ECO CABS Case Study.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Deloitte City Mobility Index Gauging Global Readiness for the Future of Mobility
The Deloitte City Mobility Index Gauging global readiness for the future of mobility By: Simon Dixon, Haris Irshad, Derek M. Pankratz, and Justine Bornstein the Internet of Things, artificial intelligence, and Where should cities other digital technologies to develop and inform go tomorrow? intelligent decisions about people, places, and prod- ucts. A smart city is a data-driven city, one in which Unfortunately, when it comes to designing and municipal leaders have an increasingly sophisti- implementing a long-term vision for future mobil- cated understanding of conditions in the areas they ity, it is all too easy to ignore, misinterpret, or skew oversee, including the urban transportation system. this data to fit a preexisting narrative.1 We have seen In the past, regulators used questionnaires and sur- this play out in dozens of conversations with trans- veys to map user needs. Today, platform operators portation leaders all over the world. To build that can rely on databases to provide a more accurate vision, leaders need to gather the right data, ask the picture in a much shorter time frame at a lower cost. right questions, and focus on where cities should Now, leaders can leverage a vast array of data from go tomorrow. The Deloitte City Mobility Index Given the essential enabling role transportation theme analyses how deliberate and forward- plays in a city’s sustained economic prosperity,2 we thinking a city’s leaders are regarding its future set out to create a new and better way for city of- mobility needs. ficials to gauge the health of their mobility network 3. -
The Tool for the Rapid Assessment of Urban Mobility in Cities with Data
The Tool for the Rapid Assessment of Urban Mobility in Cities with Data Scarcity (TRAM) Prepared by Clean Air Asia and the Institute of Transporta- tion and Development Policy for the UN-Habitat October, 2013 Copyright © United Nations Human Settlements Programme (UN-HABITAT), 2013 All rights reserved United Nations Human Settlements Programme (UN-HABITAT) PO Box 30030, Nairobi, Kenya Tel: +254 2 621 234 Fax: +254 2 624 266 www.unhabitat.org For further information please contact: UN-HABITAT Debashish Bhattacharjee, Lead, Urban Mobility Urban Basic Services Branch P.O. Box 30030, 00100 Nairobi, Kenya Ph.: +254 20-762-5288; +254 20-762-3668 Email: [email protected] ITDP Jacob Mason, Transport Research and Evaluation Manager Global Programs 1210 18th St NW, Washington, DC 20036 USA Ph.: +1 212-629-8001 Email: [email protected] Clean Air Asia Transport Program Unit 3505 Robinsons Equitable Tower ADB Avenue, Pasig City, 1605 Philippines Ph. +63 2 631 1042 Fax +63 2 6311390 Email: [email protected] HS/063/13E Acknowledgement Principal authors: Tomasz Sudra (UN-HABITAT), Jacob Mason (ITDP), Alvin Mejia (Clean Air Asia) Contributors: Debashish Bhattacharjee, Hilary Murphy (UN-HABITAT), Michael Replogle, Colin Hughes (ITDP), Sudhir Gota (Clean Air Asia), Nashik Municipal Corporation, Late Annasaheb Patil’s Nashik Institute of Technology, College of Architecture and Centre for Design, Saraha Consultants, and ITDP-India Editor: Jacob Mason Design and layout: Cliord Harris Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning delimitation of its frontiers or boundaries or regarding its economic system or degree of develop - ment. -
Rickshaw System-Case Study of Electric Auto
Project Highlights • First of its kind electric auto-based feeder 19 system for City Metro Rail Limited SWITCHING TO • First set of Electric Autos to be registered in the city of Chennai SUSTAINABLE AUTO- • Research on estimating carbon emissions RICKSHAW SYSTEM-CASE from existing auto-rickshaw fleet completed • Roundtables organized to carve possible STUDY OF ELECTRIC AUTO sustainable IPT solutions including detailed research identifying behavioral patterns of FEEDER FOR CHENNAI metro-users related to last-mile connectivity METRO RAIL LIMITED • Collaborative Initiative- Auto-drivers, Metro Rail, Local Transport Departments Background Auto rickshaws play an indispensable role in the mobility needs of most Indian cities. They act as an intermediate public transport mode and provide first and last-mile connectivity. However, they are still an inefficient sector that neither answers appropriately to the changing dynamics of urban mobility in India nor embeds a sustainable pattern of transportation. A multitude of challenges plagues the auto- Chennai, rickshaw ecosystem some of which includes lack of technological up- Tamil Nadu gradation contributing to poor air quality, inefficiencies in operations January, 2019- as auto-drivers are less organized and competition from other modes February, 2020 of transport such as Cab Aggregators. On the other hand, cities, (Not to scale) despite having good public transport, are falling short of reliable last-mile connectivity. It is therefore pertinent that the Auto-rickshaw sector needs to move towards Sustainable Businesses, where less polluting technologies are promoted among service providers, auto-rickshaws act as reliable and viable options for last-mile connectivity to public transport, at the same time, customers are educated and aware of the need to shift to sustainable modes of transport. -
Analysing the Role of Government Regulations & Intervention in E-Rickshaw Industry of Delhi
International Journal of Management and Applied Science, ISSN: 2394-7926 Volume-2, Issue-12, Dec.-2016 ANALYSING THE ROLE OF GOVERNMENT REGULATIONS & INTERVENTION IN E-RICKSHAW INDUSTRY OF DELHI 1RITU KHANNA, 2SHIKHA SINGH, 3RAMAN ARORA, 4HARSHIEL CHAHAL, 5ALEENA KHAN, 6ARUSHI GUPTA, 7MUSKAN GUPTA, 8TALAT KHANAM 1,2,3Associate Professor, Department of Economics, Daulat Ram College, University of Delhi 4,5,6,7,8Department of Economics, Daulat Ram College, University of Delhi Abstract— In an era where urban mobility plays a vital role in the economic growth, e-rickshaws have emerged as a promising mode of transport in Delhi. With zero emissions, high accessibility and low operational costs, they provided a shot in the arm to Delhi’s landscape within the first few years of their introduction. However, a policy failure and lack of state involvement in the industry failed to exploit it to its optimum best. These unregistered vehicles operated by unlicensed drivers sprouted within a legal ambiguity until the incidents of negligent driving reached an intolerable high. Hence, this study is an attempt to analyse the role of effective governance in the e-rickshaw industry of Delhi conducted against the backdrop of a dearth of existing literature and reliable data on e-rickshaws. It is based on findings of a primary research survey of 220 e-rickshaw drivers in Delhi and an intensive review of the concerned legislations. In a time span of five years, a multitude of institutions worked in isolation to form policies to regulate these battery operated vehicles but no substantive gains were made until the Motor Vehicles Act (Amendment) 2015. -
San Francisco, California
Compressed Area - 4.5 Miles 2.5 Miles B C D E F G H J K L M N P Q R Fort Point Blue & Gold Blue & Gold Golden Gate Bridge San Francisco Bay Red & Fleet to Vallejo, Fleet to Jack London Square Cable Car Route (toll south bound) San Francisco, California USA White Fleet Angel Island 1 San Francisco Bay Cruise Sausalito & & Oakland 1 Street Car (F-Line) Maritime Tiburon & Bay Cruise Golden Gate National Recreation Area Alcatraz Ferry Service MasonCrissy St Field National PIER Historical Park 45 43 41 39 One Way Traffic 47 431/2 Pre Marina Green s Hyde St id l io Aquatic End of One Way Traffic l Pa rkwa Marina Blvd Pier d y e Lin Park v co l w Cervantes Blvd Pier 35 Direction of The Walt l Jefferson St o n B MARINA Fort Mason The Disney Cruise Terminal Highway Ramps D B n Family Cannery Anchorage 2 l E 2 c m 33 l FISHERMANS o Museum Photo Vantage Points v ba M c Beach St Beach St (Main Post) d Palace rc n a Ghirardelli & Scenic Views i WHARF d Baker of Fine Arts L e GGNRA Square North Point St ro 31 BART Station Beach North Point St Headquarters t Shopping Area S Bay St Bay St Bay St Pier 27 a Alcatraz Departure Terminal Parks br James R. Herman m Cruise Terminal R Alha Moscone Francisco St Francisco St 3 Beaches Letterman i Lincoln Blvd c 3 h Rec Ctr THE Veterans Blvd Digital Arts a Chestnut St Points of Interest Center Ave r Chestnut St TELEGRAPH EMBARCADERO ds “Crookedest HILL o Hospitals n d Lombard St Gen. -
Feasibility Study in Doha, Qatar
Journal of Unmanned Vehicle Systems AERIAL ROPEWAY SYSTEM- FEASIBILITY STUDY IN DOHA, QATAR Journal: Journal of Unmanned Vehicle Systems Manuscript ID juvs-2020-0028.R2 Manuscript Type: Article Date Submitted by the 26-Jan-2021 Author: Complete List of Authors: Tahmasseby, Shahram; Qatar University College of Engineering, aerial ropeway system, ridership, capital cost, operation and Keyword: maintenance, revenue Is the invited manuscript for Draft consideration in a Special Not applicable (regular submission) Issue, Collection, or competition? : © The Author(s) or their Institution(s) Page 1 of 30 Journal of Unmanned Vehicle Systems AERIAL ROPEWAY SYSTEM FEASIBILITY STUDY IN DOHA, QATAR Dr. Shahram TAHMASSEBY a Qatar Transportation and Traffic Center(QTTSC), College of Engineering-Qatar University, Doha, Qatar ABSTRACT Aerial ropeway systems, also called gondolas and aerial cable cars, are amongst driverless transportation modes, which are progressively drawing the attention in promoting tourism. Aerial ropeway systems have been operated in touristic spots e.g., over lakes, rivers, and hilly lands in several countries. Passengers can enjoy a view from the above and experience a stress-free and reliable trip. Furthermore, those systems can be exploited as a public transportation in urbanized and populated regions. The objective of this article is to investigate the viability of implementing a gondola line flying over Doha Bay in Qatar as a tourist attraction from the marketing, economic, and environmental point of view. In this study, the associated costs (capital, maintenance, and operating) of implementing a monocable detachable gondola technology(MDG) are estimatedDraft using international best practices in the world. The economic analysis outcome demonstrates that the revenues generated from the fares could counterweigh the required capital investment as well as operating and maintenance costs and hence the proposed gondola could be economically attractive for investors. -
The People's Railway
Part 1: A Brief History of Muni (the People’s Railway) Presented by Robin Reitzes, Deputy City Attorney 1 Transit’s Beginning - 1851 Horse-drawn omnibuses owned by private, for- profit companies, pictured around the turn of the century. 2 1873 Inventor of the cable car – Andrew Hallidie – pictured on the side of an early car 3 Labor Trouble Around the turn of the 20th century, many smaller, privately operated transit companies consolidated. The corruption and callous labor practices of one company, the United Railroads (which became the Market St. Railway), led to a bond measure in 1909 for a municipally owned system. Carbarn interior, c. 1917. Strikebreakers were housed in these facilities during the protracted strike of 1917. 4 5 Opening Day of the People’s Railway – December 28, 1912 (Geary near Grant St.) 6 City purchases MSRY Co. September 29, 1944 — the privately owned Market Street Railway Company turned over all its assets, including more than 500 streetcars, to the San Francisco Municipal Railway, following approval of San Francisco voters to buy the private company. 7 Cable Cars Three years later (1947), Mayor Lapham tried to kill off the Powell St. cable car line. Friedel Klussman created the Citizen’s Committee to save the cable cars and put a charter amendment on the ballot to save the Powell- Mason line and the Washington- Jackson line. The California St. line became part of Muni in 1952 when the private company went out of business. 8 Cable Cars, cont’d 1964 - cable cars listed on the National Register of Historic Places 1982-84 – entire cable car system restored. -
Case Study of the Auto- Rickshaw Sector in Mumbai
Case Study of the Auto- Rickshaw Sector in Mumbai 3rd Research Symposium on Urban Transport Urban Mobility India 2012 Akshay Mani EMBARQ India Methodology: Thematic Areas Thematic area Information included Mumbai Profile Area and demographics Traffic and transportation Regulations Permits Fares Meters Market Characteristics Fleet Size Age of fleet Engine and fuel characteristics Operational Characteristics High demand locations Daily trip characteristics Driver Profile Age profile Owner and renter drivers Economics Driver revenues and costs User Profile Age profile Gender profile Income profile Time of day characteristics Trip purpose Safety Road safety aspects of auto-rickshaws Infrastructure Auto-rickshaw stands Current Challenges Drivers Passengers Government Mumbai Profile Population: Greater Mumbai is > 12.5 million total Suburban Mumbai is 9.3 million Area: Greater Mumbai Total is 437.71 sq. km Suburban Mumbai is 370 sq km Density: over 20,000 per sq km Auto-rickshaw Sector – Background Market Size Source: Regional Transport Offices (RTOs) Auto-rickshaw Sector – Background Mode Shares Source: Comprehensive Mobility Plans (CMPs) of cities Methodology: Survey and Observation Locations Current Policy Environment Central State City Ministry of Road No direct policy Transport and Department of focus on auto- Highways Motor Vehicles rickshaws (MORTH) Central Motor State Motor Vehicle Rules, Vehicle Rules 1989 Focus Areas Regulation Market Characteristics Operational Driver and User Characteristics Profile and Economics Regulations: Permits Permits: 109,000 of which 9,762 are not in use Cap on new permits Permit Price Paid by Drivers: 0% 0% 0% 1% 2% 3% Legal Permit fee: Rs. 100 Rs. 1 - 100 Rs. 100 - 10,000 11% Average Price: Rs. -
Bay Drive NOVEMBER 19, 2018 UPDATED JANUARY 31, 2019
Miami Beach Neighborhood Greenways Bay Drive NOVEMBER 19, 2018 UPDATED JANUARY 31, 2019 p 1 TABLE OF CONTENTS Executive Summary p. 5 Goals and Objectives p. 7 Bay Drive Neighborhod Greenway p. 9 Existing Conditions p. 11 BAY DRIVE Bay Drive - Segment 1 p. 12 Bay Drive - Segment 2 p. 14 Bay Drive - Segment 3 p. 16 Landscaping p. 18 Safety and Access p. 19 Traffic Calming p. 20 71ST STREET AND NORMANDY DRIVE 71st Street and Normandy Drive p. 23 71st Street East - Segment 1 p. 24 71st Street West - Segment 2 p. 26 Normandy Drive East - Segment 1 p. 28 Normandy Drive West - Segment 2 p. 30 East Bridge p. 32 West Bridge p. 33 Landscaping p. 34 Safety - Bike Box p. 35 Parking Impact Analysis p. 36 Appendix Cost Estimates p. 42 Parking Replacement Analysis p. 48 Sidewalks Gap Analysis p. 56 Summary of Meetings p. 62 p 2 p 3 p 4 BAY DRIVE | City of Miami Beach Neighborhood Greenways EXECUTIVE SUMMARY Background The Bay Drive Neighborhood Greenway concepts were then refined and reviewed extensively with Transportation staff and The adopted 2016 Miami Beach Transportation Master Plan internal Miami Beach stakeholders. The concepts were also was built on a mode share goal and modal prioritization strategy presented to the North Beach Steering Committee on October adopted by Resolution 2015-29083 on July 8, 2015, which 25, 2017. Transportation toured the area with TCED staff on places pedestrians first; transit, bicycles, and freight second; December 7, 2017. The Transportation, Parking and Bicycle and private automobiles third. Projects in the Transportation Facilities Committee reviewed the North Beach Neighborhood Master Plan are intended to move Miami Beach towards this Greenways concepts on April 9, 2017 and June 11, 2018. -
Financing for Low-Carbon Auto Rickshaws Instrument Analysis
FINANCING FOR LOW-CARBON AUTO RICKSHAWS INSTRUMENT ANALYSIS SEPTEMBER 2018 Financing for Low-Carbon Auto Rickshaws LAB INSTRUMENT ANALYSIS September 2018 DESCRIPTION & GOAL — A loan product to accelerate electric transit adoption in Indian cities by providing loans at lower interest rates to traditionally underserved auto-rickshaw drivers for ownership of electric auto-rickshaws SECTOR — Electric vehicles PRIVATE FINANCE TARGET — Commercial banks, development financial institutions, impact investors GEOGRAPHY — For pilot phase: Bengaluru, Chennai, Chitradurga In the future: Other Indian cities 1 The Lab identifies, develops, and launches sustainable finance instruments that can drive billions to a low-carbon economy. It is comprised of three programs: the Global Innovation Lab for Climate Finance, the Brasil Innovation Lab for Climate Finance, and the India Innovation Lab for Green Finance. AUTHORS AND ACKNOWLEDGEMENTS The authors of this brief are Vaibhav Pratap Singh and Labanya Prakash Jena. The authors would like to acknowledge the following professionals for their cooperation and valued contributions including the proponents Cedrick Tandong and Kevin Wervenbos, and the working group members Serres Phillipe ( PROPARCO), Jayant Prasad (cKers Finance), Sunil Agarwal ( Tata Capital), Vivek Chandaran (Shakti Foundation), Riyaz Bhagat (Trilegal), Kundan Burnwal (GIZ), Clay Stranger(RMI), Anuj (CGM), Venkataraman Rajaraman (India Ratings) & Vijay Nirmal (CPI). The authors would also like to thank Dr. Gireesh Shrimali, Vivek Sen, Vinit Atal, and Maggie Young for their continuous advice, support, comments, and internal review. ABOUT THE LAB The Lab’s programs have been funded by Bloomberg Philanthropies, the David and Lucile Packard Foundation, the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU), the Netherlands Ministry for Foreign Affairs, Oak Foundation, the Rockefeller Foundation, Shakti Sustainable Energy Foundation, the UK Department for Business, Energy & Industrial Strategy, and the U.S. -
White Paper: Urban Application of Aerial Cableway Technology
WHITE PAPER: URBAN APPLICATION OF AERIAL CABLEWAY TECHNOLOGY WSP USA | June 2018 EXECUTIVE SUMMARY WSP USA is pleased to present the following white paper that summarizes the benefits and items for consideration of aerial cableway technology; outlines the project development process; and addresses advantages, costs and challenges associated with developing aerial cableway systems in urban environments. Urban applications of aerial cableway technology have been successfully integrated into transit networks in numerous cities around the globe, including the Portland Aerial Tram (Portland, Oregon) and Roosevelt Island Tram (New York, NY). Interest in aerial cableway technology has grown considerably in the United States in recent years, and initial feasibility studies have been completed in several U.S. cities, including San Diego, CA; Washington DC; and Brooklyn, NY. WSP is evaluating aerial cableway technology as an innovative first- and last-mile connection to regional transit in urban areas. Aerial cableway technology offers multiple benefits, including: relatively lower costs compared to other transportation modes, the ability to overcome significant changes in topography and other obstacles in natural and man-made environments, the ability to bypass congested roadways and transportation corridors, the ability to move high volumes of passengers: the equivalent of one city bus every minute, a streamlined design that fits into the urban environment, the potential to integrate transit-oriented development (TOD) near stations, and the ability to provide service between residential areas and key destinations. Many of these benefits have been realized in existing systems in La Paz, Bolivia, and Medellin, Colombia. Specifically, Medellin’s Line K transports more than 40,000 passengers per day between residential areas and the city center, reducing some commute times from more than an hour to approximately 10 minutes. -
Socio-Economic Profile of Cycle Rickshaw Pullers: a Case Study
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by European Scientific Journal (European Scientific Institute) European Scientific Journal January edition vol. 8, No.1 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 UDC:656.12-05:316.35]:303.6(540)"2010" SOCIO-ECONOMIC PROFILE OF CYCLE RICKSHAW PULLERS: A CASE STUDY Jabir Hasan Khan, PhD Tarique Hassan, PhD candidate Shamshad, PhD candidate Department of Geography Aligarh Muslim University, Aligarh, Uttar Pradesh Abstract The present paper is an attempt to analyze the socio-economic characteristics of cycle rickshaw pullers and to find out the causes of rickshaw pulling. The adverse effects of this profession on the health of the rickshaw pullers, the problems faced by them and their remedial measures have been also taken into account. The study is based on primary data collected through the field survey and direct questionnaire to the respondents in Aligarh city. The survey was carried out during the months of February and March, 2010. The overall analysis of the study reveals that the rickshaw pullers are one of the poorest sections of the society, living in abject poverty but play a pivotal role in intra-city transportation system. Neither is their working environment regulated nor their social security issues are addressed. They are also unaware about the governmental schemes launched for poverty alleviation and their accessibility in basic amenities and infrastructural facilities is also very poor. Keywords: Abject poverty, breadwinners, cycle rickshaw pullers, disadvantageous, intra- city transport, vulnerability 310 European Scientific Journal January edition vol. 8, No.1 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Introduction: The word rickshaw originates from the Japanese word ‘jinrikisha’, which literally means human-powered vehicle (Encyclopedia Britannica, 1993).