Orbital Debris Quarterly News 22-3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
China's Space Robotic Arm Programs
SITC Bulletin Analysis October 2013 China’s Space Robotic Arm Programs Kevin POLLPETER Deputy Director, Study of Innovation and Technology in China Project UC Institute on Global Conflict and Cooperation On July 20, 2013, China launched three satellites on a Long March 4C launch vehicle, ostensibly to test space debris observation and space robotic arm technologies. The three satellites, Chuangxin-3, Shiyan-7, and Shijian-15, drew the attention of satellite tracking enthusiasts when two of them began conducting orbital maneuvers with each other and an additional satellite that had been launched in 2005. The maneuvers began on August 1 and involved one satellite acting as the target and another satellite, most likely equipped with a robotic arm, grappling the target satellite. Exactly which two of the three satellites were involved in the maneuvers is unknown. Based on data from the U.S. Strategic Command’s Space-Track.org website, however, the largest satellite of the three, possibly the Shijian-15, fired its thrusters to move to the smallest of the three satel- lites, possibly the Chuangxin-3, which remained in a set orbit.1 The third satellite, possibly the Shiyan-7, does not appear to be involved in the test. These maneuvers continued until August 17 and resulted in the largest satellite closing in on and then away from the smallest satellite. On August 18, the largest satellite changed orbits and closed in on a completely separate satellite, the Shijian-7, that had been launched in 2005. These maneuvers have caused concern that the tests go beyond the stated objectives and are actually a cover for testing on-orbit anti-satellite (ASAT) technologies. -
United States Air Force Counterproliferation Center CPC Outreach
Issue No. 1072, 27 August 2013 Articles & Other Documents: Featured Article: China Launches Three ASAT Satellites 1. Iran’s Ambassador to IAEA to Leave Post 2. Doctors Cite Deaths, Injuries from Toxin Attack in Syria as Obama, Allies Ponder Lethal Action 3. Saudi Arabia to Build 16 N. Reactors by 2030 4. Ayatollah Khamenei Renews Call for Nuclear-Free Middle East, Raps Israel 5. Assad Says Chemical Weapons Claims ‘Insult to Common Sense’ 6. Crossing Red Line on Syria will have Severe Consequences, Iran Warns U.S. 7. Iran Adds to Atom Capacity, Holds Down Stockpile Growth - Diplomats 8. Kerry Says Syrian Use of Chemical Weapons ‘Undeniable;’ U.N. Investigates 9. China's Point Man on N.K. Nukes Visits Pyongyang 10. China Launches Three ASAT Satellites 11. Second Test-Firing of Agni-V Missile Next Month 12. India all set to Lease a Second Nuclear Submarine from Russia 13. Russia to Unveil New Air Defense System at MAKS-2013 14. Missile Inspectors Visit Sites 15. Security Forces Chief Removed: Malmstrom's Lynch Relieved of Command 16. Laser Fusion Experiment Yield Record Energy 17. The END of Strategic Stability in the Asia-Pacific? 18. US Nuclear Weapons Poised for Catastrophe 19. India's Nuclear Blunder 20. Editorial: Syrian showdown 21. Obama’s Most Dangerous WMD Precedent in Syria 1. Welcome to the CPC Outreach Journal. As part of USAF Counterproliferation Center’s mission to counter weapons of mass destruction through education and research, we’re providing our government and civilian community a source for timely counterproliferation information. This information includes articles, papers and other documents addressing issues pertinent to US military response options for dealing with chemical, biological, radiological, and nuclear (CBRN) threats and countermeasures. -
BAB II PENINGKATAN KAPABILITAS MILITER CHINA BAB II Akan
BAB II PENINGKATAN KAPABILITAS MILITER CHINA BAB II akan memberikan uraian penulis tentang peningkatan kapabilitas militer China dan ancaman bagi Jepang. Kapabilitas militer China tidak bisa diuraikan tanpa adanya proses-proses seperti Lompatan Jauh ke Depan, Revolusi Kebudayaan dan Reformasi Ekonomi. Keberhasilan reformasi ekonomi membuat GDP China semakin meningkat sehingga membuatnya mempunyai anggaran yang cukup untuk meningkatkan kapabilitas militernya. 2.1 Kebangkitan Ekonomi dan Sosial China RRC (Republik Rakyat China) pertama kali diproklamasikan oleh Mao Zedong pada 1 Oktober 1949 di lapangan Tiananmen. Pada masa pemerintahannya Mao menggunakan praktek Lompatan Jauh ke Depan dan Revolusi Kebudayaan. Praktek Lompatan Jauh ke Depan dilakukan Mao untuk meniru model pembangunan Uni Soviet agar terbentuk masyarakat yang terkonstruktur, tumbuhnya birokrasi dalam pemerintahan, organisasi militer profesional.1 Praktek Lompatan Jauh ke Depan dan Revolusi Kebudayaan yang dilakukan oleh Mao tersebut mengalami kegagalan. Kegagalan tersebut kemudian membuat China melakukan reformasi ekonomi yang dilakukan oleh Deng Xiaoping. Reformasi yang dilakukan oleh Deng membuat perekonomian China 1Mao Zedong 1893-19, diakses pada http://www.bbc.co.uk/history/historic_figures/mao_zedong.shtml (10/09/2016. 00:07 WIB) 21 meningkat dan juga China lebih terbuka dalam melakukan kerjasama dengan negara lain.2 2.1.1 Lompatan Jauh ke Depan Lompatan Jauh ke Depan (The Great Leap Forward) terjadi pada tahun 1958 merupakan kampanye yang bertujuan untuk membangkitkan ekonomi China melalui industrialisasi secara besar-besaran dibidang industri baja sebagai prioritas utama. Secara prinsip, Mao ingin meningkatkan produksi baja, industri ringan, dan konstruksi secara besar-besaran serta pengerahan tenaga rakyat secara besar-besaran. Rakyat disatukan menjadi komune dan disalurkan untuk bekerja di pabrik-pabrik pemerintahan. -
A Decade of Growth
A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 2000 Volume 5, Issue 4. NEWS A Decade of Growth P. Anz-Meador and Globalstar commercial communication of the population. For example, consider the This article will examine changes in the spacecraft constellations, respectively. Given peak between 840-850 km (Figure 1’s peak low Earth orbit (LEO) environment over the the uncertain future of the Iridium constellation, “B”). This volume is populated by the period 1990-2000. Two US Space Surveillance the spike between 770 and 780 km may change Commonwealth of Independent State’s Tselina- Network (SSN) catalogs form the basis of our drastically or even disappear over the next 2 spacecraft constellation, several US Defense comparison. Included are all unclassified several years. Less prominent is the Orbcomm Meteorological Support Program (DMSP) cataloged and uncataloged objects in both data commercial constellation, with a primary spacecraft, and their associated rocket bodies sets, but objects whose epoch times are “older” concentration between 810 and 820 km altitude and debris. While the region is traversed by than 30 days were excluded from further (peak “A” in Figure 1). Smaller series of many other space objects, including debris, consideration. Moreover, the components of satellites may also result in local enhancements these satellites and rocket boosters are in near the Mir orbital station are 3.0E-08 circular orbits. Thus, any “collectivized” into one group of spacecraft whose object so as not to depict a orbits are tightly January 1990 plethora of independently- 2.5E-08 maintained are capable of orbiting objects at Mir’s A January 2000 producing a spike similar altitude; the International B to that observed with the Space Station (ISS) is 2.0E-08 commercial constellations. -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3. -
Big Island Amateur Radio Club Newsletter June 2018
Big Island Amateur Radio Club Newsletter June 2018 Photo courtesy of Paradise Helicopters S. Army A fun on duty talk, full Majors John of tips and Lani Chamness Hank, updated us on KH6HAK, at Salvation Army left, coordination of entertains food, supplies and and shelter for enlightens the many the hundreds of membership, Puna lava flow below, at the victims. May 12 meeting held at Puna BIARC to meet at PCC, Covenant with Field Day on tap Church. His BIARC will meet at 2 p.m. Saturday, topic: June 9, at Puna Covenant Church. Microbit X. The meeting will be devoted to planning BIARC for the BIARC Field Day, to be staged photos by June 2324 at Reed's Bay Hotel, thanks to Linda Darrell Asuka, KH6RDO, who secured the Quarberg, venue for us. WH6LQ WELCOME: New licensee Mark Watanabe, WH6FSA, gets a round of applause as he attends his first BIARC meeting. NOW, HEAR THIS: Gary Schwiter, WH6EPS, BIARC repeater chair, discusses the current BIARC photos by status of units in the field and plans for future Linda Quarberg, WH6LQ work on our islandwide repeater network. Paragraphs from the President These have certainly been interesting times proud of the actions of the ham community that we have been living through since the first standing up to do what has needed to be done. of May. It is a challenge to live on and with an Providing updates, sharing observations and active volcano. All of us have been riveted with experiences, and coordinating actions: these are interest in the daily happenings. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Satellite Visualization in Web Browsers
Saugat Awale, Jaya Kumar Bidari Satellite Visualization in Web browsers Metropolia University of Applied Sciences Bachelor of Engineering Information Technology Bachelor’s Thesis 18 March 2020 Abstract Author Saugat Awale, Jaya Kumar Bidari Title Satellite Visualization in Web browsers Number of Pages 45 pages Date 18.03.2020 Degree Bachelor of Engineering Degree Programme Information Technology Professional Major Software Engineering Instructors Janne Salonen ‘Satellite visualization’ refers to representing the real-time position of the satellite in its orbit with respect to earth’s surface as accurately as possible. Traditionally, the satellite’s graphical representation is executed in single-user desktop applications which make it difficult for multiple users in different workstations to view the same aerospace simulation of a satellite. This study researches the solution to the aforementioned problem. In this work, a brief theoretical background regarding the physics of satellite propagation is discussed. After the discussion, each column of a TLE is defined. When the geometry of orbit of a satellite is well understood, a web-based application is proposed to visualize the same trajectory of a satellite in multiple workstations. The planning section describes the architecture of the proposed web application. It also lists the tools and technologies used for the project and explains the benefits of each tool. In the analysis part, error of time and coordinates is calculated. The error lies within the margin as defined by the satellite operators. As a result, the satellite was successfully represented in a web browser and the same Satellite telemetry could be viewed from multiple workstations. It is concluded that the challenge to view the same visualization in multiple workstations using a web browser is solved. -
Insight to Mars 07> Beagle 2 Found
SpaceFlight A British Interplanetary Society publication Volume 60 No.7 July 2018 £5.00 Deep impact: InSIGHT to Mars 07> Beagle 2 found 634072 Space age prophet 770038 9 Soyuz landing sites CONTENTS Features 14 Along paths trod by Vikings NASA’s InSIGHT Mars mission is off and running but how does it fit within the general pattern of Mars exploration and what can we expect of it, with its twin CubeSats designed to relay communications during the crucial descent? 14 18 Lost & Found Letter from the Editor Dr Jim Clemmet explains how Beagle 2 came to Just as we were going to press, be found residing apparently intact on the news broke of the death of Alan surface of Mars and how images from Mars Bean, Lunar Module Pilot for Reconnaissance Orbiter have helped rewrite the NASA’s second Moon landing and final chapter of this so very nearly successful Commander of the second mission. expedition to Skylab. An exceptional astronaut, we will 26 Prophet of the Space Age carry a formal obituary of Alan Author of a seminal biography of the renowned next month. In the meantime, for a 18 very personal insight into this space age publicist Willy Ley, Jared S Buss gets remarkable man, please see the behind this sometimes enigmatic character and letter from Nick Spall on page 42. helps us understand how he planted the first Elsewhere in this issue, we look seeds of expectation before Wernher von Braun into the mission of NASA’s next picked up the baton. Mars lander, now on its way to the planet, and hear from the chief 30 Happy landings engineer for the Beagle 2 Phillip S. -
DRAGON - 8U Nanosatellite Orbital Deployer
DRAGON - 8U Nanosatellite Orbital Deployer Marcin Dobrowolski*, Jerzy Grygorczuk*Â ÃB_*, Marta Tokarz* and Maciej Borys* Abstract The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing. Introduction BRITE Constellation is a group of scientific nanosatellites whose purpose is to study oscillations in the light intensity of the most luminous stars (brighter than magnitude +3.5) in our galaxy. The observations will have a precision at least 10 times better than achievable using ground-based observations. The BRITE (BRight Target Explorer) mission formed by Austria, Canada and Poland will send to space a constellation of six nanosatelites, two from each country. BRITE-PL satellite is based on the Generic Nanosatellite Bus (GNB) from the Canadian SFL/UTIAS (Space Flight Laboratory / University of Toronto, Institute for Aerospace Studies). The spacecraft are to use the SFL XPOD (Experimental Push Out Deployer) as a separation system. Figure 1. DRAGON Orbital Deployer and BRITE-PL Heweliusz Spacecraft (in a safety box) * Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland ! " # 487 The first scientific satellite, BRITE-PL Lem, is a modified version of the original SFL design. The second one, BRITE-PL Heweliusz, has the significant changes – it carries additional technological experiments implemented by SRC PAS. -
The Final Frontier Flash 27 December 2020: China Launches Secret Military Satellite Using a Long March 4C Rocket
Northern Lights from the ISS Video 17 January 2021 The Final Frontier Flash 27 December 2020: China launches secret military satellite using a Long March 4C rocket. - U.S. military tracking data indicated the launcher reached a 425 mile orbit with a 98.3 degree inclination. View Orbit. - Chinese officials stated the primary payload as Yaogan 33. - Independent analysts believe Yaogan 33 might carry a radar imager designed to obtain all-weather, day-and-night imagery of strategic targets around the world. Some references name the new satellite “Yaogan 33R.” - Yaogan 33 was also the name of a military remote sensing satellite lost in May 2019. Yaogan 33R launched into a slightly different orbit…some analysts believe it may be a new type of Chinese surveillance payload. Reporting of Yaogan 33 capabilities is inconsistent: SAR, EO and SIGINT are all mentioned in different forums. The 27 December launch was China’s final for the year. China successfully launched 35 space missions into orbit this year in 39 attempts. U.S. companies performed 44 orbital launch attempts, with 40 successes, including flights by California- headquartered Rocket Lab from its private launch base in New Zealand. China Space 2020 Year in Review. 1 Jan 21: China expands the power of its Central Military Commission (CMC) – headed by President Xi – to mobilise military and civilian resources in defense of the national interest, both home & abroad. - Military and political analysts said the amendments aimed to strengthen the country’s military leadership under Xi. - The legislation includes “development interests” as a reason for armed mobilization and war and provides legal grounds for China to launch war in the name of defending national development interests. -
Failures in Spacecraft Systems: an Analysis from The
FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof.