Analyse Der Struktur, Funktion Und Evolution Der Astacin-Protein-Familie

Total Page:16

File Type:pdf, Size:1020Kb

Analyse Der Struktur, Funktion Und Evolution Der Astacin-Protein-Familie Analyse der Struktur, Funktion und Evolution der Astacin-Protein-Familie Frank Möhrlen Heidelberg, 2002 INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Frank Möhrlen aus Heidelberg Tag der mündlichen Prüfung: 28.06.2002 Thema Analyse der Struktur, Funktion und Evolution der Astacin-Protein-Familie Gutachter: Prof. Dr. Robert Zwilling Prof. Dr. Richard Herrmann Die vorliegende Arbeit wurde am Lehrstuhl Physiologie des Instituts für Zoologie der Universität Heidelberg unter der wissenschaftlichen Leitung von Prof. Dr. R. Zwilling angefertigt. Für die Überlassung des interessanten Themas und die Betreuung meiner Arbeit gilt Herrn Prof. Dr. Robert Zwilling mein bester Dank. Prof. Dr. Richard Herrmann danke ich für die Übernahme des Koreferates. Ich möchte auch allen herzlich danken, die darüber hinaus diese Arbeit unterstützt haben: Prof. Dr. Werner Müller für die weitere Bereitstellung meines Arbeitsplatzes und die Förderung nach der Emeritierung von Prof. Dr. R. Zwilling. Der Landesgraduiertenförderung Baden-Württemberg für die einjährige finanzielle Unterstützung. Priv. Doz. Dr. Günter Vogt für die wertvolle Unterstützung und seine Diskussionsbereitschaft bei den Flusskrebs-Arbeiten. Vom deutschen Krebsforschungszentrum Dr. Martina Schnölzer für die gute Zusammenarbeit bei den massenspektrometrischen Analysen, Dr. Hans-Richard Rackwitz für die Peptidsynthesen und Dr. Hans Heid für die Durchführung der Edman-Sequenzierungen. Prof. Dr. Günter Plickert (Univerität Köln) für die schöne Zusammenarbeit im Rahmen der Hydractinia Astacine. Dr. Harald Hutter vom MPI für medizinische Forschung in Heidelberg für die Einführung in die Mikroinjektionstechnik und GFP-Analyse bei C. elegans. Prof. Dr. Vitalinao Pallini und Dr. Luca Bini (Universität Siena) für die Zusammenarbeit bei den 2D-Elektrophoresen. Dr. Uri Frank für die vielen Gespräche und Diskussionen, sowie die gemeinsame Arbeit im „Labor 403“. Prof. Dr. Monika Hassel, Prof. Dr. Thomas Leitz und Dr. Gebhard Geier die mir in ihrer Heidelberger Zeit in vielen Diskussionen wichtige Anregungen gaben. Allen ehemaligen Mitgliedern des Labors “Zwilling” Anja, Stefanie, Tobias, Patrick und die Ehemaligen in der Physiologie Lutz, Heike, Jürgen, Steffi und Tobias. Für die gute Arbeitsatmosphäre im „Labor 403“ Regina, Jasenka, Mark, Ibrahim und Gabi. Rüdi für die Hilfe bei der Korrektur des Manuskripts. Und nicht zuletzt meiner Frau Claudia und meinen Eltern, dass ihr immer für mich da wart. INHALTSVERZEICHNIS I. ZUSAMMENFASSUNG 1 II. EINLEITUNG 3 1. Strukturelle und funktionelle Vielfalt proteolytischer Enzyme 3 2. Klassen proteolytischer Enzyme 4 3. Die Astacin-Protein-Familie 5 4. Die Metzinkine 8 5. Ausgangspunkt und Problemstellung 9 III. MATERIAL UND METHODEN 11 1. Allgemeine Materialien 11 1.1. Geräte 11 1.2. Chemikalien und Artikel 11 1.3. Puffer und Lösungen 12 1.4. Bakterienstämme 12 1.5. Cosmide 12 1.6. Plasmide 12 1.7. Oligonukleotide 12 1.8. Enzyme und Produkte für molekularbiologische Methoden 15 1.9. Peptide 16 2. Tierhaltung 16 2.1. Hydractinia echinata 16 2.2. Caenorhabditis elegans 17 2.3. Astacus astacus 18 3. Allgemeine molekularbiologische Methoden 18 3.1. Arbeiten mit Escherichia coli 18 3.2. RNA-Isolierung 20 3.3. DNA-Isolierung 21 3.4. Reverse Transkription und Polymerasekettenreaktion 21 3.5. Rapid Amplification of cDNA Ends (RACE) 23 3.6. Gelelektrophorese und Klonierung von DNA 25 3.7. DNA-Sequenzierung 27 4. Allgemeine biochemische Methoden 27 4.1. Herstellung von Antikörpern 27 4.2. Protein-Isolierung 28 4.3. SDS- Polyacrylamid-Gelelektrophorese (SDS-PAGE) 29 4.4. Immunoblot 30 5. Zweidimensionale (2D-) Gelelektrophorese 31 5.1. 2D-Gelelektrophorese nach der IPG-SDS-PAGE Methode 31 5.2. Westernblot von 2D-Gelen 34 5.3. Immunoblot von 2D-Gelen 34 5.4. Mikrosequenzierung 35 5.5. Massenspektrometrische Analyse 35 6. Chromatographische Methoden 36 6.1. Gewinnung des Krebstrypsins durch Affinitätschromatographie 36 6.2. Gewinnung des Astacins durch Ionenaustausch-Chromatographie und Gelfiltration 37 6.3. Reinigung von Astacin und Astacin-homologen Proteinen durch Affinitätschromatographie 37 7. Aktivitätsmessung proteolytischer Enzyme 37 7.1. Aktivitätsmessung von Trypsin mit BAPNA 38 7.2. Aktivitätsmessung von Astacin mit STANA 38 7.3. Aktivitätsmessungen mit dansylierten Substraten 38 7.4. Aktivitätsmessungen mit FITC-Casein 38 8. GFP-Fusionsproteine und Expressionsnachweis in C. elegans 39 8.1. Expressionsvektoren 39 8.2. Herstellung der Injektionslösung 39 8.3. Herstellung der Injektionskanülen 39 8.4. Injektion 39 8.5. Identifizierung von Transformanten 40 8.6. Dokumentation 40 9. Expressionsnachweis durch in situ Hybridisierung in Hydractinia echinata 40 9.1. Vorbehandlung der Tiere 40 9.2. Herstellung der in situ Sonden 41 9.3. In situ Hybridisierung 41 10. Präparation und Immunhistochemie von Astacus astacus 41 10.1. Magensaftentnahme und Präparation des Hepatopankreas 41 10.2. Herstellung von Paraffin-Schnitten 42 10.3. Übersichtsfärbungen 42 10.4. Immunhistochemie 43 11. Proteolyse und massenspektrometrische Analyse von Modellpeptiden 44 11.1. Spaltungsversuche mit synthetischen Modellpeptiden 44 11.2. MALDI-TOF Massenspektrometrie 44 12. Computergestützte Analysen 44 12.1. Programme für molekulargenetische Analysen 44 12.2. Datenbankanalyse Astacin-homologer Gene 45 12.3. Phylogenetische Analyse 46 12.4. C. elegans und das Internet 46 IV. ERGEBNISSE 48 1. Astacin-homologe Proteine in C. elegans 48 1.1. Datenbankanalyse 48 1.2. Transkriptom-Analyse 51 1.2.1. RT-PCR und EST-Projekte 51 1.2.2. Abgleich der cDNA mit den genomischen Sequenzdaten 55 1.3. Funktions-Analyse 57 1.3.1. GFP-Fusionsproteine 57 1.3.2. Auswertung der GFP, RNAi und microarray Projekte 62 1.4. Proteom-Analyse 65 2. Astacin-homologe Proteine in Hydractinia echinata 74 2.1. RT-PCR/RACE 74 2.2. Klonierung und Sequenzdaten von Hydractinia echinata Astacin 1 und 2 75 2.3. In situ Hybridisierung 79 3. Datenbankanalyse und phylogenetische Analyse 82 3.1. Identifizierung Astacin-homologer Gene (BLAST, FASTA) 82 3.2. Analyse der Domänenstruktur 87 3.3. Molekularphylogenetische Analyse 91 4. Aktivierung von Pro-Astacin 99 4.1. Immunhistochemie 99 4.2. Immunoblotting 103 4.3. Analyse der Aktivierungsstelle (Prozessierung) 104 4.4. Massenspektrometrische Analyse 107 V. DISKUSSION 109 1. Astacin-homologe Proteine in C. elegans 109 2. Astacin-homologe Proteine in Hydractinia echinata 117 3. Molekularphylogenetische und strukturelle Untersuchungen der Astacin-Protein-Familie 119 4. Aktivierung von Pro-Astacin 125 VI. LITERATUR 129 VII. ANHANG 139 1. Abkürzungen 139 2. Aminosäuren und Nukleotide 140 3. Abbildungsverzeichnis 141 4. Tabellenverzeichnis 142 5. Eigene Publikationen und Kongressberichte 143 6. Sequenzdaten 144 6.1. Sequenzdaten der Astacin-homologen Gene von C. elegans 144 6.2. Korrigierte Proteinsequenzen von C. elegans (FASTA Format) 177 6.3. Sequenzvergleich der Protease-Domänen der Astacin-Protein-Familie 181 I. Zusammenfassung 1 I. ZUSAMMENFASSUNG Astacin (E.C. 3.4.24.21) aus dem Kaumagen des Flusskrebses Astacus astacus L. ist der Prototyp einer Familie von Zink-Endopeptidasen (Familie M12A, nach der Nomenklatur von Rawlings und Barrett), deren Mitglieder bei Vertebraten, Invertebraten und Bakterien gefunden werden. Die Mehrzahl der bisher beschriebenen Astacine enthalten dabei neben einem katalytischen Modul, der eigentlichen Astacin-Domäne, noch weitere Domänen die der Verankerung in der Zellmembran oder regulatorischen Aufgaben, etwa im Rahmen der Morphogenese und Differenzierung, dienen. In den letzten Jahren haben insbesonders die Genom- und Transkriptom-Analysen vieler Organismen die Anzahl annotierter Sequenzen, die Astacin-ähnliche Domänen enthalten, stark anwachsen lassen. (1) Bei dem Nematoden Caenorhabditis elegans konnte durch Datenbanksuchen mit dem BLAST-Algorithmus die überraschend große Zahl von 40 Astacin-homologen Genen identifiziert werden. Die Transkriptom-Analyse durch RT-PCR Experimente sowie die Auswertung der EST-Sequenzen und der microarray Ergebnisse von Kim et al. (2001) ergab, dass mit Ausnahme eines Pseudogens alle anderen Astacin-homologen Proteine auch tatsächlich exprimiert werden. Die gefundenen cDNA-Sequenzen wichen dabei zum Teil erheblich von den Spleißvorhersagen der wormpep oder Genie Gene Datenbanken ab und wurden für eine richtige Übersetzung der Transkripte in Protein-Sequenzen anhand der experimentellen Daten korrigiert. Um erste Aussagen über die Funktion dieser Proteine machen zu können erfolgte an ausgewählten Beispielen die Lokalisierung in vivo durch GFP-Reporter-Proteine. Anhand des Expressionmusters konnte für zwei Proteine auf eine Verdauungsfunktion und auf eine entwicklungsrelevante Rolle geschlossen werden. Die Auswertung der RNAi Untersuchungen von Maeda et al. (2001) und der microarray Analyse von Jiang et al. (2001) legen dabei für einige weitere Astacin-homologe Proteine in C. elegans eine entwicklungssteuernde Funktion nahe. Bei einer Proteom-Analyse durch 2D-Elektrophorese konnten zwar keine Astacin-homologen Proteine identifiziert, jedoch einige neue Proteine der C. elegans Proteinkarte (reference map) zugeordnet werden. (2) Aus den Basisgruppen des Tierreichs (z.B. Cnidaria) lagen bisher kaum Daten über Astacin-homologe Proteine vor. Hier konnten nun zwei neue Astacin-homologe Gene bei dem Modellorganismus Hydractinia echinata (Cnidaria, Hydrozoa) charakterisiert werden, die als Hydractinia echinata Astacin
Recommended publications
  • Proteomic Analysis of the Venom of Jellyfishes Rhopilema Esculentum and Sanderia Malayensis
    marine drugs Article Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis 1, 2, 2 2, Thomas C. N. Leung y , Zhe Qu y , Wenyan Nong , Jerome H. L. Hui * and Sai Ming Ngai 1,* 1 State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] 2 Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (Z.Q.); [email protected] (W.N.) * Correspondence: [email protected] (J.H.L.H.); [email protected] (S.M.N.) Contributed equally. y Received: 27 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%).
    [Show full text]
  • Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
    DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis.
    [Show full text]
  • Repression of Anti-Proliferative Factor Tob1 in Osteoarthritic Cartilage
    Available online http://arthritis-research.com/content/7/2/R274 ResearchVol 7 No 2 article Open Access Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage Mathias Gebauer1*, Joachim Saas2*, Jochen Haag3, Uwe Dietz2, Masaharu Takigawa4, Eckart Bartnik2 and Thomas Aigner3 1Aventis Pharma Deutschland, Functional Genomics, Sanofi-Aventis, Frankfurt, Germany 2Sanofi-Aventis, Disease Group Thrombotic Diseases/Degenerative Joint Diseases, Frankfurt, Germany 3Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Germany 4Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan * Contributed equally Corresponding author: Thomas Aigner, [email protected] Received: 10 Aug 2004 Revisions requested: 1 Oct 2004 Revisions received: 22 Oct 2004 Accepted: 19 Nov 2004 Published: 11 Jan 2005 Arthritis Res Ther 2005, 7:R274-R284 (DOI 10.1186/ar1479)http://arthritis-research.com/content/7/2/R274 © 2005 Gebauer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Osteoarthritis is the most common degenerative disorder of the genes were detected between normal and osteoarthritic modern world. However, many basic cellular features and cartilage (P < 0.01). One of the significantly repressed genes, molecular processes of the disease are poorly understood. In Tob1, encodes a protein belonging to a family involved in the present study we used oligonucleotide-based microarray silencing cells in terms of proliferation and functional activity.
    [Show full text]
  • The Astacin Family of Metalloendopeptidases
    Profein Science (1995), 4:1247-1261. Cambridge University Press. Printed in the USA Copyright 0 1995 The Protein Society The astacin family of metalloendopeptidases JUDITH S. BOND’ AND ROBERT J. BEYNON2 ’ Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of ‘Science and Technology, Manchester M60 1QD. United Kingdom (RECEIVEDMarch 23, 1995; ACCEPTED April19, 1995) Abstract The astacin family of metalloendopeptidases was recognized as a novel family of proteases in the 1990s. The cray- fish enzyme astacin was the first characterized and is one of the smallest members of the family. More than 20 members of the family have nowbeen identified. They have been detected in species ranging from hydra to hu- mans, in mature andin developmental systems. Proposed functions of these proteases include activation of growth factors, degradation of polypeptides, and processing of extracellular proteins. Astacin family proteases aresyn- thesized with NH,-terminal signal and proenzyme sequences, and many (such as meprins, BMP-1, folloid)con- tain multiple domains COOH-terminal to the protease domain. They are eithersecreted from cells or are plasma membrane-associated enzymes. They have some distinguishing features in addition to the signature sequencein the protease domain: HEXXHXXGFXHEXXRXDR. They have a unique typeof zinc binding, with pentacoor- dination, and a protease domain tertiary structure that contains common attributeswith serralysins, matrix me- talloendopeptidases, and snake venom proteases; they cleave peptide bonds in polypeptides such as insulin B chain and bradykinin andin proteins such as casein and gelatin; and theyhave arylamidase activity.
    [Show full text]
  • Structural Basis for the Sheddase Function of Human Meprin Β Metalloproteinase at the Plasma Membrane
    Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane Joan L. Arolasa, Claudia Broderb, Tamara Jeffersonb, Tibisay Guevaraa, Erwin E. Sterchic, Wolfram Boded, Walter Stöckere, Christoph Becker-Paulyb, and F. Xavier Gomis-Rütha,1 aProteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona Science Park, E-08028 Barcelona, Spain; bInstitute of Biochemistry, Unit for Degradomics of the Protease Web, University of Kiel, D-24118 Kiel, Germany; cInstitute of Biochemistry and Molecular Medicine, University of Berne, CH-3012 Berne, Switzerland; dArbeitsgruppe Proteinaseforschung, Max-Planck-Institute für Biochemie, D-82152 Planegg-Martinsried, Germany; and eInstitute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, D-55128 Mainz, Germany Edited by Brian W. Matthews, University of Oregon, Eugene, OR, and approved August 22, 2012 (received for review June 29, 2012) Ectodomain shedding at the cell surface is a major mechanism to proteolysis” step within the membrane (1). This is the case for the regulate the extracellular and circulatory concentration or the processing of Notch ligand Delta1 and of APP, both carried out by activities of signaling proteins at the plasma membrane. Human γ-secretase after action of an α/β-secretase (11), and for signal- meprin β is a 145-kDa disulfide-linked homodimeric multidomain peptide peptidase, which removes remnants of the secretory pro- type-I membrane metallopeptidase that sheds membrane-bound tein translocation from the endoplasmic membrane (13). cytokines and growth factors, thereby contributing to inflammatory Recently, human meprin β (Mβ) was found to specifically pro- diseases, angiogenesis, and tumor progression.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Gent Forms of Metalloproteinases in Hydra
    Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin.
    [Show full text]
  • Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Trans-Signaling
    www.nature.com/scientificreports OPEN Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Received: 07 October 2016 Accepted: 03 February 2017 Trans-Signaling Published: 09 March 2017 Philipp Arnold1, Inga Boll2, Michelle Rothaug2, Neele Schumacher2, Frederike Schmidt2, Rielana Wichert2, Janna Schneppenheim1, Juliane Lokau2, Ute Pickhinke2, Tomas Koudelka3, Andreas Tholey3, Björn Rabe2, Jürgen Scheller4, Ralph Lucius1, Christoph Garbers2, Stefan Rose-John2 & Christoph Becker-Pauly2 Soluble Interleukin-6 receptor (sIL-6R) mediated trans-signaling is an important pro-inflammatory stimulus associated with pathological conditions, such as arthritis, neurodegeneration and inflammatory bowel disease. The sIL-6R is generated proteolytically from its membrane bound form and A Disintegrin And Metalloprotease (ADAM) 10 and 17 were shown to perform ectodomain shedding of the receptor in vitro and in vivo. However, under certain conditions not all sIL-6R could be assigned to ADAM10/17 activity. Here, we demonstrate that the IL-6R is a shedding substrate of soluble meprin α and membrane bound meprin β, resulting in bioactive sIL-6R that is capable of inducing IL-6 trans- signaling. We determined cleavage within the N-terminal part of the IL-6R stalk region, distinct from the cleavage site reported for ADAM10/17. Interestingly, meprin β can be shed from the cell surface by ADAM10/17 and the observation that soluble meprin β is not capable of shedding the IL-6R suggests a regulatory mechanism towards trans-signaling. Additionally, we observed a significant negative correlation of meprin β expression and IL-6R levels on human granulocytes, providing evidence for in vivo function of this proteolytic interaction.
    [Show full text]
  • Structure of Neurolysin Reveals a Deep Channel That Limits Substrate Access
    Structure of neurolysin reveals a deep channel that limits substrate access C. Kent Brown*†, Kevin Madauss*, Wei Lian‡, Moriah R. Beck§, W. David Tolbert¶, and David W. Rodgersʈ Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Communicated by Stephen C. Harrison, Harvard University, Cambridge, MA, December 29, 2000 (received for review November 14, 2000) The zinc metallopeptidase neurolysin is shown by x-ray crystallog- cytosolic, but it also can be secreted or associated with the raphy to have large structural elements erected over the active site plasma membrane (11), and some of the enzyme is made with a region that allow substrate access only through a deep narrow mitochondrial targeting sequence by initiation at an alternative channel. This architecture accounts for specialization of this neu- transcription start site (12). ropeptidase to small bioactive peptide substrates without bulky Although neurolysin cleaves a number of neuropeptides in secondary and tertiary structures. In addition, modeling studies vitro, its most established (5, 13, 14) role in vivo (along with indicate that the length of a substrate N-terminal to the site of thimet oligopeptidase) is in metabolism of neurotensin, a 13- hydrolysis is restricted to approximately 10 residues by the limited residue neuropeptide. It hydrolyzes this peptide between resi- size of the active site cavity. Some structural elements of neuro- dues 10 and 11, creating shorter fragments that are believed to ␤ lysin, including a five-stranded -sheet and the two active site be inactive. helices, are conserved with other metallopeptidases. The connect- Neurotensin (pGlu-Leu-Tyr-Gln-Asn-Lys-Pro-Arg-Arg- ing loop regions of these elements, however, are much extended Pro s Tyr-Ile-Leu) is found in a variety of peripheral and in neurolysin, and they, together with other open coil elements, central tissues where it is involved in a number of effects, line the active site cavity.
    [Show full text]
  • Functional and Structural Insights Into Astacin Metallopeptidases
    Biol. Chem., Vol. 393, pp. 1027–1041, October 2012 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/hsz-2012-0149 Review Functional and structural insights into astacin metallopeptidases F. Xavier Gomis-R ü th 1, *, Sergio Trillo-Muyo 1 Keywords: bone morphogenetic protein; catalytic domain; and Walter St ö cker 2, * meprin; metzincin; tolloid; zinc metallopeptidase. 1 Proteolysis Lab , Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028 Barcelona , Spain Introduction: a short historical background 2 Institute of Zoology , Cell and Matrix Biology, Johannes Gutenberg University, Johannes-von-M ü ller-Weg 6, The fi rst report on the digestive protease astacin from the D-55128 Mainz , Germany European freshwater crayfi sh, Astacus astacus L. – then termed ‘ crayfi sh small-molecule protease ’ or ‘ Astacus pro- * Corresponding authors tease ’ – dates back to the late 1960s (Sonneborn et al. , 1969 ). e-mail: [email protected]; [email protected] Protein sequencing by Zwilling and co-workers in the 1980s did not reveal homology to any other protein (Titani et al. , Abstract 1987 ). Shortly after, the enzyme was identifi ed as a zinc met- allopeptidase (St ö cker et al., 1988 ), and other family mem- The astacins are a family of multi-domain metallopepti- bers emerged. The fi rst of these was bone morphogenetic β dases with manifold functions in metabolism. They are protein 1 (BMP1), a protease co-purifi ed with TGF -like either secreted or membrane-anchored and are regulated growth factors termed bone morphogenetic proteins due by being synthesized as inactive zymogens and also by co- to their capacity to induce ectopic bone formation in mice localizing protein inhibitors.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]