood cells, microglia, and in similar invertebrate tissues, demonstrating that this is a conserved chemical messenger system. This endocannabinoid chemical messenger system, coupled to constitutive nitric oxide release, also appears to exert regulatory effects on mitochondrial energy associated processes, further substantiating its primordial history. In this regard, it appears to offer some beneficial actions in the occurrence of reperfusion injury and stroke. The mechanism envisioned is one initiated via a hypoxic event, which does not restore normalcy, then progresses to a pro-inflammatory state, and the resultant chronic condition manifests itself in a specific disorder. This fits nicely into a vascular-associated origin for Alzheimer’s Disease, whereby the pro- inflammatory state encompasses vessels that have endothelial gaps, providing for a compromised blood brain barrier, beta amyloid deposition, and enhanced white blood cell trafficking. In time, due to the physical progression of the events, Alzheimer’s Disease occurs.
    [Show full text]
  • Crystal Structure of Akuammicine, an Indole Alkaloid from Catharanthus Roseus
    research communications Crystal structure of akuammicine, an indole alkaloid from Catharanthus roseus ISSN 2056-9890 Mahdi Yahyazadeh,a‡ Gerold Jerz,b Dirk Selmar,a Peter Winterhalterb and Peter G. Jonesc* aInstitut fu¨r Pflanzenbiologie, Technische Universita¨t Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, b Received 28 September 2017 Germany, Institut fu¨r Lebensmittelchemie, Technische Universita¨t Braunschweig, Schleinitzstrasse 20, 38106 c Accepted 9 October 2017 Braunschweig, Germany, and Institut fu¨r Anorganische und Analytische Chemie, Technische Universita¨t Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. *Correspondence e-mail: [email protected] Edited by D. Chopra, Indian Institute of Science The title compound, C20H22N2O2, an alkaloid isolated from the Madagascar Education and Research Bhopal, India periwinkle, crystallizes in P1 with two independent but closely similar molecules in the unit cell. The molecules are linked into pairs by two N—HÁÁÁO C ‡ On leave from Yasouj University, Yasouj, hydrogen bonds. The absolute configuration was confirmed by anomalous Kohgiluyeh Va Boyer Ahmad, Iran. dispersion effects as S at the 3 and 15 positions, and R at the 7 position. Keywords: crystal structure; indole alkaloid; absolute configuration. CCDC reference: 1578796 1. Chemical context Supporting information: this article has supporting information at journals.iucr.org/e The Madagascar periwinkle or rosy periwinkle (Catharanthus roseus L. G. Don), a member of the family Apocynaceae, is one of the most intensively studied medicinal plants (Sotto- mayor et al., 1998; Sreevalli et al., 2004). Aerial parts of the plant contain between 0.2 and 1% of a mixture of more than 120 alkaloids (van Der Heijden et al., 2004).
    [Show full text]
  • Uses of Voaca Nga Species
    USES OF VOACA NGA SPECIES N.G.BISSET PharmacognosyResearch Laboratories, Department of Pharmacy, Chelsea College, Universityof London, Manresa Road, London SW36LX Received4-II-198 5 Dateo fPublicatio n 16-VIII-1985 INTRODUCTION None of the species of the genus has attained any widespread application and evenV. afriLa, the one with the greatest distribution range and the one to which most of the uses described apply, has rather tainted localu e..A few ofti e medicinalapplication s appear to reflect theactivxt.e so fth ealkaloid spre - luntoriEnte (cf. Phytochemistry,Sectio n 3).Th efollowin g paragraphsgiv e aSoutline ox the uses which have been reported in the literature and as annotations on specimenskep ti nth eherbari a listedo np .00 . 1. THE PLANTS 1.1. V.AFRICANA (ANGUSTIFOLIA ?,LUTESCENS, PUBERULA) West Africa: The latex is said to be a rubber adul^t^dU i^put into acariou s tooth (Dalziel, 1937).Th e plant xs reported tob euse dm treatin g scabies (Janot and Goutarel, 1955).Senegal :Th e^amnk a (or Serere^) eat the fruit; theytrea t woundswit hth elatex .Th eplan tx sals oco n^ *obea pan a cea - the leafy branches are put into baths morning and ev«J^d a ^. prepared from them is given to people affected ^r^^S^ss. tierx of the leaves isdrun k as a tonic and against fatigue due^ obr«h^n Inth eCasamanc ea decoctio n ofth eroot stake nthre etime sdad y« . ecomme ed for women to counteract the effects of premature and rapid birth it » a 19 giveninternall y for hernial pain (Kerharo and Adam, ^' ^^hoca; Theleave shav esevera luses :A decoctio ni sapplie da sa wash •aganistduur t , it is put into baths against generalized oedema; it xs, utxhzea a fnction in a drink in the treatment of leprosy; a lotion is ^^^^ (possibly in children; and the juice is placed in the nostrlis oca^.^ Zernal v0 through confusion with other Apocynaceae- *«"* ™""£ °ossibly used -—^(Bouquetand^^ l for adulterating rubber (F.
    [Show full text]
  • FDA Regulation of Cannabidiol (CBD) Products
    June 12, 2019 FDA Regulation of Cannabidiol (CBD) Products Cannabidiol (CBD) is promoted as treatment for a range of and hemp-derived compounds, including CBD. However, conditions, including epileptic seizures, post-traumatic the farm bill explicitly preserved FDA’s authority under the stress disorder, anxiety, and inflammation—despite limited Federal Food, Drug and Cosmetic Act (FFDCA, 21 U.S.C. scientific evidence to substantiate many of these claims. In §§301 et seq.) and Section 351 of the Public Health Service the United States, CBD is marketed in food and beverages, Act (PHSA, 42 U.S.C. §262), including for hemp-derived dietary supplements, and cosmetics—products that are products. According to FDA, “because the 2018 Farm Bill regulated by the Food and Drug Administration (FDA). did not change FDA’s authorities, cannabis and cannabis- CBD is also the active ingredient in an FDA-approved pharmaceutical drug, Epidiolex®. CBD is a plant-derived derived products are subject to the same authorities and substance from Cannabis sativa, the species of plant that requirements as FDA-regulated products containing any includes both hemp and marijuana, but from different plant other substance, regardless of whether the products fall varieties or cultivars. CBD is the primary nonpsychoactive within the definition of ‘hemp’ under the 2018 Farm Bill.” compound in cannabis, whereas tetrahydrocannabinol (THC) is cannabis’s primary psychoactive compound. FDA Regulation of CBD Products FDA, under the FFDCA, regulates many of the products Regulation of CBD Products marketed as containing cannabis and cannabis-derived Hemp and marijuana have separate definitions in U.S. law compounds, including CBD.
    [Show full text]
  • Medicinal Uses, Phytochemistry and Pharmacology of Picralima Nitida
    Asian Pacific Journal of Tropical Medicine (2014)1-8 1 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: A review Osayemwenre Erharuyi1, Abiodun Falodun1,2*, Peter Langer1 1Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059 Rostock, Germany 2Department of Pharmacognosy, School of Pharmacy, University of Mississippi, 38655 Oxford, Mississippi, USA ARTICLE INFO ABSTRACT Article history: Picralima nitida Durand and Hook, (fam. Apocynaceae) is a West African plant with varied Received 10 October 2013 applications in African folk medicine. Various parts of the plant have been employed Received in revised form 15 November 2013 ethnomedicinally as remedy for fever, hypertension, jaundice, dysmenorrheal, gastrointestinal Accepted 15 December 2013 disorders and malaria. In order to reveal its full pharmacological and therapeutic potentials, Available online 20 January 2014 the present review focuses on the current medicinal uses, phytochemistry, pharmacological and toxicological activities of this species. Literature survey on scientific journals, books as well Keywords: as electronic sources have shown the isolation of alkaloids, tannins, polyphenols and steroids Picralima nitida from different parts of the plant, pharmacological studies revealed that the extract or isolated Apocynaceae compounds from this species
    [Show full text]