Gene Expression, Proteome and Calcium Signaling Alterations In

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Rocchio et al. Cell Death and Disease (2019) 10:24 https://doi.org/10.1038/s41419-018-1264-8 Cell Death & Disease ARTICLE Open Access Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer’s disease mouse model Francesca Rocchio1,5, Laura Tapella1, Marcello Manfredi2,3, Mariangela Chisari4, Francesca Ronco1, Federico Alessandro Ruffinatti1, Eleonora Conte2, Pier Luigi Canonico1, Maria Angela Sortino4, Mariagrazia Grilli 1, Emilio Marengo2, Armando A. Genazzani1 and Dmitry Lim 1 Abstract Evidence is rapidly growing regarding a role of astroglial cells in the pathogenesis of Alzheimer’s disease (AD), and the hippocampus is one of the important brain regions affected in AD. While primary astroglial cultures, both from wild- type mice and from rodent models of AD, have been useful for studying astrocyte-specific alterations, the limited cell number and short primary culture lifetime have limited the use of primary hippocampal astrocytes. To overcome these limitations, we have now established immortalized astroglial cell lines from the hippocampus of 3xTg-AD and wild- type control mice (3Tg-iAstro and WT-iAstro, respectively). Both 3Tg-iAstro and WT-iAstro maintain an astroglial phenotype and markers (glutamine synthetase, aldehyde dehydrogenase 1 family member L1 and aquaporin-4) but display proliferative potential until at least passage 25. Furthermore, these cell lines maintain the potassium inward 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; rectifying (Kir) current and present transcriptional and proteomic profiles compatible with primary astrocytes. Importantly, differences between the 3Tg-iAstro and WT-iAstro cell lines in terms of calcium signaling and in terms of transcriptional changes can be re-conducted to the changes previously reported in primary astroglial cells. To illustrate the versatility of this model we performed shotgun mass spectrometry proteomic analysis and found that proteins related to RNA binding and ribosome are differentially expressed in 3Tg-iAstro vs WT-iAstro. In summary, we present here immortalized hippocampal astrocytes from WT and 3xTg-AD mice that might be a useful model to speed up research on the role of astrocytes in AD. Introduction neuroinflammation, a growing body of evidence suggests While in Alzheimer’s disease (AD) astrocytes have been that astroglial alterations occur in the early stages of AD, historically associated with reactive gliosis and compromising their housekeeping and homeostatic functions that in turn may result in synaptic and neuronal malfunction1,2. Correspondence: Armando A. Genazzani ([email protected])or Most of the information about the role of astrocytes in Dmitry Lim ([email protected]) brain pathology has been collected in in vitro experiments 1Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy on primary cultures. Easy to prepare and handle, astroglial 2Department of Sciences and Technological Innovation, Università degli Studi primary cultures are made from different brain areas3,4 – del Piemonte Orientale, Alessandria, Italy and different animal species5 8. However, primary cul- Full list of author information is available at the end of the article. These authors contributed equally: Francesca Rocchio, Laura Tapella tures present several limitations such as inter-culture Edited by A. Verkhratsky © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Rocchio et al. Cell Death and Disease (2019) 10:24 Page 2 of 18 variability, short culture lifetime and limited number of were confirmed for morphological identity to other lines, cells if cultures are prepared from specific brain areas, but were maintained as backups and have not been such as the hippocampus. To overcome these limitations, characterized (#1 and #5 for WT-iAstro and #1 and #4 for immortalized astroglial lines have been proposed. The 3Tg-iAstro lines). first attempts to generate a permanent astroglial cell line, iAstro cells show a morphology similar and virtually not deriving from brain tumors, date back to early eigh- indistinguishable to those of primary hippocampal astro- ties9. Since then, a number of immortalized astroglial lines cytes in bright field microscopy (Fig. 1a). We also eval- – have been established10 23. Most of them derive from a uated the expression of the astroglial markers aquaporin-4 highly heterogeneous population of cortical primary (AQP4), glutamine synthetase (GS) and aldehyde dehy- astrocytes; however, immortalization of astrocytes from drogenase 1 family member l1 (Aldh1l1) (Fig. 1b) by brain regions other than cortex have also been reported, immunocytochemistry. Importantly, we found expression e.g., from the cerebellum9 or from the midbrain21. Sur- of all three markers in all cell lines. Immunocytochemical prisingly, few attempts have been reported to immortalize analysis for glial fibrillary acidic protein (GFAP) showed, astrocytes from hippocampus and also from animal instead, that only a small proportion of cells were positive models of AD. In this regard, Morikawa et al.18 have in the established immortalized cell lines (15.4 ± 5.3 % in generated immortalized astrocytes from ApoE2, ApoE3 WT-iAstro vs 16.7 ± 5.9 % in 3Tg-iAstro cells, p > 0.05) and ApoE4 knock-in mice. (Fig. 1c), while 100% of cells were GFAP positive in WT- In this report we introduce immortalized astroglial lines and 3Tg-primary astrocytes. from the hippocampus of a well-characterized AD mouse We also decided to have a quantitative measure of the model, 3xTg-AD, and from wild-type (WT) control mice, expression of the three markers by evaluating protein from now on referred to as 3Tg-iAstro and WT-iAstro, levels in western blotting on three of the four cell lines. respectively. WT-iAstro cell lines show features of pri- The three markers were mostly decreased compared to mary hippocampal astrocytes such as basic electro- primary cell lines, albeit at different levels. AQP4 was the physiological properties, and a similar transcriptional and least decreased, while Aldh1l1 was the most decreased, proteomic profile. More importantly, 3Tg-iAstro show with qualitative consistency in the immortalized cell lines + alterations in transcription and deregulation of Ca2 sig- tested. Importantly, not only were all the markers naling as it was reported for its primary counterparts. To detectable, but they were also represented at similar levels illustrate the versatility of this model we also performed between the WT- and 3Tg-iAstro cell lines (Fig. 2). shotgun mass spectrometry proteomic analysis and found We also evaluated the ability of the iAstro cell lines to that proteins related to RNA binding and ribosome are be passaged in culture. iAstro lines did not change their differentially expressed in 3Tg-iAstro vs WT-iAstro. morphology or marker expression significantly at least up These data demonstrate that iAstro lines represent a to 20th passage (not shown). versatile and useful cellular model to investigate astroglial AD-related pathobiology. Kir currents are present but are not different in WT-iAstro and 3Tg-iAstro Results Maintenance of ionic balance is one of the house- Generation of immortalized hippocampal astrocytes keeping functions of astrocytes and a feature which might (iAstro) from WT and 3xTg-AD mice have been lost during immortalization. Potassium buf- + Six immortalized cell lines from WT (WT-iAstro#1–6) fering by inwardly rectifying K (Kir) channels during and from 3xTg-AD (3Tg-iAstro#1–6) mice were gener- neuronal activity is fundamental to maintain adequate ated, from separate primary astrocyte cell cultures. For synaptic transmission and neuronal excitability24.We immortalization, primary astroglial cultures were first have previously shown that Kir channels are functionally depleted of microglial cells by magnetic-assisted cell expressed in primary hippocampal astrocytes25. There- sorting (MACS) using anti-CD11b-conjugated microbe- fore, we performed patch-clamp experiments in WT- ads in order to obtain a population of highly purified iAstro#2 and 3Tg-iAstro#2 lines. To confirm that Kir astrocytes. Astrocytes were then transduced using retro- function was not affected by the immortalization process, virus expressing SV40 large T antigen. Transformed cells control hippocampal mouse astrocytes were also patched were selected in G418, amplified and stabilized for 12 in order to record Kir current. Cells were exposed to a passages prior to characterization. No clonal selection was step protocol of increasing voltage (20 mV increments) performed to maintain the natural hererogeneity of the from −180
Recommended publications
  • A Single-Cell Transcriptional Atlas Identifies Extensive Heterogeneity in the Cellular Composition of Tendons

    A Single-Cell Transcriptional Atlas Identifies Extensive Heterogeneity in the Cellular Composition of Tendons

    bioRxiv preprint doi: https://doi.org/10.1101/801266; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A single-cell transcriptional atlas identifies extensive heterogeneity in the cellular composition of tendons Jacob B Swanson1, Andrea J De Micheli2, Nathaniel P Disser1, Leandro M Martinez1, Nicholas R Walker1,3, Benjamin D Cosgrove2, Christopher L Mendias1,3,* 1Hospital for Special Surgery, New York, NY, USA 2Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA 3Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA *Corresponding Author Christopher Mendias, PhD Hospital for Special Surgery 535 E 70th St New York, NY 10021 USA +1 212-606-1785 [email protected] Keywords: tenocyte; tendon fibroblast; pericyte; single-cell RNA sequencing bioRxiv preprint doi: https://doi.org/10.1101/801266; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Tendon is a dense, hypocellular connective tissue that transmits forces between muscles and bones. Cellular heterogeneity is increasingly recognized as an important factor in the biological basis of tissue homeostasis and disease, but little is known about the diversity of cells that populate tendon. Our objective was to explore the heterogeneity of cells in mouse Achilles tendons using single-cell RNA sequencing. We identified 13 unique cell types in tendons, including 4 previously undescribed populations of fibroblasts.
  • KLF2 Induced

    KLF2 Induced

    UvA-DARE (Digital Academic Repository) The transcription factor KLF2 in vascular biology Boon, R.A. Publication date 2008 Link to publication Citation for published version (APA): Boon, R. A. (2008). The transcription factor KLF2 in vascular biology. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Supplementary data: Genes induced by KLF2 Dekker et al. LocusLink Accession Gene Sequence Description Fold p-value ID number symbol change (FDR) 6654 AK022099 SOS1 cDNA FLJ12037 fis, clone HEMBB1001921. 100.00 5.9E-09 56999 AF086069 ADAMTS9 full length insert cDNA clone YZ35C05. 100.00 1.2E-09 6672 AF085934 SP100 full length insert cDNA clone YR57D07. 100.00 6.7E-13 9031 AF132602 BAZ1B Williams Syndrome critical region WS25 mRNA, partial sequence.
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis

    Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis

    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
  • Supplemental Table 3 - Male Genes Differentially Expressed > 1.5-Fold Among Strains in E11.5 XY Gonads

    Supplemental Table 3 - Male Genes Differentially Expressed > 1.5-Fold Among Strains in E11.5 XY Gonads

    Supplemental Table 3 - Male genes differentially expressed > 1.5-fold among strains in E11.5 XY gonads. Male genes differentially expressed between C57BL/6J and 129S1/SvImJ. Note: Positive fold values reflect male genes that are up regulated in C57BL/6J relative to 129S1/SvImJ. Fold Diff Gene symbol Genbank acc Description 10.77 Gcnt1 NM_173442 Mus musculus glucosaminyl (N-acetyl) transferase 1, core 2 (Gcnt1), mRNA [NM_173442] 5.50 Afp NM_007423 Mus musculus alpha fetoprotein (Afp), mRNA [NM_007423] 4.95 Hnf4a NM_008261 Mus musculus hepatic nuclear factor 4, alpha (Hnf4a), mRNA [NM_008261] 4.71 Ppp1r14c AK082372 Mus musculus 0 day neonate cerebellum cDNA, RIKEN full-length enriched library, clone:C230042N14 product:hypothetical protein, full insert sequence. [AK082372] 4.41 Gorasp2 AK020521 Mus musculus 12 days embryo embryonic body between diaphragm region and neck cDNA, RIKEN full-length enriched library, clone:9430094F20 product:inferred: golgi reassembly stacking protein 2, full insert sequence. [AK020521] 3.69 Tmc7 NM_172476 Mus musculus transmembrane channel-like gene family 7 (Tmc7), mRNA [NM_172476] 2.97 Mt2 NM_008630 Mus musculus metallothionein 2 (Mt2), mRNA [NM_008630] 2.62 Gstm6 NM_008184 Mus musculus glutathione S-transferase, mu 6 (Gstm6), mRNA [NM_008184] 2.43 Adhfe1 NM_175236 Mus musculus alcohol dehydrogenase, iron containing, 1 (Adhfe1), mRNA [NM_175236] 2.38 Txndc2 NM_153519 Mus musculus thioredoxin domain containing 2 (spermatozoa) (Txndc2), mRNA [NM_153519] 2.30 C030038J10Rik AK173336 Mus musculus mRNA for mKIAA2027
  • Methylome and Transcriptome Maps of Human Visceral and Subcutaneous

    Methylome and Transcriptome Maps of Human Visceral and Subcutaneous

    www.nature.com/scientificreports OPEN Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal Received: 9 April 2019 Accepted: 11 June 2019 key epigenetic diferences at Published: xx xx xxxx developmental genes Stephen T. Bradford1,2,3, Shalima S. Nair1,3, Aaron L. Statham1, Susan J. van Dijk2, Timothy J. Peters 1,3,4, Firoz Anwar 2, Hugh J. French 1, Julius Z. H. von Martels1, Brodie Sutclife2, Madhavi P. Maddugoda1, Michelle Peranec1, Hilal Varinli1,2,5, Rosanna Arnoldy1, Michael Buckley1,4, Jason P. Ross2, Elena Zotenko1,3, Jenny Z. Song1, Clare Stirzaker1,3, Denis C. Bauer2, Wenjia Qu1, Michael M. Swarbrick6, Helen L. Lutgers1,7, Reginald V. Lord8, Katherine Samaras9,10, Peter L. Molloy 2 & Susan J. Clark 1,3 Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional diferences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic diferences and their contribution to cell type and depot-specifc function. We found that DNA methylomes were notably distinct between diferent adipocyte depots and were associated with diferential gene expression within pathways fundamental to adipocyte function. Most striking diferential methylation was found at transcription factor and developmental genes. Our fndings highlight the importance of developmental origins in the function of diferent fat depots.
  • Clonally Expanding Smooth Muscle Cells Promote Atherosclerosis by Escaping Efferocytosis and Activating the Complement Cascade

    Clonally Expanding Smooth Muscle Cells Promote Atherosclerosis by Escaping Efferocytosis and Activating the Complement Cascade

    Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade Ying Wanga,b, Vivek Nandaa,b,c, Daniel Direnzoa, Jianqin Yea, Sophia Xiaoa, Yoko Kojimaa, Kathryn L. Howea, Kai-Uwe Jarra, Alyssa M. Floresa, Pavlos Tsantilasa, Noah Tsaoa, Abhiram Raob,d, Alexandra A. C. Newmane, Anne V. Eberharda, James R. Priestf, Arno Ruusaleppg, Gerard Pasterkamph,i, Lars Maegdefesselj,k, Clint L. Millerl,m,n, Lars Lindo, Simon Koplevp, Johan L. M. Björkegrenp, Gary K. Owense, Erik Ingelssonb,o,q, Irving L. Weissmanr,1, and Nicholas J. Leepera,b,1 aDivision of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305; bStanford Cardiovascular Institute, Stanford University, Stanford, CA 94305; cDepartment of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; eRobert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22904; fDivision of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305; gDepartment of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia 50406; hDepartment of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; iLaboratory of Clinical Chemistry, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; jDepartment for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University
  • Investigating Developmental and Functional Deficits in Neurodegenerative

    Investigating Developmental and Functional Deficits in Neurodegenerative

    UNIVERSITY OF CALIFORNIA, IRVINE Investigating developmental and functional deficits in neurodegenerative disease using transcriptomic analyses DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences by Ryan Gar-Lok Lim Dissertation Committee: Professor Leslie M. Thompson, Chair Assistant Professor Dritan Agalliu Professor Peter Donovan Professor Suzanne Sandmeyer 2016 Introduction, Figure 1.1 © 2014 Macmillan Publishers Limited. Appendix 1 © 2016 Elsevier Ltd. All other materials © 2016 Ryan Gar-Lok Lim DEDICATION This dissertation is dedicated to my parents, sister, and my wife. I love you all very much and could not have accomplished any of this without your love and support. Please take the time to reflect back on all of the moments we’ve shared, and know, that it is because of those moments I have been able to succeed. This accomplishment is as much yours as it is mine. ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES ix ACKNOWLEDGMENTS x CURRICULUM VITAE xiii ABSTRACT OF THE DISSERTATION xv Introduction Huntington’s disease, the neurovascular unit and the blood-brain barrier 1 1.1 Huntington’s Disease 1.2 HTT structure and function 1.2.1 Normal HTT function and possible loss-of-function contributions to HD 1.3 mHTT pathogenesis 1.3.1 The dominant pathological features of mHTT - a gain-of- toxic function? 1.3.2 Cellular pathologies and non-neuronal contributions to HD 1.4 The neurovascular unit and the blood-brain barrier 1.4.1 Structure and function
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation

    Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation

    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
  • A Single-Cell Transcriptome Atlas of the Mouse Glomerulus

    A Single-Cell Transcriptome Atlas of the Mouse Glomerulus

    RAPID COMMUNICATION www.jasn.org A Single-Cell Transcriptome Atlas of the Mouse Glomerulus Nikos Karaiskos,1 Mahdieh Rahmatollahi,2 Anastasiya Boltengagen,1 Haiyue Liu,1 Martin Hoehne ,2 Markus Rinschen,2,3 Bernhard Schermer,2,4,5 Thomas Benzing,2,4,5 Nikolaus Rajewsky,1 Christine Kocks ,1 Martin Kann,2 and Roman-Ulrich Müller 2,4,5 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Three different cell types constitute the glomerular filter: mesangial depending on cell location relative to the cells, endothelial cells, and podocytes. However, to what extent cellular heteroge- glomerular vascular pole.3 Because BP ad- neity exists within healthy glomerular cell populations remains unknown. aptation and mechanoadaptation of glo- merular cells are key determinants of kidney Methods We used nanodroplet-based highly parallel transcriptional profiling to function and dysregulated in kidney disease, characterize the cellular content of purified wild-type mouse glomeruli. we tested whether glomerular cell type sub- Results Unsupervised clustering of nearly 13,000 single-cell transcriptomes identi- sets can be identified by single-cell RNA fied the three known glomerular cell types. We provide a comprehensive online sequencing in wild-type glomeruli. This atlas of gene expression in glomerular cells that can be queried and visualized using technique allows for high-throughput tran- an interactive and freely available database. Novel marker genes for all glomerular scriptome profiling of individual cells and is cell types were identified and supported by immunohistochemistry images particularly suitable for identifying novel obtained from the Human Protein Atlas.
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are

    Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are

    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
  • Original Article the Association of FBLN5 Polymorphisms with Age-Related Macular Degeneration Susceptibility in the Population of Northern China

    Original Article the Association of FBLN5 Polymorphisms with Age-Related Macular Degeneration Susceptibility in the Population of Northern China

    Int J Clin Exp Pathol 2017;10(3):3722-3726 www.ijcep.com /ISSN:1936-2625/IJCEP0010877 Original Article The association of FBLN5 polymorphisms with age-related macular degeneration susceptibility in the population of northern China Xiaoli Meng1,2, Yifei Huang1, Yanming Jiang3 1Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China; 2Sekwa Eye Hospital, Sekwa Institute of Medicine, Beijing, China; 3Department of Ophthalmology, Rocket Force General Hospital, Beijing, China Received May 31, 2015; Accepted July 20, 2015; Epub March 1, 2017; Published March 15, 2017 Abstract: Objectives: This study are intended to explore the effect of FBLN5 polymorphisms on age-related macular degeneration (AMD) susceptibility and provide evidence for the pathogenesis of AMD. Methods: This case-control study was conducted in 138 patients with AMD and 152 healthy persons frequency-match with the former by age and gender. FBLN5 1087G>A and 506T>C polymorphisms were genotyped through polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). The χ2 test was used to check hardy-weinberg equilibrium (HWE) and calculate odds ratio (OR) with 95% confidence interval (CI) which evaluated the association between polymorphisms and AMD risk. Results: HWE test showed that the selection of control group conformed to require- ment. As a result, mutant genotypes TC, CC of FBLN5 506T>C polymorphism both had the higher frequencies in cases compared with controls (P=0.006 and 0.029, respectively). Furthermore its mutant allele C also was associ- ated with the increased risk of AMD (OR=1.725, 95% CI=1.210-2.459). Conclusions: FBLN5 506T>C polymorphism significantly increased the susceptibility to AMD in population of northern China, but 1087G>A might be not an independent risk factor for AMD development.
  • Factors Secreted by Cancer-Associated Fibroblasts That Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells As Potential Therapeutic Targets

    Factors Secreted by Cancer-Associated Fibroblasts That Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells As Potential Therapeutic Targets

    cancers Article Factors Secreted by Cancer-Associated Fibroblasts that Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells as Potential Therapeutic Targets Saúl Álvarez-Teijeiro 1,2,†,* , Cristina García-Inclán 1,†, M. Ángeles Villaronga 1,2, Pedro Casado 3 , Francisco Hermida-Prado 1 , Rocío Granda-Díaz 1, Juan P. Rodrigo 1,2 , Fernando Calvo 4, Nagore del-Río-Ibisate 1, Alberto Gandarillas 5, Francisco Morís 6, Mario Hermsen 1,2, Pedro Cutillas 3 and Juana M. García-Pedrero 1,2,* 1 Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; [email protected] (C.G.-I.); [email protected] (M.Á.V.); [email protected] (F.H.-P.); [email protected] (R.G.-D.); [email protected] (J.P.R.); [email protected] (N.d.-R.-I.); [email protected] (M.H.) 2 CIBERONC, 28029 Madrid, Spain 3 Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (P.Ca.); [email protected] (P.Cu.) 4 Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; [email protected] 5 Cell Cycle, Stem Cell Fate and Cancer Lab Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; [email protected] 6 EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain; [email protected] * Correspondence: [email protected] (S.Á.-T.); juanagp.fi[email protected] (J.M.G.-P.) † These authors contributed equally to this work.