SIGCHI Extended Abstracts Sample File: Note Initial Caps

Total Page:16

File Type:pdf, Size:1020Kb

SIGCHI Extended Abstracts Sample File: Note Initial Caps CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA Initial Evaluation of Different Types of Virtual Reality Locomotion Towards a Pedestrian Simulator for Urban and Transportation Planning Julian Kreimeier Daniela Ullmann Abstract Nuremberg Institute of Nuremberg Institute of The simulation of human behaviour in today’s travel demand Technology Technology models is usually based on the assumption of a rational be- Nuremberg, D-90408 Nuremberg, D-90408 haviour of its participants. Since travel demand models have Germany Germany julian.kreimeier@ohm- daniela.ullmann@ohm- been applied in particular for motorized traffic, only little is university.eu university.eu known about the influence of variables that affect both the choice of trip destination and the route decision in pedestrian and cycling models. In order to create urban spaces that en- courage cycling and walking, we propose a VR (Virtual Re- Harald Kipke Timo Götzelmann ality) pedestrian simulator which involves walk-in-place loco- Nuremberg Institute of Nuremberg Institute of motion. Thus, identical conditions are obtained for all sub- Technology Technology jects which is not feasible in real world field research with Nuremberg, D-90408 Nuremberg, D-90408 naturally varying environmental influences. As a first step, Germany Germany our qualitative and quantitative user study revealed that walk- harald.kipke@ohm- timo.goetzelmann@ohm- university.eu university.eu ing in a VR treadmill felt safest and most intuitive, although walking in it took in return more energy than walking-in-place with VR trackers only. Author Keywords Virtual Reality, Walk-in-Place Locomotion, Urban Space Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation CCS Concepts on the first page. Copyrights for third-party components of this work must be honored. •Human-centered computing ! User studies; Virtual re- For all other uses, contact the owner/author(s). CHI ’20 Extended Abstracts, April 25–30, 2020, Honolulu, HI, USA. ality; •Computing methodologies ! Interactive simula- © 2020 Copyright is held by the author/owner(s). tion; ACM ISBN 978-1-4503-6819-3/20/04. http://dx.doi.org/10.1145/3334480.3382958 LBW068, Page 1 CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA Introduction Related Work Although human beings have traveled exclusively on foot for The idea to simulate road usage to obtain information about millions of years, walking is the least explored mean to real- traffic jams, capacities and waiting times of different types of ize mobility. In a world mostly shaped by motorized transport urban infrastructures isn’t entirely new, since the late 2000s systems, walking is oftentimes considered as an anachronis- research even apply VR technology (e.g., [4]). A very de- tic way of getting around and most often receives only little tailed and up-to-date overview in this regard can be found Importance of Bipedalism in attention in public perception and research. Besides cycling, at [3]. One of the most established approaches for a mi- Urban Spaces walking appears as the second to none most energy-efficient croscopic traffic simulation are computer programs like VIS- A 2019 study of the German and unrestricted form of mobility and promises an positive SIM or SUMO (Simulation of Urban MObility) [7]. These Institute for Applied Social Sci- impact on the health of an urban society. And there is an- tools help to visualize measures and assess the effect of ences [10] showed that 83% of other important aspect of walking: Its significance in every- planning concepts to draw conclusions concerning the traf- participants over the age of 14 day life (e.g., walking from the car or bicycle to the apartment fic quality. The focus of these simulations is not on quali- perceive walking as the most or to the bus stop). Each chain of paths begins and ends with tative parameters and human behavior, but on the calcula- pleasant way to get around and by foot, and yet we know only little about influencing factors tion of quantitative data to answer which measure provides 41% walk almost every day, and behavior parameters of walking. However, in traditional the most efficient parameters like delay, travel time, stops, which is more than cycling or us- traffic engineering, the focus on walking as an independent queues, speeds and density [6], both for motorized and non- ing public transportation. type of travel mode is interpreted from a technically centered motorized road users. However, the pedestrian movement Mostly, the "last mile" of any kind point of view. But it is especially interesting and relevant to in- is based on the ’Social Force Model’ [8] with forces in anal- of urban movement is done by vestigate how and why walking in urban spaces is subject to ogy to Newtonian mechanics. These forces are repulsive foot. Thus, an intuitive and real- sensitive stimuli here. These influence both the acceptance from obstacles [16] and have a considerable influence on istic VR pedestrian simulator is and the choice of route and destination. To the authors’ best the pedestrians’ destination and route choice. This approach a promising opportunity to bet- knowledge, there are up to now no findings on physiological- can be implemented with ’cellular automata’ [15] which di- ter understand this sustainable quantitative correlations which affect the pedestrians’ ambi- vide the simulated area into single, individually connected and effective, but yet underrep- ent awareness and the endogenous expenses valuation. So cells that can be occupied by pedestrians. This method is resented way of moving around far, only empirically measured observations led to qualitative used for simulations of crowds, such as the evacuation of in urban areas. By using innova- and very general presumptions of causality (e.g., [18, 19]). events or waiting lines on train stations [9, 5]. But visual tive VR research in pedestrian At this point, VR technology can be meaningfully applied to or acoustic aspects of urban spaces are often not consid- research, this field can be given investigate possible correlations in a (virtual) environment, ered. There is only one field study from 1993 which analyzed more attention. which is identical to all subjects and can be analyzed more the effect of an attractive or unattractive urban environment precisely than in field work. To achieve this, we propose the on the behavior of pedestrians [12]. It was found that peo- use of a walk-in-place approach, which, in combination with ple in an attractive environment are more willing to walk and a HMD (Head mounted display) and headphones, enables thus accept a longer access route to the public transport sta- audiovisually walking in a (virtual) urban space. At the begin- tion. Correspondingly, attractive environments are described ning of this development, we initially evaluated different types as ’car-free’ but any further parameters or precise recom- of walk-in-place locomotion with 15 subjects on the basis of mendations for urban environments are not provided. How- a route to be covered via a virtual crossroads, see Fig.1. ever, it’s unknown to what extent simulations like VISSIM or LBW068, Page 2 CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA SUMO correspond to reality. Beside VR bicycle simulators Question and level of measurement (e.g., [11]), there are also advanced implementations of vir- How safe did you feel when using this type of locomotion? tual car-driving [3], even with animated traffic [7] or the so- 1 (low) - 10 (high) cial interaction between a car driver and a pedestrian while How precise were you able to walk in VR? crossing an intersection [14]. These models explore vehicle 1 (low) - 10 (high) and road safety data of electric or autonomous vehicles [3], How intuitive were your movements? but pedestrians are neglected. 1 (low) - 10 (high) In order to better understand the perception of an urban space, How do you rate the simulated walking speed? there are first results which measured emotions like stress of 1 (too low) - 10 (too fast) Walk-in-Place Locomotion pedestrians and cyclists in public spaces. A ’smartband’ was How did your energy expenditure match up with real walking? Using a so-called ’walk-in-place’ used to monitor physiological changes in real-world condi- 1 (too low) - 10 (too high) approach, virtual environments tions [17], but none of these were carried out in a laboratory What is your bottom line of this type of locomotion? can be mapped to the limited with identical conditions and different types of participants Qualitative feedback size of real spaces in order (e.g., regarding age, transport use). Thus, it is difficult to to be walkable. In correlation generalize and compare findings of these field research re- Table 1: The questionnaire used in our experiment. with today’s technical possibili- sults. In order to tackle this problem, we propose a novel VR ties, there are many interesting based pedestrian simulator including walk-in-place locomo- rience. After a detailed briefing and explanation, each par- and sophisticated implementa- tion, as we will present in the following. ticipant learned how to use each hardware implementation, tions, e.g. [1, 2]. Our Experiment walked along the previously discussed route and filled our questionnaire afterwards. This questionnaire asked for the The first step to achieve a precise and intuitive walking simu- subjects’ feeling of safety, precision and intuitiveness as well lation in a virtual urban space is the physiological calibration, as realistic speed and energy expenditure and one’s indi- environmental influences can be evaluated later.
Recommended publications
  • Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: an Update
    computers Review Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: An Update Grégoire Cattan 1,* , Anton Andreev 2 and Etienne Visinoni 3 1 IBM, Cloud and Cognitive Software, Department of SaferPayment, 30-150 Krakow, Poland 2 GIPSA-lab, CNRS, Department of Platforms and Project, 38402 Saint Martin d’Hères, France; [email protected] 3 SputySoft, 75004 Paris, France; [email protected] * Correspondence: [email protected] Received: 19 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: The integration of a P300-based brain–computer interface (BCI) into virtual reality (VR) environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and limitations engendered by the stimulation needed by the BCI. The main restriction is still the low transfer rate that can be achieved by current BCI technology, preventing movement while using VR. The goal of this paper is to review current limitations and to provide application creators with design recommendations to overcome them, thus significantly reducing the development time and making the domain of BCI more accessible to developers. We review the design of video games from the perspective of BCI and VR with the objective of enhancing the user experience. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user), appear to be the best candidates for designing an effective VR game enriched by BCI technology.
    [Show full text]
  • The Virtual Reality Renaissance Is Here, but Are We Ready? 2.2K SHARES WHAT's THIS?
    MUST READS SOCIAL MEDIA TECH BUSINESS ENTERTAINMENT US & WORLD WATERCOOLER JOBS MORE The Virtual Reality Renaissance Is Here, But Are We Ready? 2.2k SHARES WHAT'S THIS? IMAGE: MASHABLE, BOB AL-GREENE BY LANCE ULANOFF / 2014-04-20 21:19:32 UTC This piece is part of Mashable Spotlight, which presents in-depth looks at the people, concepts and issues shaping our digital world. I'm flapping my wings. Not hard, but slowly and smoothly. At 25 feet across, my wingspan is so great I don't need to exert much energy to achieve lift. In the distance, I see an island under an azure sky. This is my home. Off to my west, the sun is setting and the sky glows with warm, orange light. Spotting movement in the ocean below, I bend my body slightly to the left and begin a gentle dive. As I approach the shore, I spot my prey splashing in the shallows. I lean back, keeping my wings fully extended so I can glide just above the water. I'm right over the fish. I pull in my wings, bend forward sharply and dive into the water. I emerge with a fish in my mouth. Success. Better yet, I did all this without ever leaving the ground or getting wet. Lance Ulanoff trying out the American Museum of Natural History's Pterosaur flight simulator. IMAGE: MASHABLE This is virtual reality, or at least the American Museum of Natural History’s (AMNH) brand of semi-immersive virtual reality. With a large projection screen, Microsoft Kinect V1 and a gaming PC, the setup lets you control the flight of a virtual pterosaur by standing in front of the Kinect sensor, flapping your arms and bending.
    [Show full text]
  • Virtual Reality Design: How Upcoming Head-Mounted Displays Change Design Paradigms of Virtual Reality Worlds
    MediaTropes eJournal Vol VI, No 1 (2016): 52–85 ISSN 1913-6005 VIRTUAL REALITY DESIGN: HOW UPCOMING HEAD-MOUNTED DISPLAYS CHANGE DESIGN PARADIGMS OF VIRTUAL REALITY WORLDS CHRISTIAN STEIN “The matrix has its roots in primitive arcade games. […] Cyberspace. A consensual hallucination experienced daily by billions of legitimate operators, in every nation, by children being taught mathematical concepts. […] A graphic representation of data abstracted from banks of every computer in the human system. Unthinkable complexity. Lines of light ranged in the nonspace of the mind, clusters and constellations of data. Like city lights, receding.” — William Gibson, Neuromancer (1984) 1. Introduction When William Gibson describes the matrix in his canonical cyber-punk novel Neuromancer, it is a computer-generated parallel universe populated and designed by people all over the world. While it would be an exaggeration to say this is about to become a reality, with current-generation virtual reality systems an important step toward immersive digital worlds has already taken place. This article focuses on current developments in virtual reality (VR) with head-mounted displays (HMDs) and their unique digital experiences. After decades of experimentation with VR beginning in the late 1980s, hardware, software, and consumer mindsets are finally ready for the immersive VR experiences its early visionaries dreamed of. As far back as 1962, Morton Heilig developed the first true VR experience with Sensorama, where users could ride a “motorcycle” coupled with a three-dimensional picture; it even www.mediatropes.com MediaTropes Vol VI, No 1 (2016) Christian Stein / 53 included wind, various smells, and engine vibrations. Many followed in Heilig’s footsteps, perhaps most famously Ivan Sutherland with his 1968 VR system The Sword of Damocles.1 These developments did not simply constitute the next step in display technology or gamer hardware, but rather a major break in conceptualizations of space, speed, sight, immersion, and even body.
    [Show full text]
  • Virtual Reality’ Paradigm
    San Jose State University SJSU ScholarWorks ART 108: Introduction to Games Studies Art and Art History & Design Departments Fall 12-2017 Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm Chastin Gammage San Jose State University, [email protected] Follow this and additional works at: https://scholarworks.sjsu.edu/art108 Part of the Game Design Commons, and the Graphics and Human Computer Interfaces Commons Recommended Citation Chastin Gammage. "Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm" ART 108: Introduction to Games Studies (2017). This Final Class Paper is brought to you for free and open access by the Art and Art History & Design Departments at SJSU ScholarWorks. It has been accepted for inclusion in ART 108: Introduction to Games Studies by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Chastin Gammage Professor James Morgan CS 108: Introduction to Game Studies 15 December 2017 Exploring Oculus Rift: A Historical Analysis of the ‘Virtual Reality’ Paradigm Although many consider Virtual Reality to be a relatively new concept, it is more appropriately defined as a long-standing ideology subject to continuous transformation and several varying iterations throughout time depending on the advents in technology. Peter Stearns, a renown modern historian, once wrote an article sharing a similar historically oriented disposition claiming that "the past causes the present, and so the future. Anytime we try to know how something happened… we have to look for the factors that took shape earlier… only through studying history (a proper historical analysis) can we begin to comprehend the factors changing the field so rapidly." In essence, understanding the historical legacy associated with virtual reality is a critical first step in developing a solid foundation on the topic as a whole.
    [Show full text]
  • Subject Index
    863 Subject Index ‘Note: Page numbers followed by “f” indicate figures, “t” indicate tables and “b” indicate boxes.’ A Affordances, 112–114 A/D conversion. See Analog to Digital conversion in virtual reality, 114–117 (A/D conversion) false affordances, 116 AAAD. See Action at a distance (AAAD) reinforcing perceived affordances, 116–117 AAR. See After-action review (AAR) After-action review (AAR), 545f, 630, 630f, 634–635, 645, Absolute input, 198–200 761 Abstract haptic representations, 439 Affordances of VR, 114–117 Abstract synthesis, 495 Agency, 162, 164, 181 Abstraction triangle, 448 Agents, 552–553, 592–593, 614, 684–685 Accelerometers, 198–199, 218 AIFF. See Audio interchange file format (AIFF) Accommodation, 140–141, 273–275, 320, 570, 804 Airfoils, 13 Action at a distance (AAAD), 557–558 AIs. See Artificial intelligences (AIs) Activation mechanism, 554–556, 583 Aladdin’s Magic Carpet Ride VR experience, 185–186, 347, Active haptic displays, 516 347f, 470, 505, 625, 735, 770–771 Active input, 193–196 Alberti, Leon Battista, 28 Active surfaces, 808 Alice system for programming education, Adaptability, 122–123 758–759 Adaptive rectangular decomposition (ARD), 502 AlloSphere, 51–52, 51f, 280 Additive sound creation techniques, 499 Allstate Impaired Driver Simulator, 625, 629f Advanced Realtime Tracking (ART), 53–54, 213f Alpha delta fiber (Aδ fiber), 149 Advanced Robotics Research Lab (ARRL), 369 Alphanumeric value selection, 591–593 Advanced systems, 11–12 Ambient sounds, 436–437, 505 Advanced texture mapping techniques, 469–473 Ambiotherm device, 372, 373f Adventure (games), 12 Ambisonics, 354 Adverse effect, 351 Ambulatory platforms, 242–243 Aestheticism, 414 American Sign Language (ASL), 552–553 Affine transformations, 486–487 Amount/type of information, 196–198 864 | SUBJECT INDEX Amplification, 349–350 ARToolKit (ARTK), 48–49, 715–716 Amplifier, 349–350, 349f Ascension Technologies, 41–44, 44f, 46–47, 86–87 Anaglyphic 3D, 270f, 7f, 30, 49, 269–270, 271f ASL.
    [Show full text]
  • Analyzing Visual Attention Via Virtual Environments
    Analyzing Visual Attention via Virtual Environments Haikun Huang1 Ni-Ching Lin2 Lorenzo Barrett1 Darian Springer1 Hsueh-Cheng Wang2 Marc Pomplun1 Lap-Fai Yu1 1University of Massachusetts Boston, 2National Chiao Tung University Figure 1: Humans rely on their visual attention to directional signage to navigate in an unfamiliar environment. Abstract such as the Oculus Rift VR headset and the Virtuix Omni platform, one can navigate in virtual 3D environments like in the real-world. The widespread popularity of consumer-grade virtual reality de- The visual perception in this type of virtual reality is highly real- vices such as the Oculus Rift and the HTC Vive provides new, istic, and perceptual data can be collected for analyzing human vi- exciting opportunities for visual attention research in virtual en- sual attention and behavior that are almost identical to those in the vironments. Via these devices, users can navigate in and interact real-world. In this project, we propose to conduct visual attention with virtual environments naturally, and their responses to different research in virtual reality and to use the analysis results to devise dynamic events can be closely tracked. In this paper, we explore automatic 3D scene analysis tools to be used in everyday scenar- the possibility of using virtual environments to study how direc- ios. Specifically, we aim at identifying the key visual features that tional signage may guide human navigation in an unfamiliar envi- influence human navigation and decision-making in everyday en- ronment. vironments. We then train machine learning models to statistically encode these visual features. These models enable us to build 3D Keywords: Virtual Environments, Visual Attention, Visualization scene analysis tools for various applications.
    [Show full text]
  • A Study of Body Gestures Based Input Interaction for Locomotion in HMD-VR Interfaces in a Sitting Position
    Report: State of the Art Seminar A Study of Body Gestures Based Input Interaction for Locomotion in HMD-VR Interfaces in a Sitting Position By Priya Vinod (Roll No: 176105001) Guided By Dr. Keyur Sorathia Department of Design Indian Institute of Technology, Guwahati, Assam, India 1 Table of Contents 1. Abstract 4 2. Introduction to VR 5 3. Navigation in VR 5 3.1. Definition of Navigation 5 3.2. Importance of Navigation in VR 6 3.3. Taxonomy of virtual travel techniques 8 3.4. Quality Factors of effective travel techniques 8 4. The Literature on Categories of Travel Techniques 8 4.1. Artificial Locomotion Techniques 9 4.2. Natural Walking Techniques 9 4.2.1. Repositioning Systems 9 4.2.2. Redirected Walking 10 4.2.3. Proxy Gestures 11 5. Literature review on Proxy Gestures for Travel in VR 13 5.1. Standing Based Natural Method of Travel in VR 13 5.1.1. Issues in Standing Position for travel in VR 15 5.2. Sitting Based Natural Method of Travel in VR 16 5.2.1. Research Gap in sitting based natural method of travel 21 6. Research Questions 22 7. Methodology 22 8. References 23 2 Figures Figure 1 Taxonomy of Virtual Travel Techniques. Figure 2 Nilsson, Serafin, and Nordahl’s (2016b) taxonomy of virtual travel techniques. Figure 3 Artificial Locomotion Techniques. Figure 4 Three categories of natural walking techniques. Figure 5 Four examples of repositioning systems: (a) a traditional linear treadmill, (b) motorized floor tiles, (c) a human-sized hamster ball, and (d) a friction-free platform.
    [Show full text]
  • Law, Virtual Reality, and Augmented Reality
    UNIVERSITY of PENNSYLVANIA LAW REVIEW Founded 1852 Formerly AMERICAN LAW REGISTER © 2018 University of Pennsylvania Law Review VOL. 166 APRIL 2018 NO. 5 ARTICLE LAW, VIRTUAL REALITY, AND AUGMENTED REALITY MARK A. LEMLEY† & EUGENE VOLOKH†† Virtual Reality (VR) and Augmented Reality (AR) are going to be big—not just for gaming but for work, for social life, and for evaluating and buying real-world products. Like many big technological advances, they will in some ways challenge legal doctrine. In this Article, we will speculate about some of these upcoming challenges, asking: † William H. Neukom Professor, Stanford Law School; partner, Durie Tangri LLP. Article © 2018 Mark A. Lemley & Eugene Volokh. †† Gary T. Schwartz Professor of Law, UCLA School of Law; academic affiliate, Mayer Brown LLP. Thanks to Sam Bray, Ryan Calo, Anupam Chander, Julie Cohen, Kristen Eichensehr, Nita Farahany, James Grimmelmann, Rose Hagan, Claire Hill, Chad Huston, Sarah Jeong, Bill McGeveran, Emily Murphy, Lisa Ouellette, Richard Re, Zahr Said, Rebecca Tushnet, Vladimir Volokh, and the participants at the UC Davis conference on Future-Proofing Law, the Stanford Law School conference on regulating disruption, the Internet Law Works in Progress Conference, and workshops at Stanford Law School, Duke Law School, the University of Minnesota Law School, and the University of Washington for comments on prior drafts; and to Tyler O’Brien and James Yoon for research assistance. (1051) 1052 University of Pennsylvania Law Review [Vol. 166: 1051 (1) How might the law treat “street crimes” in VR and AR—behavior such as disturbing the peace, indecent exposure, deliberately harmful visuals (such as strobe lighting used to provoke seizures in people with epilepsy), and “virtual groping”? Two key aspects of this, we will argue, are the Bangladesh problem (which will make criminal law very hard to practically enforce) and technologically enabled self-help (which will offer an attractive alternative protection to users, but also a further excuse for real-world police departments not to get involved).
    [Show full text]
  • Virtual Reality Enters a New Dimension 9 January 2015, by Sophie Estienne
    Virtual reality enters a new dimension 9 January 2015, by Sophie Estienne With the headset on, you find yourself in a world with dinosaurs or extraterrestrials that seem real enough to touch. The image follows your movements when you look up, down or behind. Hearing is believing Another key to the virtual world is enhancements in 3D sound, Mitchell told AFP. "We have 3D audio in all these demos where you can hear sounds not only 360 degrees around you, but above you and below you," he said. "After visual, audio is actually one of the major World freediving champion Stig Severinsen holds his senses that humans use to perceive the world breathe underwater for a total of 5 minutes, 35 secs to around them." demonstrate the functionality and accuracy of the Masimo SET pulse oximetry device, at the Consumer Some other exhibitors at CES were showing Electronics Show, January 8, 2015 equipment for 3D sound, which according to developers goes far beyond normal stereo quality. Welcome to "The Matrix"? Not quite, but new technologies are pushing ultra-convincing virtual realities out of the realm of science fiction and into the now. Some of this new tech was displayed at the Consumer Electronics Show in Las Vegas this week, including Crescent Bay, the latest prototype headset from Oculus Rift. "We really try to trick all of your senses into believing that you're there," said Nate Mitchell, co- founder of Oculus, a startup acquired last year by Facebook. People gesture in front of Intel's RealSense technology Considered among the most promising developers cameras, showing 3D renditions of themselves at the of virtual reality gear, Oculus says its next Consumer Electronics Show, January 8, 2015 generation is even more immersive.
    [Show full text]
  • How the Oculus Rift Works by Bernadette Johnson
    How the Oculus Rift Works by Bernadette Johnson Browse the article How the Oculus Rift Works Introduction to How the Oculus Rift Works Virtual reality (VR) has not only been the stuff of science fiction novels and movies for decades, but it's also been an actual thing -- sort of. The first VR headsets were produced in the 1960s. At the time, the technology took up a lot of room and cost massive amounts of money. In the late 1980s to 1990s, VR became accessible to general public in arcades and other amusement venues via heavy headsets and controllers used to play rather simple games -- such as swinging a pretend sword at virtual foes, with as much accuracy as the era's computing systems could muster. The head tracking was slow, the field of vision was narrow and the graphics were low-resolution by modern standards. The experience often induced headaches and motion sickness, and it wasn't all that immersive. Still, it was a step forward in gaming and was bound to get better, but it didn't catch on at the time and the industry fizzled. The necessary technology just wasn't out yet to make it compelling to the masses. The Oculus Rift in use during E3 in Los Angeles, Calif. in June 2013. © GUS RUELAS/Reuters/Corbis High-end VR headsets with better resolution and response time have been developed since then, but they've remained prohibitively expensive for the home user and still tend to inhabit places like government and corporate research and training facilities.
    [Show full text]
  • Virtual Reality Interactive Exhibits
    Come try out the future. Immerse yourself. Come to Purdue’s Envision Center and try virtual reality technologies that could become as common as the cell phone is today. Purdue’s Envision Center specializes in using virtual and augmented reality technology to create educational and research tools at the cutting-edge of the field. GOOGLE CARDBOARD is an inexpensive product that turns smartphones into virtual reality headsets. No need to bring your own smartphone, we have some available to use. MICROSOFT HOLOLENS is a fully self-contained, holographic computer, enabling users to interact with high-definition holograms in the physical world. HTC Vive is a high-end virtual reality headset designed to use room-scale technology. Turn any room into a 3-D experience by navigating naturally, walking around and manipulating objects. VIRTUIX OMNI is a virtual reality “treadmill” that allows users 360 degrees of motion and use of their entire body – walking, running, turning around. Demos will be given during the Dawn or Doom Conference on Sept. 26 & 27. Go to purdue.edu/dawnordoom for more information. Presentations and demo tours can be scheduled for groups. Please contact Diana Hancock [email protected] or Laura Theademan at [email protected]. Author of Our Grandchildren Redesigned and Vanderbilt University Professor MICHAEL BESS World Food Prize Laureate and Vice President & General Manager, Chief Technology Officer, Monsanto Hewlett Packard Enterprise (HPE) ROBB FRALEY TOM BRADICICH Head Editor, Google QUENTIN HARDY EMERGING TECHNOLOGY — RISKS AND REWARDS TWO-DAY CONFERENCE, SEPT. 26 & 27 FREE AND OPEN TO THE PUBLIC, EVERYONE WELCOME purdue.edu/dawnordoom dawnordoom .
    [Show full text]
  • Redirected Walking for Virtually Expanded Play Area
    SHS Web of Conferences 102, 04008 (2021) https://doi.org/10.1051/shsconf/202110204008 ETLTC2021 Redirected walking for virtually expanded play area Taiga Moriguchi1* and Michael Cohen1** 1 Spatial Media Group, Computer Arts Lab; University of Aizu; Aizu-Wakamatsu, Fukushima 965-8580; Japan Abstract. We describe a method of achieving redirected walking by modulating subjective translation and rotation. In a real space, a user walks around without leaving a 5 m2 area, but we have built a system that allows virtual movement around a larger area than the real space. This system is realized by translating and rotating the apparent ground in response to user movement. curved in an arc to create the illusion by using haptic 1. Introduction information as well as visual information [5], or another in which the user is shown imagery of the wind blowing These days, with head-mounted displays (HMD) used in from the front and the direction of the wind applied by a virtual reality (VR) becoming increasingly affordable, fan in the real space is gradually changed from the front. more people than ever can experience VR. Most VR There is a method of guiding the user in an arbitrary content can be experienced using a user's direct body direction by letting him or her walk on an unstable movements to induce immersion. However, the space to scaffold in a curved arc [6]. In addition to these visual enjoy VR content (called “Guardian Space” by Oculus and tactile methods, other methods have been proposed, and “Chaperone” by SteamVR) can be limited. Idioms such as dynamically placing sound sources along an such as teleportation, where the user does not move in intended footpath to guide the player [7], or showing a real space but moves from place to place in virtual video of a very unstable scaffolding in a virtual space space, are common in VR gameplay and experience.
    [Show full text]