Improving the Taxonomy of Fossil Pollen Using Convolutional Neural Networks and Superresolution Microscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of Macrolobium (Fabaceae, Detarioideae) Endemic on a Tepui of the Guyana Shield in Brazil
Phytotaxa 361 (1): 097–105 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.361.1.8 A new species of Macrolobium (Fabaceae, Detarioideae) endemic on a Tepui of the Guyana Shield in Brazil FRANCISCO FARROÑAY1, *, MARISABEL U. ADRIANZÉN1, RICARDO DE OLIVEIRA PERDIZ1 & ALBERTO VICENTINI1 1Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de Pós-Graduação em Botânica, Av. André Araújo, 2.936, 69067-375, Manaus, AM, Brazil. *Author for correspondence: [email protected] Abstract Macrolobium aracaense (Fabaceae), a new endemic treelet species from Brazil, is here described and illustrated. Morpho- logically it is similar to M. longipes: both are treelets, the leaflets have the same shape and are covered by papillary epidermis on the abaxial surface, and the sepals apex are minutely ciliate. Macrolobium aracaense occurs in sympatry with M. discolor var. discolor and M. gracile var. confertum in Serra do Aracá State Park, Amazonas, Brazil, and these four species can be easily differentiated by morphological characters, and their similarities and differences are here discussed. Keywords: Brazilian Amazon, Serra do Aracá, white-sand forest Resumo Macrolobium aracaense (Fabaceae) é uma nova espécie de arvoreta endêmica do Brasil, é aqui descrita e ilustrada. Morfo- logicamente é similar a M. longipes: ambas são arvoretas, os folíolos tem a mesma forma e são cobertos por papilas epidér- micas na face abaxial, e as sépalas tem o ápice diminutamente ciliado. Macrolobium aracaense ocorre em simpatria com M. discolor var. discolor e M. gracile var. -
Pollen Morphology of Indian Species of Saraca L. (Leguminosae)-A Threatened and Legendary Medicinal Tree
Phyton, International Journal of Experimental Botany Pollen Morphology of Indian Species of Saraca L. (Leguminosae)-A Threatened and Legendary Medicinal Tree Sujit Sil1, 2, Tanmoy Mallick2, Tuhin Pal1, Animesh Mondal1, Kalyan Kumar De1 and Asok Ghosh2,* 1Postgraduate Department of Botany, Hooghly Muhammad Mohsin College (Estd.1836), Chinsurah, 712101, Hooghly, West Bengal, India. 2UGC-CAS Department of Botany, Taxonomy of Angiosperms and Biosystematics Laboratory, University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India. *Corresponding Author: Asok Ghosh. Email: [email protected]; [email protected]. Abstract: The genus Saraca L. (Leguminosae) is a universal panacea in herbal medicine. The present study investigates the comparative pollen morphology of four species of Saraca viz. S. asoca (Roxb.) de Wilde, S. declinata (Jack) Miq., S. indica L., and S. thaipingensis Cantley ex Prain growing in India to reveal differences of their pollen structures to aid taxonomic and evolutionary values. The detailed morphology and surface structure of pollen grains were studied and described using light microscopy and scanning electron microscopy. The pollen grains of Saraca showed isopolar, para-syncolporate, tricolporate, with radially symmetric, prolate and prolate-spheroidal structure. The surface of pollen of S. indica is rugulate with large lirae but in S. declinata, the surface is micro-rugulate to vermiculate with relatively thin lirae and that of S. thaipingensis is indistinct as the psilate surface with a frequent protuberance and fewer perforations were observed along with the gemmae like structure. Exine ornamentation helped to separate S. indica and S. asoca. Exine thickness varies from 3-4 μm. Presence of protuberance and exine thickness varies among individuals of the species spread over different locations. -
Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F. -
Middle to Late Paleocene Leguminosae Fruits and Leaves from Colombia
AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Australian Systematic Botany https://doi.org/10.1071/SB19001 Middle to Late Paleocene Leguminosae fruits and leaves from Colombia Fabiany Herrera A,B,D, Mónica R. Carvalho B, Scott L. Wing C, Carlos Jaramillo B and Patrick S. Herendeen A AChicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. BSmithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá. CDepartment of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA. DCorresponding author. Email: [email protected] Abstract. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf 5 morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago. Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America. Received 10 January 2019, accepted 5 April 2019, published online dd mmm yyyy Introduction dates for the crown clades ranging from the Cretaceous to the – Leguminosae, the third-largest family of flowering plants with Early Paleogene, c. -
Bulletin of Natural History ®
FLORI'IDA MUSEUM BULLETIN OF NATURAL HISTORY ® A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE DavidL. Dilcher and Terry A. Lott Vol. 45, No. 1, pp. 1-43 2005 UNIVERSITY OF FLORIDA GAINESVILLE - The FLORIDA MUSEUM OF NATURAL HiSTORY is Florida«'s state museum of natural history, dedicated to understanding, preser¥ingrand interpreting].biologica[1 diversity and culturafheritage. The BULLETIN OF THE FLORIDA- MUSEUM OF NATURAL HISTORY is a peer-reviewed publication thatpziblishes.the result5 of origifial reseafchin zodlogy, botany, paleontology, and archaeology. Address all inquiries t6 the Managing Editor ofthe Bulletin. Numbers,ofthe Bulletin,afe,published,at itregular intervals. Specific volumes are not'necessarily completed in anyone year. The end of a volume willl·be noted at the foot of the first page ofthe last issue in that volume. Richard Franz, Managing Editor Erika H. Simons, Production BulletinCommittee Richard Franz,,Chairperson Ann Cordell Sarah Fazenbaker Richard Hulbert WilliamMarquardt Susan Milbrath Irvy R. Quitmyer - Scott Robinson, Ex 01#cio Afember ISSN: 0071-6154 Publication Date: October 31,2005 Send communications concerning purchase or exchange of the publication and manustfipt queries to: Managing Editor of the BULLETIN Florida MuseumofNatural-History University offlorida PO Box 117800 Gainesville, FL 32611 -7800 U.S.A. Phone: 352-392-1721 Fax: 352-846-0287 e-mail: [email protected] A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE David L. Dilcher and Terry A. Lottl ABSTRACT Plant megafossils are described, illustrated and discussed from Powers Clay Pit, occurring in the middle Eocene, Claiborne Group of the Mississippi Embayment in western Tennessee. -
Multi?Host Ectomycorrhizal Fungi Are Predominant in a Guinean Tropical
Environmental Microbiology (2010) 12(8), 2219–2232 doi:10.1111/j.1462-2920.2010.02183.x Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlingsemi_2183 2219..2232 Abdala Gamby Diédhiou,1,2*† Marc-André Selosse,3 lings harboured a similar fungal community. These Antoine Galiana,1 Moussa Diabaté,1,4 findings suggest that there was a potential for the Bernard Dreyfus,1 Amadou Moustapha Bâ,1,5 formation of common mycorrhizal networks in close Sergio Miana de Faria6 and Gilles Béna1 vicinity. However, no significant difference was 1Laboratoire des Symbioses Tropicales et detected for the d13C and d15N values between seed- Méditerranéennes, UMR113 – INRA/AGRO- lings and adults of each ECM plant, and no ECM M/CIRAD/IRD/UM2 – TA10/J, Campus International de species exhibited signatures of mixotrophy. Our Baillarguet, 34398 Montpellier Cedex 5, France. results revealed (i) variation in ECM fungal diversity 2Laboratoire Commun de Microbiologie, according to the seedling versus adult development IRD/UCAD/ISRA, BP 1386 Dakar, Sénégal. stage of trees and (ii) low host specificity of ECM 3Centre d’Ecologie Fonctionnelle et Evolutive (CNRS, fungi, and indicated that multi-host fungi are more UMR 5175), Equipe Interactions Biotiques, 1919 Route abundant than single-host fungi in this forest stand. de Mende, 34293 Montpellier Cedex 5, France. 4Institut de Recherche Agronomique de Guinée, Division Introduction des Cultures Pérennes, Programme Recherche Forestière, BP 1523, Conakry, République de Guinée. Ectomycorrhizal (ECM) symbiosis involves soil fungi and 5Laboratoire de Biologie et Physiologie Végétales, tree roots. It provides mineral nutrients, water and protec- Faculté des Sciences Exactes et Naturelles, Université tion against pathogens to the plant which, as a reward, des Antilles et de la Guyane, BP 592, 97159 provides carbon to its fungal partner (Smith and Read, Pointe-à-Pitre, Guadeloupe, France. -
Gilbertiodendron J
Available online at www.sciencedirect.com South African Journal of Botany 78 (2012) 257–265 www.elsevier.com/locate/sajb Short communication A morphological re-evaluation of the taxonomic status of the genus Pellegriniodendron (Harms) J. Léonard (Leguminosae–Caesalpinioideae–Detarieae) and its inclusion in Gilbertiodendron J. Léonard ⁎ M. de la Estrella a, , J.A. Devesa a, J.J. Wieringa b a Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Campus de Rabanales, Universidad de Córdoba 14071, Córdoba, Spain b Netherlands Centre for Biodiversity Naturalis (section NHN), Herbarium Vadense (WAG), Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL Wageningen, The Netherlands Received 9 March 2011; received in revised form 8 April 2011; accepted 18 April 2011 Abstract The taxonomic status of the genus Pellegriniodendron J. Léonard (Leguminosae, Caesalpinioideae), which consists in one tree species endemic to West Central tropical Africa, is re-evaluated. Based on our morphological comparison and on published phylogenetic studies, we conclude that P. diphyllum should be included within the genus Gilbertiodendron J. Léonard, and the new combination Gilbertiodendron diphyllum (Harms) Estrella & Devesa is proposed. A lectotype for Macrolobium reticulatum, synonym of G. diphyllum, is also designated. The species is fully described and illustrated, and a distribution map is also presented. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Caesalpinioideae; Fabaceae; Gilbertiodendron; Pellegriniodendron; Taxonomy; Tropical Africa 1. Introduction have been recently revised by Breteler (2006, 2008, 2010 and 2011). Paramacrolobium is easily differenciated from the other Macrolobium Schreb. (Caesalpinioideae: Detarieae), with ± African genera which were previously recognized within 70–80 spp., is now well established as strictly tropical Macrolobium by the combination of eglandular leaflets and American. -
Forest Health Monitoring in the Eastern Arc Mountains of Kenya and Tanzania: a Baseline Report on Selected Forest Reserves
Forest Health Monitoring in the Eastern Arc Mountains of Kenya and Tanzania: a baseline report on selected forest reserves Seif Madoffe, James Mwang’ombe, Barbara O’Connell, Paul Rogers, Gerard Hertel, and Joe Mwangi Dedicated to three team members, Professor Joe Mwangi, Moi University, Eldoret, Kenya and Forest Department, Nairobi; Mr. Charles Kisena Mabula, Tanzania Forest Research Institute, Lushoto, and Mr. Onesmus Mwanganghi, National Museums of Kenya, Nairobi, who passed away shortly after the completion of the field work for this project. They will always be remembered. FHM EAM Baseline Report Acknowledgements Cooperating Agencies, Organizations, Institutions, and Individuals USDA Forest Service 1. Region 8, Forest Health Protection, Atlanta, GA – Denny Ward 2. Engineering (WO) – Chuck Dull 3. International Forestry (WO) – Marc Buccowich, Mellisa Othman, Cheryl Burlingame, Alex Moad 4. Remote Sensing Application Center, Salt Lake City, UT – Henry Lachowski, Vicky C. Johnson 5. Northeastern Research Station, Newtown Square, PA – Barbara O’Connell, Kathy Tillman 6. Rocky Mountain Research Station, Ogden, UT – Paul Rogers 7. Northeastern Area, State & Private Forestry, Newtown Square, PA – Gerard Hertel US Agency for International Development 1. Washington Office – Mike Benge, Greg Booth, Carl Gallegos, Walter Knausenberger 2. Nairobi, Kenya – James Ndirangu 3. Dar es Salaam, Tanzania – Dan Moore, Gilbert Kajuna Sokoine University of Agriculture, Morogoro, Tanzania (Faculty of Forestry and Nature Conservation) – Seif Madoffe, R.C. -
Contributions to the Solution of Phylogenetic Problem in Fabales
Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns. -
9 Costion Plant Endemism 133-166 PROOFS
Micronesica 41(1): 131–164, 2009 Plant Endemism, Rarity, and Threat in Palau, Micronesia: A Geographical Checklist and Preliminary Red List Assessment 1 CRAIG M. COSTION Department of Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide SA 5001 [email protected] ANN HILLMANN KITALONG The Environment, Inc., P.O. Box 1696, Koror, Palau 96940 TARITA HOLM Palau Conservation Society/PALARIS, P.O. Box 1811, Koror, Palau, 96940 Abstract—An official checklist of the endemic plant species of Palau has been long awaited, and is presented here for the first time. For each species a substrate limitation, growth form, and relative abundance is listed. In addition an IUCN red list assessment was conducted using all available data. For over half of the endemic species there is insufficient data to provide a red listing status however an expected minimum number of threatened plants out of the total is inferred. Approximately 15% of Palau’s endemic plants are believed to be only known from the type collection and many more only known from a few collections. These taxa however may now be prioritized and targeted for future inventory and research. The taxonomic robustness of several of these taxa is questionable and it is expected that more endemic species will be lost to synonymy in the future. Previous estimations have significantly over-estimated the rate of plant endemism in Palau (e.g., 194). Here, 130 plants are recognized for Palau, making its level of plant endem- ism comparable to some of its neighboring Micronesian islands to the east, notably Guam and Pohnpei. -
Miombo Ecoregion Vision Report
MIOMBO ECOREGION VISION REPORT Jonathan Timberlake & Emmanuel Chidumayo December 2001 (published 2011) Occasional Publications in Biodiversity No. 20 WWF - SARPO MIOMBO ECOREGION VISION REPORT 2001 (revised August 2011) by Jonathan Timberlake & Emmanuel Chidumayo Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe PREFACE The Miombo Ecoregion Vision Report was commissioned in 2001 by the Southern Africa Regional Programme Office of the World Wide Fund for Nature (WWF SARPO). It represented the culmination of an ecoregion reconnaissance process led by Bruce Byers (see Byers 2001a, 2001b), followed by an ecoregion-scale mapping process of taxa and areas of interest or importance for various ecological and bio-physical parameters. The report was then used as a basis for more detailed discussions during a series of national workshops held across the region in the early part of 2002. The main purpose of the reconnaissance and visioning process was to initially outline the bio-physical extent and properties of the so-called Miombo Ecoregion (in practice, a collection of smaller previously described ecoregions), to identify the main areas of potential conservation interest and to identify appropriate activities and areas for conservation action. The outline and some features of the Miombo Ecoregion (later termed the Miombo– Mopane Ecoregion by Conservation International, or the Miombo–Mopane Woodlands and Grasslands) are often mentioned (e.g. Burgess et al. 2004). However, apart from two booklets (WWF SARPO 2001, 2003), few details or justifications are publically available, although a modified outline can be found in Frost, Timberlake & Chidumayo (2002). Over the years numerous requests have been made to use and refer to the original document and maps, which had only very restricted distribution. -
Diaporthe Isoberliniae Fungal Planet Description Sheets 221
220 Persoonia – Volume 32, 2014 Diaporthe isoberliniae Fungal Planet description sheets 221 Fungal Planet 236 – 10 June 2014 Diaporthe isoberliniae Crous, sp. nov. Etymology. Named after the host genus from which it was collected, Notes — Presently there are no known species of Diaporthe Isoberlinia. (incl. Phomopsis) that have been described from Isoberlinia. On PNA. Conidiomata pycnidial, globose, up to 300 µm diam, Furthermore, D. isoberliniae also appears to be phylogenetically black, erumpent, exuding creamy conidial droplets from central distinct from the species presently accommodated in GenBank, ostioles; walls of 3–6 layers of medium brown textura angularis. being most similar to sequences of D. foeniculacea, P. theicola Conidiophores hyaline, smooth, 2–3-septate, branched, densely and D. neotheicola. aggregated, cylindrical, straight to sinuous, 15–40 × 3–4 µm. ITS. Based on a megablast search of NCBIs GenBank nu- Conidiogenous cells 10–14 × 2.5–3 µm, phialidic, cylindrical, cleotide database, the closest hits using the ITS sequence terminal and lateral, with slight taper towards apex, 1 µm diam, are Diaporthe foeniculacea (GenBank KC343103; Identities with visible periclinal thickening; collarette flared, up to 4 µm = 541/558 (97 %), Gaps = 6/558 (1 %)), Phomopsis theicola long. Paraphyses not observed. Alpha conidia aseptate, hyaline, (GenBank HE774477; Identities = 534/551 (97 %), Gaps = smooth, guttulate, fusoid-ellipsoid, tapering towards both ends, 6/551 (1 %)) and Diaporthe neotheicola (GenBank KC145914; straight, apex subobtuse, base subtruncate, (6.5–)8–9(–10) × Identities = 561/579 (97 %), Gaps = 6/579 (1 %)). (2.5–)3(–3.5) µm. Gamma conidia not observed. Beta conidia LSU. Based on a megablast search of NCBIs GenBank nu- not observed.