Vehicle Dynamics Through Multi-Body Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wheel Alignment Simplified
The WHAT and WHY of Toe Caster - Camber Kingpin Inclination - Thrust Angle Steering Angle – Wheel setback WHEEL ALIGNMENT SIMPLIFIED Wheel alignment is often considered complicated and hard to understand In the days of the rigid chassis construction with solid axles, when tyres were poor and road speeds were low, wheel alignment was simply a matter of ensuring that the wheels rolled along the road in parallel paths. This was easily accomplished by means of using a toe gauge or simple tape measure. The steering wheel could then also simply be repositioned on the splines of the steering shaft. Camber and Caster was easily adjustable by means of shims. Today wheel alignment is of course more sophisticated as there are several angles to consider when doing wheel alignment on the modern vehicle with Independent suspension systems, good performing tyres and high road speeds. Below are the most common angles and their terminology and for the correction of wheel alignment and the diagnoses thereof, the understanding of the principals of these angles will become necessary. Doing the actual corrections of wheel alignment is a fairly simple task and in many instances it is easily accomplished by some mechanical adjustments. However Wheel Alignment diagnosis is not so straightforward and one will need to understand the interaction between the wheel alignment angles as well as the influence the various angles have on each other. In addition there are also external factors one will need to consider. Wheel Alignment Specifications are normally given in angular values of degrees and minutes A circle consists of 360 segments called DEGREES, symbolized by the indicator ° Each DEGREE again has 60 segments called MINUTES symbolized by the indicator ‘. -
Eclipse Cross
MITSUBISHI ECLIPSE CROSS The Turning Point Features, powertrain combinations, trim lines and equipment described refer to European specification models (MME34 area) They may vary market by market within that area, according to specific model specification All data subject to final homologation (Further data to be released at launch time) - Summary – The “RED CAR” at a GLANCE CORPORATE – The First Enabler DESIGN – Vibrant & Defiant DRIVING DYNAMICS – Smooth Operator PACKAGING – Clever ‘SUV’ Living FEATURES – Cool Tech SAFETY - Palette *** (All data - MMC’s own internal measurement) - The “RED CAR” at a GLANCE - I - Timing: October 2013: XR-PHEV Concept @ Tokyo Motor Show March 2015: XR-PHEV II Concept @ Geneva Motor Show March 2017: World premiere @ Geneva Motor Show October 2017: Start of Production – EU specification models (see below detail) End of CY17: Start of Sales – EU specification models: MME34 Markets LHD 1.5 petrol RHD petrol LHD 2.2 DiD RHD 2.2 DiD SoP October 2017 November 2017 TbA TbA SoS* December 2017 January 2018 TbA TbA *Actual Start of Sales varying market by market, according to resp. launch plans 2018: Sequential roll out in Japan, North America, Russia, Australia/New Zealand and other regions. II - Positioning: First enabler for the next generation of Mitsubishi Motors’ automobiles & positioning for which it returns to the MMC fundamentals: • Authentic SUV Brand (vs. ‘marketing’ SUVs): 4WD since 1936 / Super-All Wheel Control (S-AWC) system since 1987 SUVs: 77% sales in Europe – CY16 (incl. L200 -
SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank You for Choosing Suspensionmaxx for Your Vehicle
INSTALLATION INSTRUCTIONS PART#: SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank you for choosing SuspensionMaxx for your vehicle. This kit is designed to add suspension travel SuspensionMAXX kits are designed to be easily installed and increase front and ground clearance. Specially and completely reversible to the factory supplied settings. designed tools and experience are required to complete These instructions are supplied for ease of installation, the installation properly. These parts should only be correct procedures and safety. Automotive experience installed by a qualified mechanic otherwise an unsafe recommended. vehicle and/or injury may result. Consult manufactures service manual for proper torque specifications and REQUIRED TOOLS procedures. Instructions are supplied for the leveling kit installation only. Safety is important. Use safe • Load-rated floor jack working habits. • Safety stands x2 • Wheel Chocks • Metric tool set WARNING! • Torque Wrench This suspension system will enhance off road performance and increase • Loctite threadlocker for all fasteners ground clearance. Larger tires will increase vehicle roll center height. The vehicle will handle and respond to driver steering and braking dif- ferently from a stock factory equipped passenger car or truck. Extreme care must be used to prevent loss of control or vehicle rollover during abrupt maneuvers both on and off-road. Failure to operate this vehicle safely can result in vehicle damage, serious injury or death to the driver and passengers. Always wear your seat belt and reduce your speed, avoid sharp turns, inclines and abrupt maneuvers. Tread lightly, re- spect nature and enjoy the Off-Road Experience! Help keep it available for future generations. -
VW Suspension Technical Article
VW Tech Tip VW Suspension Technical Article Tech Tip: by Charles Adams The following is a technical THE TRUTH ABOUT SUSPENSIONS MYTH: Lowering or raising my car will give it greater performance than I article written for better If you want a smooth ride and not just looks, there is more than meets could expect at stock height. For ex- understanding of the rear the eye at a quick glance. Anyone ample if I simply lower my car it will corner better than my friend’s car that air-cooled VW suspension can lower or raise a vehicle and call it good, but just like any good en- is not lowered. Alternatively, if I raise as well as our products. For gine build, if you seek performance, my car it will perform better off road, absorbing bumps and jumps, than my the majority of people, the everything should be prepared in advance and every component’s friend’s car that is not raised. rear VW suspension is little function should be understood. It understood and more is more than just ordering the most FACT: Every suspension rides at its costly parts, assembling them, and greatest potential when it is riding often misunderstood. blowing away the competition. Yet within the parameters that it was suspensions are not a mystery and designed for. This means that facto- they certainly are not rocket science. ry suspensions perform the greatest The truth is that they are simply and when the ride at factory height and easily understood if they are ex- the geometry is not tampered with. -
Brake Adjuster's Handbook
STATE OF CALIFORNIA HANDBOOK FOR BRAKE ADJUSTERS May 2015 BUREAU OF AUTOMOTIVE REPAIR BRAKE ADJUSTERS’ HANDBOOK FOREWORD This Handbook is intended to serve as a reference for Official Brake Adjusting Stations and as study material for licensed brake adjusters and persons desiring to be licensed as adjusters. See the applicable Candidate Handbook for further information. This handbook includes a short history of the development of automotive braking equipment, and the procedures for licensing of Official Brake Adjusting Stations and Official Brake Adjusters. In addition to the information contained in this Handbook, persons desiring to be licensed as adjusters must possess a knowledge of vehicle braking systems, adjustment techniques and repair procedures sufficient to ensure that all work is performed correctly and with due regard for the safety of the motoring public. This handbook will not supply all the information needed to pass a licensing exam. No attempt has been made to relate the information contained herein to the specific design of a particular manufacturer. Accordingly, each official brake station must maintain as references the current service manuals and technical instructions appropriate to the types and designs of brake systems serviced, inspected and repaired by the brake station. Installation, repair and adjustment of motor vehicle brake equipment shall be performed in accordance with applicable laws, regulations and the current instructions and specifications of the manufacturer. Periodically, supplemental bulletins may be distributed by the Bureau of Automotive Repair (BAR or Bureau) containing information regarding changes in laws, regulations or technical procedures concerning the inspection, servicing, repair and adjustment of vehicle braking equipment. -
Set Toe Properly
SET TOE PROPERLY You will get better more consistent results adjusting your toe in settings if you go the extra mile to eliminate variables. You must first decide which technique that you plan to use to take the measurements. Each technique offers different benefits and drawbacks. The methods discussed here will be the Toe Plate method, Toe Bar Method and Tire Scribe Method. If you understand each toe setting technique you will be assured of repeatable results. Before you begin taking measurements you must insure that the car is race ready. Ride heights set, weight percentages correct, driver weight accounted for, bump steer set, camber and caster set, Ackerman set, air pressure set, stagger correct....you get the idea. You should also inspect the steering components and replace any that are worn or bent. Center up the steering before you begin. Center the drag link or rack so that the inner control pivots and inner tie rods are centered to each other. Tie rod lengths should be adjusted to match you lower control points if possible. String the right side of the car to line up the right front to the right rear. By lining up the right side and starting with the right front in line with the right rear you will eliminate any Ackerman effect that is in the car. If the wheels are turned away from straight when you take your toe measurement the Ackerman effect can add toe out that will not be present when the wheels are straight ahead. Take the time to string the right side and you will get more precise results. -
Anti-Roll Bar Modeling for NVH and Vehicle
Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Tobolar,Anti-Roll Jakub and Bar Leitner, Modeling Martin and Heckmann, for NVH Andreas and Vehicle Dynamics Analyses 99 Jakub Tobolárˇ1 Martin Leitner1 Andreas Heckmann1 1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, [email protected] Abstract A The latest extension of the DLR FlexibleBodies Library concerns the field of automotive applications, namely the anti-roll bar. For the particular purposes of NVH and ve- hicle dynamics, the anti-roll bar module provides two ap- propriate levels of detail, both being based upon the beam preprocessor. In this paper, the procedure on preparing the models and their application for particular automotive related analyses is presented. Keywords: anti-roll bar, vehicle chassis, flexible body, beam model, finite element C S Figure 1. Vehicle axle with an anti-roll bar (color emphasized, 1 Introduction courtesy of Wikimedia Commons). Whenever an automotive suspension is excited in vertical direction due to road irregularities or driving maneuvers (Heckmann et al., 2006) provides capabilities to incorpo- in an asymmetrical way, i.e. differently on the right and rate data that originate from FE models in Modelica mod- the left side of the vehicle, the roll motion of the car body els. Thus, a tool chain to perform vehicle dynamics sim- is stimulated. This concerns – in common case – the com- ulation including the structural characteristics of anti-roll fort and driving experience of the car passengers. In limit bars is in principle available. -
Integrated Vehicle Dynamics Control Via Coordination of Active Front
Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, Zoltan Szabo To cite this version: Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, et al.. Integrated vehicle dynamics control via coordination of active front steering and rear braking. European Journal of Control, Elsevier, 2013, 19 (2), pp.121-143. 10.1016/j.ejcon.2013.03.004. hal- 00759487 HAL Id: hal-00759487 https://hal.archives-ouvertes.fr/hal-00759487 Submitted on 3 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Martinez,a ∗ Peter Gaspar, Zoltan Szabob aGipsa-Lab UMR CNRS 5216, Control Systems Department, 961 Rue de la Houille Blanche, 38402 Saint Martin d’Hères, France, Email: [email protected], {surname.name}@gipsa-lab.grenoble-inp.fr bComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email: gaspar, [email protected] January 26, 2012 Abstract This paper investigates the coordination of active front steering and rear braking in a driver- assist system for vehicle yaw control. -
Chassis Tuning 101 Matt Murphy’S Dirt Oval Chassis Tuning Guide
Chassis Tuning 101 Matt Murphy’s Dirt Oval Chassis Tuning Guide PREFACE Over the last 17 years of my life, I have raced Dirt Oval all over the United States, on foam tires and rubber, hard packed and loose dirt. I have learned a lot about chassis setup on many different track surfaces with many different types of cars. Much of what I have learned is from trial and error, and quite a bit I have learned from doing plain old research on race car chassis dynamics. My goal now is to take what I have learned, and share it with you, but I want to do so in the simplest, easiest to understand manner that I possibly can. I certainly do not know everything, and I am not always right, however I can say that it is rare that I work on a particular chassis setup, and do not find improvement with each adjustment. My theories are just that, and are intended only to help you better enjoy your RC race cars, no matter which make and model you choose. Some things I pay much more attention to than others when it comes to chassis setup, but please understand there is no right or wrong, there is simply what works best for YOU! INDEX: Chapter 1 - Introduction to Dirt Oval Chassis Setup Chapter 2 - Tires Chapter 3 - Springs, Shocks, and Chassis Height Chapter 4 - Toe, Camber, Caster, and Wheel Spacing Chapter 5 - Droop Chapter 6 - Camber Links and Roll Centers Chapter 7 - Wheelbase, Kickup, and Squat Chapter 8 - Sway Bars Chapter 9 - Transmissions and Drive Train Page 1 of 21 Chapter 1: Introduction to Dirt Oval Chassis Setup: Chassis Setup is the most important factor in having a fast Dirt Oval car. -
The Chassis of the Future: Schaeffler Symposium
392 393 The Chassis of the Future N O D H I O E A S M I O U E N L O A N G A D F J G I O J E R U I N K O P J E W L S P N Z A D F T O I E O H O I O O A N G A D F J G I O J E R U I N K O P O A N G A D F J G I O J E R O I E U G I A F E D O N G I U A M U H I O G D N O I E R N G M D S A U K Z Q I N K J S L O G D W O I A D U I G I R Z H I O G D N O I E R N G M D S A U K N M H I O G D N O I E R N G U D N O D H I O E A S M I O U E N L R B E F B A F V N K F N K R E W S P L O C Y Q D M F E F B S A T B G P D R D D L R A E F B A F V N K F N K R E W S P D L R N E F B A F V N K F N U D O I E U G I A F E D O N G I U A D B E U B A F V N K F N K R E W S P L O C Y Q D M F E F B S A T B G P D B D D L R B E Z B A F V R K F N K R E W S P Z L R B E O B A F V N K F N P O W R W Z T W H N E D K U N W P O N C A L V I K Z T W H N B N D S A U K Z Q I N K J S L W O I E P MarkusN N B BaeumlA U A H I O G D N P I E R N G M D S A U K Z Q H I O G D N W I E R N G M D A M U D M P B D B H M G R X B D P B O G D N O I P R N G M D S A U K Z Q I N K J S L W O Q T V I E P FlorinN Z R DobreA U A H I R G D N O I Q R N G M D S A U K Z Q H I O G D N O I Y R N G M D E K A A T R U A D D O N G I U A R N N E S W L N C A W Z Y K F E Q L O P N G S A Y B G D S W L Z U K HaraldO G I HochmuthK C K P M N E S W L N C U W Z Y K F E Q L O P P M N E S W L N C T W Z Y K M O A M O E U A I D U N G E U A R N V U S G R V L G R A K G E C L Z E M S A C I T P M O S G R U C Z ManfredG Z M O KrausQ O D N V U S G R V L G R M K G E C L Z E M D N V U S G R V L G R X K G T N E K J I C O N N E C T I V I T Y O -
Rene Herse Centerpull Brakes
Warranty We warrant Rene Herse brakes against de- fects in materials and workmanship for ten Centerpull Brake years after the original purchase, for the Instructions orginal purchaser. If the product is found de- - Version 2020_07_01 fective by Rene Herse Cycles, we will replace or repair it. If you feel that a product is defec- tive, please contact us for a Return Authoriza- tion. This warranty does not cover: • Damage due to improper assembly. • Crash or impact damage. • Wear of pivot bushings or brake pads. • Changes in color due to normal oxidation. • Indirect damage to the bicycle. Rene Herse Cycles 2442 NW Market St. #426 Seattle, WA 98107, USA www.renehersecycles.com IMPORTANT SAFETY CHECKS MAINTENANCE Failure to perform these important safety checks can • Use a car wax to protect the polished finish of your result in accidents and injuries. brake arms and bolts. • Brake arms are made from corrosion-resistant 6066 Safety Check 1 aluminum and not anodized. They can be re-polished if • Before every ride, pull hard on both brake levers to make the finish gets dull. sure your brakes work properly. • Hardware and springs are made from CrMo steel. • Don’t forget to hook up the straddle cable after removing Chrome-plating protects these parts from corrosion. a wheel. Injury risk! Wax offers further protection and maintains the shine. Safety Check 2 • Periodically check that all bolts remain tight. • As your brake pads wear, they will touch the rim in a higher spot. Eventually, they can abrade the tire and COMPATIBILITY cause a blowout. Injury risk! • Tire clearance: • Every 500 km (300 miles), check that the brake pads are - 58 mm (no fenders) hitting the rim squarely. -
Influence of Body Stiffness on Vehicle Dynamics Characteristics In
Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Master's thesis 2015:68 MASTER'S THESIS IN AUTOMOTIVE ENGINEERING Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ c OSKAR DANIELSSON, ALEJANDRO GONZALEZ´ COCANA,~ 2015 Master's thesis 2015:68 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Volvo S60 model reinforced with bars for the multibody dynamics simulation tool MSC Adams Chalmers Reproservice G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology Abstract Automotive industry is a highly competitive market where details play a key role. Detecting, understanding and improving these details are needed steps in order to create sustainable cars capable of giving people a premium driving experience. Body stiffness is one of this important specifications of a passenger car which affects not only weight thus fuel consumption but also handling, steering and ride characteristics of the vehicle.