DNA Lab: Restriction Mapping

Total Page:16

File Type:pdf, Size:1020Kb

DNA Lab: Restriction Mapping Cell and Molecular Biology 1 Lab #3 Autumn 2005 DNA Mapping Lab DNA Lab: Restriction mapping Readings in Alberts 2nd Ed (Ch 10: 328-330; 341-345); Becker 6th Ed (Ch18: 524-527; Ch 20: 633-640); 5th Ed (Ch16: 492-496; Ch 18: 608-610). Useful Web sites Primer on mapping DNA: http://www.ncbi.nlm.nih.gov/About/primer/mapping.html Tutorial on restriction mapping: http://www.carolina.com/biotech/plasmid_problems/plasmid_guide.asp Within the 3 billion or so nucleotides that make up the human genome, identifying one particular gene that is composed of only several thousand nucleotides is a challenging task. This task is simplified somewhat by creating maps of the DNA. Just like a road map, a DNA map uses DNA dependent landmarks to help determine where a gene resides in the genome. DNA can be mapped to varying degrees of resolution. Genetic maps are usually lower resolution maps, made by measuring the recombination frequency between different heritable traits. Genetic maps are used to associate a region of a chromosome with a particular trait; they also can be used to determine gene order along a chromosome. Physical (distance) maps are higher resolution maps based on DNA sequence, and are measured in numbers of base pairs (often in kilobases or megabases). The ultimate physical map of a piece of DNA is its complete sequence. However, if DNA sequence information is not available, a lower resolution map can still be generated using enzymes that cut DNA at specific sequences. These enzymes are called restriction enzymes. Restriction mapping is used to determine the distance between the sites where restriction enzymes cut and to order the different sites relative to each other. The cut sites serve as landmarks when keeping track of several pieces of DNA. Genetic and physical maps can be correlated to identify the DNA sequences encoding a particular trait. Beyond mapping, restriction enzymes also are useful in recombinant DNA technology. Two different DNA pieces cut by the same restriction enzyme can be readily joined back together in a test tube. Moreover, because the genetic code is universal, it is possible to join DNA from one organism to the DNA of another organism and produce a functional gene. Recall from the Fluorescence Microscopy lab where GFP was targeted to the mitochondria of tobacco cells. DNAs from four different organisms were incorporated into the tobacco cells. A short segment of the yeast coxIV gene was joined to the jellyfish GFP gene in a test tube; the fusion gene was then cloned into a transformation vector that contained sequences from bacteria and from a plant virus. In this lab, you will be mapping some chloroplast genes isolated from the single-celled alga, Chlamydomonas. The chloroplast genome was broken up into smaller pieces called clones; your goal is to put together a restriction map for one of these clones. Based on the restriction enzyme pattern for each clone, it is possible to reconstruct the entire map of the chloroplast DNA. Please read through the background material so you will understand some common terms in molecular biology. Terms to understand: Agarose gel electrophoresis Ethidium Bromide Multiple cloning site (MCS) Physical map Plasmid Restriction enzyme Restriction map Vector Cell and Molecular Biology 2 Lab #3 Autumn 2005 DNA Mapping Lab Background Restriction Endonucleases Restriction endonucleases are enzymes that cut DNA at specific sequences. For example, the enzyme EcoRI cuts DNA at the sequence GAATTC. The enzymes hydrolyze the phosphate backbone creating a nick in the DNA strand. Bacteria produce restriction enzymes as a defense against invading viral DNA. In E. coli, foreign DNA with the sequence GAATTC would be cut and inactivated. To protect its own DNA from the restriction enzyme, bacteria also produce DNA modifying enzymes. For each restriction endonuclease there is a corresponding modifying enzyme that blocks restriction activity on the host’s own DNA, generally by methylating the DNA at the recognition sequence. The protruding methyl group presumably prevents catalysis by interfering with the close molecular interaction between the restriction enzyme and its recognition site. For example, EcoRI methylase adds a methyl group to the second adenine residue within the EcoRI recognition site (GAATTC). The discovery of restriction enzymes is a wonderful lesson on the unexpected outcomes of basic research. The enzymes were discovered by scientists studying the infection of bacteria by viruses. As the scientists began to understand how bacteria protected themselves against viruses using these enzymes, the idea of using restriction enzymes for manipulating other DNAs was developed. Research on restriction enzymes led to a Nobel prize for Arber, Nathans, and Smith in 1978. Several hundred restriction enzymes have been isolated from prokaryotic organisms, and many are commercially available. Restriction enzyme names follow a standard nomenclature system: • The first letter is the initial letter of the genus name of the organism from which the enzyme is isolated. • The second and third letters are the initial letters of the organism’s species name. • A fourth letter, if any, indicates a particular strain of organism. • Roman numerals indicate the sequence in which different endonucleases were isolated from a particular organism and strain. EcoRI HindIII E = genus Escherichia H = genus Hemophilus co = species coli in = species influenzae R = strain RY13 d = strain d I = first endonuclease isolated III = third endonuclease isolated Each restriction endonuclease scans along a DNA molecule, stopping only when it recognizes a specific sequence of nucleotides. Most restriction enzymes recognize a four- or six-base pair (bp) sequence. At or near the recognition site, the enzyme catalyzes a hydrolysis reaction that breaks the phosphodiester linkage on each strand of the DNA helix. Two DNA fragments are produced, each with a phosphate at the 5' end and a hydroxyl at the 3’ end. Restriction enzymes cut both strands of the double helix. In some cases, the enzyme cuts at the midpoint of the recognition sequence. These enzymes leave DNA fragments with blunt-ends. Example of blunt end digestion by EcoRV (recognition sequence GATATC) 5'- N-N-G-A-T-A-T-C-N-N-3' 5'-N-N-G-A-T + A-T-C-N-N-3' 3'- N-N-C-T-A-T-A-G-N-N-5' 3'-N-N-C-T-A T-A-G-N-N-5' Other endonucleases cleave each strand off-center in the recognition site, at positions two-to-four nucleotides apart, creating fragments with exposed single-stranded ends. This leaves single-stranded “overhangs” on either the 5’ or 3’ ends of the DNA fragments. Single-stranded overhangs, also called “sticky” ends, are useful in making recombinant DNA molecules because they can hydrogen bond to each other efficiently. For example, EcoRI recognizes the six-base sequence GAATTC and it cuts leaving a 5’ overhang of four nucleotides (AATT). Example of staggered (sticky) end digestion by EcoRI (recognition sequence GAATTC) 5'- N-N-G-A-A-T-T-C-N-N-3' 5'-N-N-G + A-A-T-T-C-N-N-3' Cell and Molecular Biology 3 Lab #3 Autumn 2005 DNA Mapping Lab 3'- N-N-C-T-T-A-A-G-N-N-5' 3'-N-N-C-T-T-A-A G-N-N-5' Regardless of the source of DNA - whether from prokaryote or eukaryote - EcoRI will always cut at the GAATTC recognition site and it will always produce fragments with 5'-AATT overhangs. When the enzyme is removed, however, the overhangs can hydrogen bond (anneal) to each because of complementary base-pairing. Any EcoRI fragment can anneal to any other EcoRI fragment. After annealing, the phosphate backbone of the two DNA strands can be repaired by the enzyme DNA ligase. These steps are the basis of recombinant DNA technology. For example, if an EcoRI fragment of a yeast gene is annealed and ligated to a jellyfish GFP gene EcoRI fragment, the resulting chimeric DNA would be a novel part yeast-part jellyfish gene. Recombination of two EcoRI fragments note the ligated backbone 5'-N-G 5'-A-A-T-T-C-X-3' 5'-N-G A-A-T-T-C-X-3' 5'-N-G-A-A-T-T-C-X-3' 3'-N-C-T-T-A-A G-X-5' 3'-N-C-T-T-A-A G-X-5' 3'-N-C-T-T-A-A-G-X-5' yeast EcoRI GFP EcoRI Annealed EcoRI Ligated EcoRI sites fragment fragment sites Agarose Gel Electrophoresis Digestion of a large piece of DNA with a restriction enzyme will generate smaller DNA fragments, whose sizes can be determined - - - by gel electrophoresis. Electrophoresis literally means, "to carry O O O by electricity". In gel electrophoresis, molecules are separated | | | based on their charge and their size. DNA, an organic acid, is a O-P-O-R-O-P-O-R-O-P-O highly negatively charged molecule due to the phosphate || || || backbone. In solution, hydrogen ions are liberated from the O O O phosphate groups, leaving negatively-charged oxygen ions radiating along the outside of the DNA molecule. When placed within an electrical field, the negatively charged DNA molecules are attracted toward the positive pole and repelled from the negative pole. DNA migration takes place through a gel matrix that acts as a molecular sieve to sort restriction fragments by size. The two most common matrix materials are agarose, a highly purified form of agar, and polyacrylamide, a synthetic polymer. As DNA fragments move though the pores in the matrix toward the positive pole of the electrical field, the gel matrix (“the sieve”) impedes the movement of larger fragments. Fragment mobility is inversely proportional to molecular weight (number of base pairs).
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis
    Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis Plasmid DNA isolation introduction: diatomaceous earth. After RNaseA treatment, The application of molecular biology techniques the DNA containing supernatant is bound to the to the analysis of complex genomes depends on diatomaceous earth in a chaotropic buffer, the ability to prepare pure plasmid DNA. Most often guanadine chloride or urea. The plasmid DNA isolation techniques come in two chaotropic buffer will force the silica flavors, simple - low quality DNA preparations (diatomaceous earth) to interact and more complex, time-consuming high quality DNA preparations. For many DNA manipulations such as restriction enzyme analysis, subcloning and agarose gel electrophoresis, the simple methods are sufficient. The high quality preparations are required for most DNA sequencing, PCR manipulations, transformation hydrophobically with the DNA. Purification using and other techniques. silica-technology is based on a simple bind- wash-elute procedure. Nucleic acids are The alkaline lysis preparation is the most adsorbed to the silica-gel membrane in the commonly used method for isolating small presence of high concentrations of amounts of plasmid DNA, often called minipreps. chaotropic salts, which remove water from This method uses SDS as a weak detergent to hydrated molecules in solution. Polysaccharides denature the cells in the presence of NaOH, and proteins do not adsorb and are removed. which acts to hydrolyze the cell wall and other After a wash step, pure nucleic acids are eluted cellular molecules. The high pH is neutralized by under low-salt conditions in small volumes, ready the addition of potassium acetate. The for immediate use without further concentration.
    [Show full text]
  • Gibson Assembly Cloning Guide, Second Edition
    Gibson Assembly® CLONING GUIDE 2ND EDITION RESTRICTION DIGESTFREE, SEAMLESS CLONING Applications, tools, and protocols for the Gibson Assembly® method: • Single Insert • Multiple Inserts • Site-Directed Mutagenesis #DNAMYWAY sgidna.com/gibson-assembly Foreword Contents Foreword The Gibson Assembly method has been an integral part of our work at Synthetic Genomics, Inc. and the J. Craig Venter Institute (JCVI) for nearly a decade, enabling us to synthesize a complete bacterial genome in 2008, create the first synthetic cell in 2010, and generate a minimal bacterial genome in 2016. These studies form the framework for basic research in understanding the fundamental principles of cellular function and the precise function of essential genes. Additionally, synthetic cells can potentially be harnessed for commercial applications which could offer great benefits to society through the renewable and sustainable production of therapeutics, biofuels, and biobased textiles. In 2004, JCVI had embarked on a quest to synthesize genome-sized DNA and needed to develop the tools to make this possible. When I first learned that JCVI was attempting to create a synthetic cell, I truly understood the significance and reached out to Hamilton (Ham) Smith, who leads the Synthetic Biology Group at JCVI. I joined Ham’s team as a postdoctoral fellow and the development of Gibson Assembly began as I started investigating methods that would allow overlapping DNA fragments to be assembled toward the goal of generating genome- sized DNA. Over time, we had multiple methods in place for assembling DNA molecules by in vitro recombination, including the method that would later come to be known as Gibson Assembly.
    [Show full text]
  • Digestion of DNA with Restriction Endonucleases 3.1.2
    RESTRICTION ENDONUCLEASES SECTION I Digestion of DNA with Restriction UNIT 3.1 Endonucleases Restriction endonucleases recognize short DNA sequences and cleave double-stranded DNA at specific sites within or adjacent to the recognition sequences. Restriction endonuclease cleavage of DNA into discrete fragments is one of the most basic procedures in molecular biology. The first method presented in this unit is the cleavage of a single DNA sample with a single restriction endonuclease (see Basic Protocol). A number of common applications of this technique are also described. These include digesting a given DNA sample with more than one endonuclease (see Alternate Protocol 1), digesting multiple DNA samples with the same endonuclease (see Alternate Protocol 2), and partially digesting DNA such that cleavage only occurs at a subset of the restriction sites (see Alternate Protocol 3). A protocol for methylating specific DNA sequences and protecting them from restriction endonuclease cleavage is also presented (see Support Protocol). A collection of tables describing restriction endonucleases and their properties (including information about recognition sequences, types of termini produced, buffer conditions, and conditions for thermal inactivation) is given at the end of this unit (see Table 3.1.1, Table 3.1.2, Table 3.1.3, and Table 3.1.4). DIGESTING A SINGLE DNA SAMPLE WITH A SINGLE RESTRICTION BASIC ENDONUCLEASE PROTOCOL Restriction endonuclease cleavage is accomplished simply by incubating the enzyme(s) with the DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and ionic concentrations, and the temperature and duration of the reaction will vary depending upon the specific application.
    [Show full text]
  • Restriction Digest
    PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION THE GENOME TEACHING GENERATION PROTOCOL 3: RESTRICTION DIGEST PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION PRE-REQUISITES & GOALS STUDENT PRE-REQUISITES Prior to implementing this lab, students should understand: • The central dogma of how DNA bases code for mRNA and then for proteins • How DNA samples were collected and prepared for PCR • The steps that occur during the process of polymerase change reaction (PCR) • What restriction enzymes are and how they work • How the sequence variants in OXTR and CYP2C19 are affected by restriction enzyme digestion • The purpose of PROTOCOL 3 is to determine genotype STUDENT LEARNING GOALS 1. Perform restriction digestion of PCR products of CYP2C19 and/or OXTR. 2. Describe the possible genotypes for individuals with the CYP2C19 and/or OXTR genes. 3. Predict what each genotype will look like after gel electrophoresis and why. 2 TEACHING THE GENOME GENERATION | THE JACKSON LABORATORY PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION CURRICULUM INTEGRATION Use the planning notes space provided to reflect on how this protocol will be integrated into your classroom. You’ll find every course is different, and you may need to make changes in your preparation or set-up depending on which course you are teaching. Course name: 1. What prior knowledge do the students need? 2. How much time will this lesson take? 3. What materials do I need to prepare in advance? 4. Will the students work independently, in pairs, or in small groups? 5. What might be challenge points
    [Show full text]
  • SNP2RFLP: a Computational Tool to Facilitate Genetic Mapping Using Benchtop Analysis of Snps
    Mamm Genome (2008) 19:687–690 DOI 10.1007/s00335-008-9149-2 SNP2RFLP: a computational tool to facilitate genetic mapping using benchtop analysis of SNPs Wesley A. Beckstead Æ Bryan C. Bjork Æ Rolf W. Stottmann Æ Shamil Sunyaev Æ David R. Beier Received: 9 September 2008 / Accepted: 24 September 2008 / Published online: 29 October 2008 Ó Springer Science+Business Media, LLC 2008 Abstract Genome-wide analysis of single nucleotide Introduction polymorphism (SNP) markers is an extremely efficient means for genetic mapping of mutations or traits in mice. The positional cloning and characterization of mutations in However, this approach often defines a relatively large the mouse is a powerful means for functional annotation of recombinant interval. To facilitate the refinement of this the mammalian genome. Many mouse gene mutations interval, we developed the program SNP2RFLP. This cause phenotypes that serve as models of human genetic program can be used to identify region-specific SNPs in disorders. Mapping and positional cloning of these poten- which the polymorphic nucleotide creates a restriction tially accelerate our understanding of the mouse gene, its fragment length polymorphism (RFLP) that can be readily human ortholog, and the underlying etiology of the disor- assayed at the benchtop using restriction enzyme digestion der. The utilization of single nucleotide polymorphism of SNP-containing PCR products. The program permits (SNP) markers has markedly facilitated genetic mapping user-defined queries that maximize the informative mark- because they are abundant throughout the genome and can ers for a particular application. This facilitates fine- be analyzed in a high-throughput manner using automated mapping in a region containing a mutation of interest, technology (Wang et al.
    [Show full text]
  • Easy Subcloning Prot
    Easy Subcloning by Michael Koelle Subcloning should be easy and fast, and work every time. The following protocols minimize the number of manipulations required to prepare DNA fragments for ligations, thereby both saving time and increasing reliability. Preparation of DNA fragments for ligation. 1. Restriction digests: Always cut a lot of your starting plasmids in a small volume; this will help in the gel purification of your restriction fragments by giving you a high concentration of DNA compared to agarose in your gel slice.. About 1 µg in a 20 µl reaction is good. For double digests: you almost never have to digest with one enzyme, adjust the buffer, and digest with the second. Look in the Biolabs catalogue to find a compromise buffer, and save yourself some time. Don't use just 1 unit of enzyme and wait an hour: your time is worth too much, and the enzymes are cheap and pure. Use about a 10-fold enzyme excess and digest about 30 min. 2. Playing with the ends. Blunting 5' overhangs: Add 1 µl 2 mM all four dNTPs to your 20 µl restriction digest. Add 0.5-1 µl Klenow (2-5 units), and incubate at room temp for 30 min. Blunting 3' overhangs: Add 1 µl 2 mM all four dNTPs to your 20 µl restriction digest. Add 0.5-1 µl T4 DNA polymerase, and incubate at 37° for 5 min. T4 polymerase has a more active 3' to 5' exo activity than Klenow, and so is preferred for this reaction, but Klenow will work.
    [Show full text]
  • Isolating Microsatelline DNA Loci*
    Isolating Microsatelline DNA Loci* Travis C. Glenn1,2 and Nancy A. Schable1,2 1Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA 2Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA Contact: Travis Glenn: Phone 803-725-5746; Fax 803-725-3309; E-mail: [email protected] Abstract A series of techniques are presented to construct genomic DNA libraries highly enriched for microsatellite DNA loci. The individual techniques used here derive from several published protocols, but have been optimized and tested in our research labs as well as classroom settings at the University of South Carolina and University of Georgia, with students achieving nearly 100% success. Reducing the number of manipulations involved has been a key to success, decreasing both the failure rate and the time necessary to isolate loci of interest. These protocols have been successfully used in our lab to isolate microsatellite DNA loci from more than 125 species representing all eukaryotic kingdoms. Using these protocols, the total time to identify candidate loci for primer development from most eukaryotic species can be accomplished in as little as one week. *This information is based on (i.e., PLEASE CITE [using either style]): Glenn, T.C. and N.A. Schable. 2005. Isolating microsatellite DNA loci. Methods in Enzymology 395:202-222. or Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Pp. 202-222 In: Methods in Enzymology 395, Molecular Evolution: Producing the Biochemical Data, Part B. (eds Zimmer EA, Roalson EH). Academic Press, San Diego, CA. Isolating Microsatellite DNA Loci p.2 Microsatellite DNA loci have become important sources of genetic information for a variety of purposes (Goldstein and Schlotterer, 1999; Webster and Reichart 2004).
    [Show full text]
  • Restriction Digest and Ligation] 25/09/2018 Igem Tuebingen 2018
    [Restriction Digest and Ligation] 25/09/2018 iGEM Tuebingen 2018 Restriction Digest and Ligation The restriction digest and ligation protocol is used to transfer DNA fragments from one plasmid to another, as long as the DNA pieces have matching restriction sites. The restriction enzymes digest the DNA at the corresponding restriction sites, which results in complementary ends of the target plasmid and the insert. The ligase finally adds together target plasmid and insert. For this protocol the materials of NEB were used. Restriction Digest Materials - Restriction Endonucleases (NEB) - Restriction Digest Buffer (e.g. CutSmartTM Buffer) - Plasmid DNA Procedure - Prepare a 25 ul reaction: Component Amount Restriction Enonuclease 1 ul for each used enzyme CutSmartTM Buffer 3 ul Nuclease-free water Up to 25 ul - Incubation for 1h at 37°C (or at different temperature, dependent on enzyme) - Heat inactivate restriction enzymes at 65°C to 80°C (dependent on restriction enzyme) for 20 min Ligation Materials - T4 DNA Ligase Buffer (10x) - T4 DNA Ligase - Vector DNA - Insert DNA - Nuclease-free water Procedure For the protocol it is indispensable to know the sizes of the target vector and the insert. Normally a molar ratio of vector to insert of 1:3 is used for cohesive end ligations. A higher molar ratio of 1:4 or 1:5 can be used for ligations of DNA fragements with blunt ends - Prepare a 20 ul reaction (T4 DNA Ligase should be added last) 1 [Restriction Digest and Ligation] 25/09/2018 iGEM Tuebingen 2018 Component Amount T4 DNA Ligase Buffer (10x) 2 ul Vector DNA Dependent on vector size, e.g.
    [Show full text]
  • DNA Molecular Weight Marker VIII (19 – 1114 Bp) Pucbm21 DNA × Hpa II* Digested Pucbm21 DNA × Dra I* + Hind III* Digested
    For life science research only. Not for use in diagnostic procedures. DNA Molecular Weight Marker VIII (19 – 1114 bp) pUCBM21 DNA × Hpa II* digested pUCBM21 DNA × Dra I* + Hind III* digested ־ ␮ Cat. No. 11 336 045 001 50 g 1 A260 unit y Version 19 50 ␮g (200 ␮l) for 50 gel lanes Content version: September 2018 Store at Ϫ15 to Ϫ25°C 1. Product Overview Content Ready-to-use solution in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 Concentration 250 ␮g/ml Size Distribution Fragment mixture prepared by cleavage of pUCBM21 DNA with restriction endonucleases Hpa II * and Dra I* plus Hind III*. The mixture contains 18 DNA fragments with the following base pair lengths (1 base pair = 660 daltons): 1114, 900, 692, 501, 489, 404, 320, 242, 190, 147, 124, 110, 67, 37, 34, (2×), 26, 19 (determined by computer analysis of the pUCBM21 sequence). Application Molecular weight marker for the size determination of DNA in agarose gels. Properties After gel electrophoresis of 1 ␮g of the fragment mixture in a 2% Aga- rose MP* gel 13 bands are visible. The 501 bp and 489 bp fragments as well as the fragments 37–19 bp run as one band. Typical Analysis Fig. 1: Separation of 1 ␮g DNA Molecular Weight Marker VIII on a The DNA fragment mixture shows the typical pattern of 13 bands in 1.8% agarose gel. Ethidiumbromide stain. agarose gel electrophoresis.. 2. Supplementary Information Storage/Stability The unopened vial is stable at Ϫ15 to Ϫ25°C until the expiration date Changes to Previous Version printed on the label.
    [Show full text]
  • Chapter 11 Restriction Mapping
    Chapter 11 Restriction mapping Restriction endonucleases (REs) recognize and cleave specific sites in DNA molecules. In nature, REs are part of bacterial defense systems. In the molecular biology lab, they are an indispensable tool for both analyzing and constructing DNA molecules. In this lab, you will use REs to distinguish which plasmids contain S. cerevisiae or S. pombe ORFs or the bacterial lacZ gene. Objectives At the end of this lab, students will be able to: • describe the biological origins and functions of REs. • use online tools to identify recognition sites for REs in a DNA molecule. • devise a strategy to distinguish DNA molecules by selecting REs to use in DNA digests. • interpret the patterns of restriction fragments separated on agarose gels. Chapter 11 In the last experiment, your group isolated three different plasmids from transformed bacteria. One of the three plasmids, carries the S. cerevisiae MET gene that has been inactivated in your yeast strain. This MET gene was cloned into the pBG1805 plasmid (Gelperin et al., 2005). A second plasmid carries the S. pombe homolog for the MET gene, cloned into the the pYES2.1 plasmid. The third plasmid is a negative control that contains the bacterial lacZ+ gene cloned into pYES2.1. In this lab, your team will design and carry out a strategy to distinguish between the plasmids using restriction endonucleases. In the next lab, you will separate the products of the restriction digests, or restriction fragments, by agarose gel electrophoresis, generating a restric- tion map. Restriction endonucleases Bacterial restriction/modification systems protect against invaders The discovery of restriction enzymes, or restriction endonucleases (REs), was pivotal to the development of molecular cloning.
    [Show full text]
  • Restriction Digest
    Restriction Digest 1 2 Restriction Enzymes/Endonucleases • Restriction Enzyme/Endonuclease - recognizes short DNA sequences and cleaves double stranded DNA at a particular sequence. – The recognition sequences are generally 4 to 6 nucleotides in length. – Called an ‘endonuclease’ because it cleaves within a nucleotide sequence. • Found naturally in bacteria. – Used by bacteria to degrade foreign DNA (bacteriophage). – Bacteria protect their own chromosomal DNA by methylating the nucleotides within the recognition sequence. Restriction Enzymes/Endonucleases • Found naturally in bacteria. – Used by bacteria to degrade foreign DNA (bacteriophage). – Bacteria protect their own chromosomal DNA by methylating the nucleotides within the recognition sequence. 3 Restriction Enzymes/Endonucleases • EcoRI from Escherichia coli • BamHI from Bacillus amyloliqueraciens • PvuI and PvuII are different enzymes from same strain. • Originally purified by individual labs, Nathans, Smith • Now supplied by companies - GE, NEB, Promega, BRL Restriction Enzymes/Endonucleases • “flush” or “blunt” ends – DraI cleavage generates blunt ends: 5´ T-T-T≠A-A-A 3´ 3´ A-A-A≠T-T-T 5´ • “sticky ends.” – KpnI cleavage generates cohesive 3´ overhanging ends: 5´ G-G-T-A-C≠C 3´ 3´ C≠C-A-T-G-G 5´ 4 Restriction Enzymes/Endonucleases Restriction Enzymes/Endonucleases • Degenerate (Recognizes multiple sequences): • AvaII GGWCC: GGTCC, GGACC • AvaI CPyCGPuG CTCGAG Py stands for pyrimidine- T or C CTCGGG Pu stands for purine - A or G CCCGAG CCCGGG • DdeI CTNAG: CTAAG, CTGAG, CTCAG, CTTAG • BbsI cleaves GAAGACNN CTTCTGNNNNNN 5 Restriction Enzymes/Endonucleases Restriction Enzymes/Endonucleases • It is possible that two or more restriction endonucleases recognizing different sequences may generate compatible ends. – BgIII and BamHI recognize two different sequences but produce compatible ends.
    [Show full text]