Low-Power Volatile and Non-Volatile Memory Design

Total Page:16

File Type:pdf, Size:1020Kb

Low-Power Volatile and Non-Volatile Memory Design Low-power Volatile and Non-volatile Memory Design by Qing Dong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in the University of Michigan 2017 Doctoral Committee: Professor Dennis Michael Sylvester, Chair Professor David Blaauw Professor Branko Kerkez Professor Zhengya Zhang Qing Dong [email protected] ORCID ID: 0000-0002-1380-269X © Qing Dong 2017 i DEDICATION To my family & friends… This dissertation is dedicated to my family and friends that supported, encouraged, and inspired me throughout my education. ii Table of Contents DEDICATION............................................................................................................................... ii LIST OF FIGURES ..................................................................................................................... vi LIST OF TABLES ..................................................................................................................... xiii ABSTRACT ................................................................................................................................ xiv CHAPTER 1. Introduction ......................................................................................................... 1 1.1 Low-power SRAMs and In-memory-computing ............................................... 4 1.2 NOR Flash Memory .............................................................................................. 6 1.3 STT-MRAM Memory ........................................................................................... 7 1.4 Emerging Spintronic Devices ............................................................................... 8 1.5 Thesis Organization .............................................................................................. 8 CHAPTER 2. Low-power 5T SRAM ....................................................................................... 11 2.1 Introduction ......................................................................................................... 11 2.2 Bitcell Design and Decoupled Read ................................................................... 12 2.3 Write Operation .................................................................................................. 15 2.4 Results .................................................................................................................. 20 2.5 Conclusion ........................................................................................................... 22 CHAPTER 3. 4+2T SRAM for Searching and in-memory-computing Applications .......... 23 3.1 Introduction ......................................................................................................... 23 iii 3.2 4+2T SRAM Cell Design .................................................................................... 24 3.3 Write Operation .................................................................................................. 25 3.4 Read Operation and Logic-in-memory Operation .......................................... 26 3.5 BCAM/TCAM Search Operation ...................................................................... 27 3.6 Results .................................................................................................................. 29 3.7 Conclusion ........................................................................................................... 33 CHAPTER 4. Low-power NOR Flash ..................................................................................... 34 4.1 Introduction ......................................................................................................... 34 4.2 High Voltage Generation .................................................................................... 35 4.3 High Voltage Delivery......................................................................................... 39 4.4 Low Power Voltage Reference & Current Reference ..................................... 41 4.5 Array Organization ............................................................................................ 56 4.6 Sense Amplifier Design ....................................................................................... 56 4.7 Results .................................................................................................................. 59 4.8 Conclusion ........................................................................................................... 63 CHAPTER 5. STT-MRAM Design .......................................................................................... 64 5.1 STT-MRAM Concept ......................................................................................... 64 5.2 Proposed Read Assist .......................................................................................... 65 5.3 Proposed Write Assist......................................................................................... 67 5.4 Results .................................................................................................................. 68 5.5 Conclusion ........................................................................................................... 71 iv CHAPTER 6. Racetrack Converter for High-speed Imaging System .................................. 72 6.1 Introduction ......................................................................................................... 72 6.2 Racetrack Memory Device ................................................................................. 73 6.3 Propose Racetrack Converter ............................................................................ 76 6.4 Uncertainty Analysis ........................................................................................... 84 6.5 Simulation Results and Analysis ....................................................................... 86 6.6 High-Speed Image Sensor with Racetrack ADCs ............................................ 91 6.7 Conclusion ........................................................................................................... 94 CHAPTER 7. Neural Network with Spintronic Devices ........................................................ 95 7.1 Introduction ......................................................................................................... 95 7.2 Components of Spin Neural Network ............................................................... 96 7.3 Neuron Network Architecture ......................................................................... 100 7.4 Simulation Results and Analysis ..................................................................... 107 7.5 Conclusion ......................................................................................................... 112 CHAPTER 8. Conclusion ........................................................................................................ 113 8.1 Contributions of This Work ............................................................................. 113 8.2 Future Directions .............................................................................................. 114 8.3 Related Publications ......................................................................................... 116 BIBLIOGRAPHY ..................................................................................................................... 118 v LIST OF FIGURES Figure 1.1 SRAM bitcell technology scaling and VDDmin scaling .............................................. 1 Figure 1.2 Intel processor with >50% of area for cache ................................................................. 2 Figure 1.3 Comparison between conventional method and in-memory computing ....................... 5 Figure 1.4 Spit-gate NOR Flash Cell .............................................................................................. 6 Figure 1.5 Battery-powered mm-scale sensor node systems ........................................................ 7 Figure 1.6 Magnetic tunnel junction cell ...................................................................................... 8 Figure 2.1 Architecture of the face detection and recognition processor ................................ 11 Figure 2.2 Proposed 5T memory bit cell design. VDDL/VDDR and VSSL/VSSR are the left/right power and ground terminals, respectively ............................................... 12 Figure 2.3 Layout of 5T bit cell. Isolated read and write paths allow for minimum-sized pull-up and pull-down devices ................................................................................. 13 Figure 2.4 Readout path of 5T memory. .................................................................................... 14 Figure 2.5 Basic write operation of 5T memory. VDDL is the lowered voltage level of VDD and VSSH is the raised voltage level of VSS. ......................................................... 15 Figure 2.6 Example of write disturbance issue. Writing into Cell_00 also affects other bit cells including Cell_10.............................................................................................. 16 Figure 2.7 Memory reset scheme ............................................................................................... 16 Figure 2.8 Sequential write scheme. .......................................................................................... 17 Figure 2.9 Initial write margins of 5T memory design. VDD moves from
Recommended publications
  • Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY and STORAGE DEVICES of a COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY
    Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY AND STORAGE DEVICES OF A COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY Q1. A collection of eight bits is called BYTE Q2. Which of the following is an example of non-volatile memory? a) ROM b)RAM c) LSI d) VLSI Q3. Which of the following is unit of measurement used with computer system? a) Byte b) Megabyte c) Gigabyte d) All of the above Q4. Which of the following statement is false? a) Secondary storage in non-volatile. b) Primary storage is volatile. c) When the computer is turned off, data and instructions stored in primary storage are erased. d) None of the above. Q5. The secondary storage devices can only store data but they cannot perform a) Arithmetic operation b) Logic operation c) Fetch operation d) Either of above Q6. Which of the following does not represent an I/O device a) Speaker which beep b) Plotter C) Joystick d) ALU Q7. Which of the following is a correct definition of volatile memory? a) It loses its content at high temperatures. b) It is to be kept in airtight boxes. c) It loses its contents on failure of power supply d) It does not lose its contents on failure of power supply Q8. One thousand byte represent a a) Megabyte b) Gigabyte c) Kilobyte d) None of these Q9.What does a storage unit provide? a) A place to show data b) A place to store currently worked on information b) A place to store information Q10. What are four basic components of a computer? a) Input devices, Output devices, printing and typing b) Input devices, processing unit, storage and Output devices c) Input devices, CPU, Output devices and RAM Q11.
    [Show full text]
  • The Era of Expeditious Nanoram-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 1 (2018) pp. 375-384 © Research India Publications. http://www.ripublication.com The Era of Expeditious NanoRAM-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment Mona Nabil ElGohary PH.D Student, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. 1ORCID: 0000-0002-1996-4673 Dr. Wessam ElBehaidy Assistant Professor, Computer Science Department, Faculty of Computers and Information, Helwan University, Cairo, Egypt. Ass. Prof. Hala Abdel-Galil Associative Professor, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. Prof. Dr. Mostafa-Sami M. Mostafa Professor of Computer Science Faculty of Computers and Information, Helwan University, Cairo, Egypt. Abstract They announced that by 2018 will produce the first NanoRAM. The availability of a new generation of memory that is 1000 times faster than traditional DDRAM which can deliver This new NanoRam has many excellent properties that would terabytes of storage capacity, and consumes very little power, make an excellent replacement for the current DDRAM: being has the potential to change the future of the computer’s non-volatile, its large capacity, high speed read / write cycles. operating system. This paper studies the different changes that All the properties are introduced in the next section. will arise on the operating system functions; memory By replacing this NanoRAM instead of DDRAM in the CPU, management and job scheduling (especially context switch) this will affect the functionality of the operating system; such when integrating NanoRAM into the computer system. It is as main memory management, virtual memory, job scheduling, also looking forward to evaluating the possible enhancements secondary storage management; and thus the efficiency of the of computer’s performance with NanoRAM.
    [Show full text]
  • Universal Memory
    BRIEFING No.4 ICT UNIVERSAL MEMORY Memory is an integral part of information processing devices and is needed for short‐term stor‐ age such as when computer programs are being executed or text documents are processed. Currently, three main types of memory exist: SRAM offers very high speed at a high cost, DRAM is average in terms of speed and cost, and Flash memory is a low cost, low speed solution for applications that need to retain the data even when power is disconnected. A group of emerg‐ ing memory devices called universal memory aim to combine all these features in a single de‐ vice.1 Developments in universal memory devices may eventually lead to the introduction of novel October 2010 October memory architectures that offer increased performance, enable smaller mobile devices, and offer novel features in traditional products such as cars or domestic appliances. Nanotechnol‐ ogy is an integral part of emerging memory research as it is becoming increasingly difficult to enhance the performance of current devices by scaling the technology further. It is unlikely that a single technology will emerge as the universal memory technology; however, the develop‐ ments in this sector will enhance the energy efficiency and performance of memory devices. Currently, the Integrated Circuit (IC) market is dominated by US and Asia based companies. Uni‐ versal memory and nanotechnology based solutions could provide an opportunity for Europe to gain ground in the sector. Background volatility. Its disadvantage compared to SRAM and DRAM is speed. None of the existing memory technologies provide all of the required properties.
    [Show full text]
  • Let's Talk About Storage & Recovery Methods for Non-Volatile Memory
    Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems Joy Arulraj Andrew Pavlo Subramanya R. Dulloor [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Intel Labs ABSTRACT of power, the DBMS must write that data to a non-volatile device, The advent of non-volatile memory (NVM) will fundamentally such as a SSD or HDD. Such devices only support slow, bulk data change the dichotomy between memory and durable storage in transfers as blocks. Contrast this with volatile DRAM, where a database management systems (DBMSs). These new NVM devices DBMS can quickly read and write a single byte from these devices, are almost as fast as DRAM, but all writes to it are potentially but all data is lost once power is lost. persistent even after power loss. Existing DBMSs are unable to take In addition, there are inherent physical limitations that prevent full advantage of this technology because their internal architectures DRAM from scaling to capacities beyond today’s levels [46]. Using are predicated on the assumption that memory is volatile. With a large amount of DRAM also consumes a lot of energy since it NVM, many of the components of legacy DBMSs are unnecessary requires periodic refreshing to preserve data even if it is not actively and will degrade the performance of data intensive applications. used. Studies have shown that DRAM consumes about 40% of the To better understand these issues, we implemented three engines overall power consumed by a server [42]. in a modular DBMS testbed that are based on different storage Although flash-based SSDs have better storage capacities and use management architectures: (1) in-place updates, (2) copy-on-write less energy than DRAM, they have other issues that make them less updates, and (3) log-structured updates.
    [Show full text]
  • Nanotechnology Trends in Nonvolatile Memory Devices
    IBM Research Nanotechnology Trends in Nonvolatile Memory Devices Gian-Luca Bona [email protected] IBM Research, Almaden Research Center © 2008 IBM Corporation IBM Research The Elusive Universal Memory © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH Attributes for universal memories: –Highest performance –Lowest active and standby power –Unlimited Read/Write endurance –Non-Volatility –Compatible to existing technologies –Continuously scalable –Lowest cost per bit Performance © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH m+1 SLm SLm-1 WLn-1 WLn WLn+1 A new class of universal storage device : – a fast solid-state, nonvolatile RAM – enables compact, robust storage systems with solid state reliability and significantly improved cost- performance Performance © 2008 IBM Corporation IBM Research Non-volatile, universal semiconductor memory SL m+1 SL m SL m-1 WL n-1 WL n WL n+1 Everyone is looking for a dense (cheap) crosspoint memory. It is relatively easy to identify materials that show bistable hysteretic behavior (easily distinguishable, stable on/off states). IBM © 2006 IBM Corporation IBM Research The Memory Landscape © 2008 IBM Corporation IBM Research IBM Research Histogram of Memory Papers Papers presented at Symposium on VLSI Technology and IEDM; Ref.: G. Burr et al., IBM Journal of R&D, Vol.52, No.4/5, July 2008 © 2008 IBM Corporation IBM Research IBM Research Emerging Memory Technologies Memory technology remains an
    [Show full text]
  • Computer Conservation Society
    Issue Number 88 Winter 2019/20 Computer Conservation Society Aims and Objectives The Computer Conservation Society (CCS) is a co-operative venture between BCS, The Chartered Institute for IT; the Science Museum of London; and the Science and Industry Museum (SIM) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of BCS. The objects of the Computer Conservation Society (“Society”) are: To promote the conservation, restoration and reconstruction of historic computing systems and to identify existing computing systems which may need to be archived in the future; To develop awareness of the importance of historic computing systems; To develop expertise in the conservation, restoration and reconstruction of historic computing systems; To represent the interests of the Society with other bodies; To promote the study of historic computing systems, their use and the history of the computer industry; To publish information of relevance to these objectives for the information of Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by a grant from BCS and from donations. There are a number of active projects on specific computer restorations and early computer technologies and software. Younger people are especially encouraged to take part in order to achieve skills transfer. The CCS also enjoys a close relationship with the National Museum of Computing. Resurrection The Journal of the Computer Conservation Society ISSN 0958-7403 Number 88 Winter 2019/20 Contents Society Activity 2 News Round-Up 9 The Data Curator 10 Paul Cockshott From Tea Shops to Computer Company: The Improbable 15 Story of LEO John Aeberhard Book Review: Early Computing in Britain Ferranti Ltd.
    [Show full text]
  • Architecting Racetrack Memory Preshift Through Pattern-Based Prediction Mechanisms
    Architecting Racetrack Memory preshift through pattern-based prediction mechanisms Abstract— Racetrack Memories (RM) are a promising metalic racetrack, providing higher package density, lower spintronic technology able to provide multi-bit storage in a single energy and more robust data stability [5]. As seen in Fig. 1, each cell (tape-like) through a ferromagnetic nanowire with multiple RM cell is able to store multiple data bits in a single wire domains. This technology offers superior density, non-volatility programming domains to a certain direction (DWM) or by the and low static power compared to CMOS memories. These absence or presence of a skyrmion (SK-RM). Applying a current features have attracted great interest in the adoption of RM as a through the wire ends, domains or skyrmions can be shifted replacement of RAM technology, from Main memory (DRAM) to left/right at a constant velocity. With such a tape-like operation, maybe on-chip cache hierarchy (SRAM). One of the main every domain can be aligned with a read/write port, drawbacks of this technology is the serialized access to the bits implemented through a Magnetic Tunnel Junction (MTJ). The stored in each domain, resulting in unpredictable access time. An bit-cell structure required for shifting and read/write is shown in appropriate header management policy can potentially reduce the number of shift operations required to access the correct position. Fig. 1.down. Read/write operations are performed precharging Simple policies such as leaving read/write head on the last domain bitlines (BL and BLB) to the appropriate values and turning on accessed (or on the next) provide enough improvement in the the access transistors (TRW1 and TRW2).
    [Show full text]
  • Racetrack Memory Based Logic Design for In‑Memory Computing
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Racetrack memory based logic design for in‑memory computing Luo, Tao 2018 Luo, T. (2018). Racetrack memory based logic design for in‑memory computing. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73359 https://doi.org/10.32657/10356/73359 Downloaded on 27 Sep 2021 05:57:42 SGT RACETRACK MEMORY BASED LOGIC DESIGN FOR IN-MEMORY COMPUTING School of Computer Science and Engineering A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy LUO TAO August 2017 Abstract In-memory computing has been demonstrated to be an efficient computing in- frastructure in the big data era for many applications such as graph processing and encryption. The area and power overhead of CMOS technology based mem- ory design is growing rapidly because of the increasing data capacity and leak- age power along with the shrinking technology node. Thus, a newly introduced emerging memory technology, racetrack memory, is proposed to increase the data capacity and power efficiency of modern memory systems. As the design require- ments of the conventional logic are different from that of the emerging memory based logic for in-memory computing, the conventional well-developed CMOS technology based logic designs are less relevant to the emerging memory based in-memory computing. Therefore, novel logic designs for racetrack memory are required. Traditional logic design with separate chips is focusing on high speed, which causes large area and power consumption.
    [Show full text]
  • Open Poremba-Dissertation.Pdf
    The Pennsylvania State University The Graduate School ARCHITECTING BYTE-ADDRESSABLE NON-VOLATILE MEMORIES FOR MAIN MEMORY A Dissertation in Computer Science and Engineering by Matthew Poremba c 2015 Matthew Poremba Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The dissertation of Matthew Poremba was reviewed and approved∗ by the following: Yuan Xie Professor of Computer Science and Engineering Dissertation Co-Advisor, Co-Chair of Committee John Sampson Assistant Professor of Computer Science and Engineering Dissertation Co-Advisor, Co-Chair of Committee Mary Jane Irwin Professor of Computer Science and Engineering Robert E. Noll Professor Evan Pugh Professor Vijaykrishnan Narayanan Professor of Computer Science and Engineering Kennith Jenkins Professor of Electrical Engineering Lee Coraor Associate Professor of Computer Science and Engineering Director of Academic Affairs ∗Signatures are on file in the Graduate School. Abstract New breakthroughs in memory technology in recent years has lead to increased research efforts in so-called byte-addressable non-volatile memories (NVM). As a result, questions of how and where these types of NVMs can be used have been raised. Simultaneously, semiconductor scaling has lead to an increased number of CPU cores on a processor die as a way to utilize the area. This has increased the pressure on the memory system and causing growth in the amount of main memory that is available in a computer system. This growth has escalated the amount of power consumed by the system by the de facto DRAM type memory. Moreover, DRAM memories have run into physical limitations on scalability due to the nature of their operation.
    [Show full text]
  • Data in the Fast Lanes of Racetrack Memory
    INFOTECH Data in the Fast Lanes of RACETRACK MEMORY A device that slides magnetic bits back and forth along nanowire “racetracks” could pack data in a three-dimensional microchip and may replace nearly all forms of conventional data storage By Stuart S. P. Parkin he world today is very different from that when the computer powers down—or crashes. of just a decade ago, thanks to our ability A few computers use nonvolatile chips, which T to readily access enormous quantities of retain data when the power is off, as a solid-state information. Tools that we take for granted— drive in place of an HDD. The now ubiquitous social networks, Internet search engines, online smart cell phones and other handheld devices maps with point-to-point directions, and online also use nonvolatile memory, but there is a trade- libraries of songs, movies, books and photo- off between cost and performance. The cheapest KEY CONCEPTS graphs—were unavailable just a few years ago. nonvolatile memory is a kind called flash memo- ■ A radical new design for We owe the arrival of this information age to the ry, which, among other uses, is the basis of the computer data storage rapid development of remarkable technologies little flash drives that some people have hanging called racetrack memory in high-speed communications, data processing from their key rings. Flash memory, however, is (RM) moves magnetic and—perhaps most important of all but least ap- slow and unreliable in comparison with other bits along nanoscopic preciated—digital data storage. memory chips. Each time the high-voltage pulse “racetracks.” Each type of data storage has its Achilles’ heel, (the “flash” of the name) writes a memory cell, ■ RM would be nonvola- however, which is why computers use several the cell is damaged; it becomes unusable after tile—retaining its data types for different purposes.
    [Show full text]
  • Protecting Non-Volatile Memory Against Both Hard and Soft Errors
    FREE-p: Protecting Non-Volatile Memory against both Hard and Soft Errors Doe Hyun Yoon† Naveen Muralimanohar‡ Jichuan Chang‡ [email protected] [email protected] [email protected] Parthasarathy Ranganathan‡ Norman P. Jouppi‡ Mattan Erez† [email protected] [email protected] [email protected] †The University of Texas at Austin ‡Hewlett-Packard Labs Electrical and Computer Engineering Dept. Intelligent Infrastructure Lab. Abstract relies on integrating custom error-tolerance functionality within memory devices – an idea that the Emerging non-volatile memories such as phase- memory industry is historically loath to accept because change RAM (PCRAM) offer significant advantages but of strong demand to optimize cost per bit; (2) it ignores suffer from write endurance problems. However, prior soft errors (in both peripheral circuits and cells), which solutions are oblivious to soft errors (recently raised as can cause errors in NVRAM as shown in recent studies; a potential issue even for PCRAM) and are and (3) it requires extra storage to support chipkill that incompatible with high-level fault tolerance techniques enables a memory DIMM to function even when a such as chipkill. To additionally address such failures device fails. We propose Fine-grained Remapping with requires unnecessarily high costs for techniques that ECC and Embedded-Pointers (FREE-p) to address all focus singularly on wear-out tolerance. three problems. Fine-grained remapping nearly eliminates storage overhead for avoiding wear-out In this paper, we propose fine-grained remapping errors. Our unique error checking and correcting (ECC) with ECC and embedded pointers (FREE-p). FREE-p component can tolerate wear-out errors, soft errors, and remaps fine-grained worn-out NVRAM blocks without device failures.
    [Show full text]
  • Flash Memory and Micro SD Card
    Flash Memory and Micro SD Card Presented by: Krishna Goyal (200601195) Anirudh Tripathi (200601141) OUTLINE • Memory • Volatile and Nonvolatile memory • EPROM and EEPROM memory • Flash memory • NAND and NOR Flash memory • Flash Memory operations • Advantage and Disadvantage of Embedded Over Stand Alone Flash Memory • Micro SD card • Summary • References Memory • The terms “storage” or “memory” refer to the parts of a digital computer that retain physical state (data) for some interval of time, possibly even after electrical power to the computer is turned off. • A computer system's memory is crucial to its operation; without memory, a computer could not read programs or retain data. Memory stores data electronically in memory cells contained in chips. It is usually measured in kilobytes, megabytes, or gigabytes. • Memory is classified into volatile and non-volatile memory. Memory Classification VOLATILE NON-VOLATILE SRAM ROM PROM DRAM EPROM EEPROM NVRAM Flash Memory Floppy Disk MRAM Hard Disk Magnetic Devices Volatile Memory • The most widely used form of primary storage today is a volatile form of random access memory, meaning that when the computer is shut down, anything contained in random access memory (RAM) is lost. • DRAM used for main memory • SRAM used for cache Non-Volatile memory • EEPROM, EPROM, FeRAM, FLASH, NVSRAM and ROM are different types of non-volatile memory. • The main differences are in the memories relative cost per bit and the flexibility to accommodate code changes. • nonvolatile memory, NVM or non-volatile storage, is computer memory that can retain the stored information even when not powered. EPROM • Erasable Programmable Read Only Memory also known as UV-EPROM is a form of non-volatile memory.
    [Show full text]