Estudio Estructural Y Funcional De Un Inhibidor Proteínico Monodominio

Total Page:16

File Type:pdf, Size:1020Kb

Estudio Estructural Y Funcional De Un Inhibidor Proteínico Monodominio Portada: Fotografía de un as, una moneda de bronce utilizada durante la Segunda República Romana (siglo segundo antes de Cristo), la cual muestra la imagen del dios Jano (fotografía tomada en el Museu Nacional d'Art de Catalunya, Barcelona; www.mnac.cat). Sobre la moneda se muestra el modelo de la estructura del complejo ternario subtilisina- sermetstatina-esnapalisina (en naranja, verde y amarillo, respectivamente) obtenido en la presente tesis doctoral. UNIVERSITAT AUTÒNOMA DE BARCELONA Institut de Biotecnologia i Biomedicina CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Institut de Biologia Molecular de Barcelona Departament de Biologia Estructural Proteolysis Laboratory Estudio estructural y funcional de un inhibidor proteínico monodominio de doble faz, sermetstatina, en complejo con dos peptidasas de diferente clase, subtilisina y esnapalisina Sergio Trillo Muyo Barcelona, Mayo 2013 UNIVERSITAT AUTÒNOMA DE BARCELONA Institut de Biotecnologia i Biomedicina Programa de Doctorado en Estructura y Función de Proteínas 2008/2009 Programa con mención de calidad otorgado por el Ministerio de Educación y Ciencia, enmarcado en las directrices establecidas por el Real Decreto 778/98 Estudio estructural y funcional de un inhibidor proteínico monodominio de doble faz, sermetstatina, en complejo con dos peptidasas de diferente clase, subtilisina y esnapalisina Memoria presentada por Sergio Trillo Muyo para optar al título de doctor por la Universitat Autònoma de Barcelona Sergio Trillo Muyo Directores de Tesis: Tutor: Prof. F.Xavier Gomis Rüth Dr. Joan López Arolas Prof. Xavier Daura Ribera A mis padres A mi tía AGRADECIMIENTOS La portada de esta memoria de tesis se ilustra con una imagen del dios romano Jano, el dios de las puertas, de las transiciones, de los comienzos y los finales. Precisamente, después de todos estos años, de tanto trabajo y de tantas horas, me encuentro aquí, en el final de una etapa y el inicio de otra. La representación de este dios, con dos caras mirando hacia ambos lados de su perfil, me recuerda que en los momentos de transición hay que saber mirar atrás y adelante, al pasado y al futuro. Así que sin apartar la vista del futuro, de los nuevos proyectos y oportunidades, es también hora de mirar atrás, de no dejar olvidadas las cosas que me han llevado hasta aquí. Mirando al pasado veo momentos, algunos buenos y otros no tanto, que de un modo u otro me han marcado en este periodo de crecimiento científico y personal que es la realización de una tesis. Pero, más importantes que esos momentos, son las personas con quienes los compartí, y este es el momento agradecerles el haber estado ahí. Quiero empezar agradeciendo a Xavier Gomis la oportunidad que me dio de realizar esta tesis. Sin él, sin su tiempo, su apoyo, su guía, su motivación y sus ideas, este trabajo no hubiese sido posible. También quiero agradecer especialmente a Joan L. Arolas haber codirigido esta tesis, por todo su trabajo, sus ideas y por todos los conocimientos que me ha transmitido. Tengo que dar las gracias a todos los miembros del laboratorio Cri3 con los que he tenido la suerte de trabajar durante estos años y compartir el día a día. De todos ellos debo mencionar a Goretti Mallorquí, por guiar mis primeros pasos, por motivarme como lo hizo, porque sin ella esta etapa que ahora acaba no habría empezado. Gracias también a Tibisay Guevara, por haberme acompañado durante toda mi estancia en el laboratorio, por todo su trabajo y todo su apoyo. Además, debo dar las gracias a los miembros de los otros Cri con los que he coincidido, especialmente a Isabel Usón por haberme acogido temporalmente en su laboratorio. Gracias también a Anna Mañosas, por su apoyo incondicional, por todas las transiciones que hemos vivido y viviremos juntos. Finalmente, quiero dar las gracias a mi familia. A mis padres, por haber educado a dos hijos como lo han hecho, por todo su sacrificio. A mi hermano, por estar siempre ahí. A mi tía, que siempre tendré presente. Índice ÍNDICE I Índice Índice .............................................................................................................................. I Figuras ................................................................................................................................. VI Tablas ................................................................................................................................ VIII Abreviaturas .................................................................................................................. IX Nomenclatura .............................................................................................................. XV Prefacio ....................................................................................................................... XIX 1. Introducción ............................................................................................................... 1 1.1. Bacterias del suelo ........................................................................................................ 3 1.1.1. Género Streptomyces ............................................................................................. 5 1.2. Peptidasas ..................................................................................................................... 8 1.2.1. Clasificación ............................................................................................................ 9 1.2.1.1. Base de datos EC .......................................................................................... 10 1.2.1.2. Base de datos MEROPS ................................................................................ 11 1.2.2. Metalopeptidasas ................................................................................................ 11 1.2.2.1. Metzinquinas ................................................................................................ 15 1.2.2.1.1. Esnapalisina ....................................................................................... 18 1.2.2.1.2. Regulación por zimogenicidad en metzinquinas............................... 20 1.2.3. Serín peptidasas ................................................................................................... 26 1.2.3.1. Clan PA ......................................................................................................... 29 1.2.3.2. Clan SB .......................................................................................................... 31 1.3. Inhibidores proteínicos de peptidasas ........................................................................ 33 1.3.1. Mecanismo estándar de inhibición ...................................................................... 38 1.3.2. Inhibidores proteínicos de metalopeptidasas ..................................................... 40 1.3.3. Inhibidores proteínicos de serín peptidasas ........................................................ 43 1.3.3.1. Inhibidor de subtilisina de Streptomyces ..................................................... 45 1.3.3.2. Inhibidor de peptidasa neutra de Streptomyces caespitosus ...................... 49 2. Objetivos .................................................................................................................. 51 3. Materiales y métodos ................................................................................................ 55 3.1. Producción y purificación de sermetstatina ............................................................... 57 3.2. Obtención de esnapalisina y proesnapalisina. Análisis del prodominio ..................... 58 3.2.1. Análisis bioinformático ........................................................................................ 59 3.2.2. Producción y purificación de proesnapalisina ..................................................... 59 3.2.3. Producción y purificación de esnapalisina ........................................................... 60 III Índice 3.2.4. Estudios de activación in-vitro de proesnapalisina .............................................. 61 3.2.5. Cristalización de proesnapalisina E164A .............................................................. 62 3.2.6. Estudios de actividad ........................................................................................... 62 3.3. Análisis de proteólisis y su inhibición por sermetstatina ............................................ 63 3.4. Formación y purificación de complejos....................................................................... 64 3.4.1. Subtilisina-sermetstatina ..................................................................................... 64 3.4.2. Esnapalisina-sermetstatina .................................................................................. 64 3.4.3. Subtilisina-sermetstatina-esnapalisina ................................................................ 65 3.5. Cristalización y colección de datos de difracción de rayos X ...................................... 65 3.6. Resolución de estructuras y refinamiento .................................................................. 67 3.7. Experimentos de estabilidad de sermetstatina. Puentes disulfuro ............................ 68 3.8. Miscelánea .................................................................................................................. 68 4. Resultados y discusión .............................................................................................. 69 4.1. Producción y purificación de sermetstatina ...............................................................
Recommended publications
  • Repression of Anti-Proliferative Factor Tob1 in Osteoarthritic Cartilage
    Available online http://arthritis-research.com/content/7/2/R274 ResearchVol 7 No 2 article Open Access Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage Mathias Gebauer1*, Joachim Saas2*, Jochen Haag3, Uwe Dietz2, Masaharu Takigawa4, Eckart Bartnik2 and Thomas Aigner3 1Aventis Pharma Deutschland, Functional Genomics, Sanofi-Aventis, Frankfurt, Germany 2Sanofi-Aventis, Disease Group Thrombotic Diseases/Degenerative Joint Diseases, Frankfurt, Germany 3Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Germany 4Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan * Contributed equally Corresponding author: Thomas Aigner, [email protected] Received: 10 Aug 2004 Revisions requested: 1 Oct 2004 Revisions received: 22 Oct 2004 Accepted: 19 Nov 2004 Published: 11 Jan 2005 Arthritis Res Ther 2005, 7:R274-R284 (DOI 10.1186/ar1479)http://arthritis-research.com/content/7/2/R274 © 2005 Gebauer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Osteoarthritis is the most common degenerative disorder of the genes were detected between normal and osteoarthritic modern world. However, many basic cellular features and cartilage (P < 0.01). One of the significantly repressed genes, molecular processes of the disease are poorly understood. In Tob1, encodes a protein belonging to a family involved in the present study we used oligonucleotide-based microarray silencing cells in terms of proliferation and functional activity.
    [Show full text]
  • The Astacin Family of Metalloendopeptidases
    Profein Science (1995), 4:1247-1261. Cambridge University Press. Printed in the USA Copyright 0 1995 The Protein Society The astacin family of metalloendopeptidases JUDITH S. BOND’ AND ROBERT J. BEYNON2 ’ Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of ‘Science and Technology, Manchester M60 1QD. United Kingdom (RECEIVEDMarch 23, 1995; ACCEPTED April19, 1995) Abstract The astacin family of metalloendopeptidases was recognized as a novel family of proteases in the 1990s. The cray- fish enzyme astacin was the first characterized and is one of the smallest members of the family. More than 20 members of the family have nowbeen identified. They have been detected in species ranging from hydra to hu- mans, in mature andin developmental systems. Proposed functions of these proteases include activation of growth factors, degradation of polypeptides, and processing of extracellular proteins. Astacin family proteases aresyn- thesized with NH,-terminal signal and proenzyme sequences, and many (such as meprins, BMP-1, folloid)con- tain multiple domains COOH-terminal to the protease domain. They are eithersecreted from cells or are plasma membrane-associated enzymes. They have some distinguishing features in addition to the signature sequencein the protease domain: HEXXHXXGFXHEXXRXDR. They have a unique typeof zinc binding, with pentacoor- dination, and a protease domain tertiary structure that contains common attributeswith serralysins, matrix me- talloendopeptidases, and snake venom proteases; they cleave peptide bonds in polypeptides such as insulin B chain and bradykinin andin proteins such as casein and gelatin; and theyhave arylamidase activity.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Functional and Structural Insights Into Astacin Metallopeptidases
    Biol. Chem., Vol. 393, pp. 1027–1041, October 2012 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/hsz-2012-0149 Review Functional and structural insights into astacin metallopeptidases F. Xavier Gomis-R ü th 1, *, Sergio Trillo-Muyo 1 Keywords: bone morphogenetic protein; catalytic domain; and Walter St ö cker 2, * meprin; metzincin; tolloid; zinc metallopeptidase. 1 Proteolysis Lab , Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028 Barcelona , Spain Introduction: a short historical background 2 Institute of Zoology , Cell and Matrix Biology, Johannes Gutenberg University, Johannes-von-M ü ller-Weg 6, The fi rst report on the digestive protease astacin from the D-55128 Mainz , Germany European freshwater crayfi sh, Astacus astacus L. – then termed ‘ crayfi sh small-molecule protease ’ or ‘ Astacus pro- * Corresponding authors tease ’ – dates back to the late 1960s (Sonneborn et al. , 1969 ). e-mail: [email protected]; [email protected] Protein sequencing by Zwilling and co-workers in the 1980s did not reveal homology to any other protein (Titani et al. , Abstract 1987 ). Shortly after, the enzyme was identifi ed as a zinc met- allopeptidase (St ö cker et al., 1988 ), and other family mem- The astacins are a family of multi-domain metallopepti- bers emerged. The fi rst of these was bone morphogenetic β dases with manifold functions in metabolism. They are protein 1 (BMP1), a protease co-purifi ed with TGF -like either secreted or membrane-anchored and are regulated growth factors termed bone morphogenetic proteins due by being synthesized as inactive zymogens and also by co- to their capacity to induce ectopic bone formation in mice localizing protein inhibitors.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Analyse Der Struktur, Funktion Und Evolution Der Astacin-Protein-Familie
    Analyse der Struktur, Funktion und Evolution der Astacin-Protein-Familie Frank Möhrlen Heidelberg, 2002 INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Frank Möhrlen aus Heidelberg Tag der mündlichen Prüfung: 28.06.2002 Thema Analyse der Struktur, Funktion und Evolution der Astacin-Protein-Familie Gutachter: Prof. Dr. Robert Zwilling Prof. Dr. Richard Herrmann Die vorliegende Arbeit wurde am Lehrstuhl Physiologie des Instituts für Zoologie der Universität Heidelberg unter der wissenschaftlichen Leitung von Prof. Dr. R. Zwilling angefertigt. Für die Überlassung des interessanten Themas und die Betreuung meiner Arbeit gilt Herrn Prof. Dr. Robert Zwilling mein bester Dank. Prof. Dr. Richard Herrmann danke ich für die Übernahme des Koreferates. Ich möchte auch allen herzlich danken, die darüber hinaus diese Arbeit unterstützt haben: Prof. Dr. Werner Müller für die weitere Bereitstellung meines Arbeitsplatzes und die Förderung nach der Emeritierung von Prof. Dr. R. Zwilling. Der Landesgraduiertenförderung Baden-Württemberg für die einjährige finanzielle Unterstützung. Priv. Doz. Dr. Günter Vogt für die wertvolle Unterstützung und seine Diskussionsbereitschaft bei den Flusskrebs-Arbeiten. Vom deutschen Krebsforschungszentrum Dr. Martina Schnölzer für die gute Zusammenarbeit bei den massenspektrometrischen Analysen, Dr. Hans-Richard Rackwitz für die Peptidsynthesen und Dr. Hans Heid für die Durchführung der Edman-Sequenzierungen. Prof. Dr. Günter Plickert (Univerität Köln) für die schöne Zusammenarbeit im Rahmen der Hydractinia Astacine. Dr. Harald Hutter vom MPI für medizinische Forschung in Heidelberg für die Einführung in die Mikroinjektionstechnik und GFP-Analyse bei C. elegans. Prof. Dr. Vitalinao Pallini und Dr. Luca Bini (Universität Siena) für die Zusammenarbeit bei den 2D-Elektrophoresen.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,461,850 B2 Beasley Et Al
    USOO6461850B2 (12) United States Patent (10) Patent No.: US 6,461,850 B2 Beasley et al. (45) Date of Patent: Oct. 8, 2002 (54) SOLATED NUCLEC ACID MOLECULES (56) References Cited ENCODING PROTEASE PROTEINS, AND USES THEREOF PUBLICATIONS Bork, Genome Research, 10:348–400, 2000.* (75) Inventors: Ellen M. Beasley, Darnestown, MD Broun et al., Science 282:1315–1317, 1998.* (US); Zhenya Li, Boyds, MD (US) Brenner, TIG 15:132-1333, 1999.* Assignee: Applera Corporation, Norwalk, CT Smith et al., Nature Biotechnology 15:1222–1223, 1997.* (73) Van de Loo et al., Proc. Natl. Acad. Sci. 92:6743-6747, (US) 1995.* Notice: Subject to any disclaimer, the term of this Yasumasu et al., SPTREMBL accesion No. 013116, Jul. 1, patent is extended or adjusted under 35 1997.* U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/934,551 Primary Examiner Ponnathaput Achutamurthy ASSistant Examiner-Delia Ramirez (22) Filed: Aug. 23, 2001 (74) Attorney, Agent, or Firm-Celera Genomics; Justin (65) Prior Publication Data Karjala US 2002/0072106 A1 Jun. 13, 2002 (57) ABSTRACT Related U.S. Application Data The present invention provides amino acid Sequences of (60) Provisional application No. 60/226.903, filed on Aug. 23, peptides that are encoded by genes within the human 2000. genome, the protease peptides of the present invention. The (51) Int. Cl." ............................ C12N 9/50; C12N 5/10; present invention specifically provides isolated peptide and C12N 1/21; CO7H 21/04; C12O 1/37 nucleic acid molecules, methods of identifying orthologs (52) U.S. Cl. ......................... 435/226; 536/232; 435/23; and paralogs of the protease peptides, and methods of 435/69.1; 435/325; 435/252.3; 435/320.1 identifying modulators of the protease peptides.
    [Show full text]
  • Dissertation Flexibility and Constraint in the Evolution
    DISSERTATION FLEXIBILITY AND CONSTRAINT IN THE EVOLUTION OF GENE EXPRESSION AND BEHAVIOR Submitted by Eva Kristin Fischer Department of Biology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2015 Doctoral Committee: Advisor: Kim L. Hoke Cameron K. Ghalambor Shane T. Hentges Rachel L. Mueller Copyright by Eva Kristin Fischer 2015 All Rights Reserved ABSTRACT FLEXIBILITY AND CONSTRAINT IN THE EVOLUTION OF GENE EXPRESSION AND BEHAVIOR Our understanding of how underlying molecular, neural, and physiological mechanisms contribute to phenotypic evolvability remains limited. Central to understanding the evolutionary potential of phenotypes is an understanding of the extent to which the mechanisms underlying phenotypic differences are flexible versus constrained. My dissertation takes advantage of the unique evolutionary history of Trinidadian guppies (Poecilia reticulata) to explore patterns of flexibility and constraint at three levels. In the first study of my dissertation, I examined genetic and developmental influences on variation and covariation in a suite of behavioral traits to understand whether correlations among traits constrain adaptation to novel environments. I reared guppies from high- and low-predation source populations in environments with and without predators to mimic native and novel environmental conditions and characterized differences in a suite of 21 behaviors measured in four behavioral assays. I found that behavioral variance and covariance structure were altered in novel environments in a manner that likely shaped subsequent selection. My findings suggest that divergence in a novel environment was not constrained by trait correlations in the native environment, and that plastic changes in covariance structure may in fact influence the form of adaptation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]