Measurement of the Ψ(2S) Production in Presence of a Quark-Gluon Plasma
Total Page:16
File Type:pdf, Size:1020Kb
N° d’ordre : 925 UNIVERSITÉ CLERMONT AUVERGNE U.F.R. Sciences et Technologies ECOLE DOCTORALE DES SCIENCES FONDAMENTALES THESE Spécialité : Physique Nucléaire présentée par Victor Feuillard Measurement of the ψ(2S) production in presence of a Quark-Gluon Plasma soutenue le 16 novembre 2017, devant la commission d’examen : Mme Roberta ARNALDI Mme Nathalie BESSON M. Frédéric FLEURET (Rapporteur) Mme Elena GONZALEZ FERREIRO (Rapporteur) M. Xavier LOPEZ (co-directeur de thèse) M. Hugo PEREIRA DA COSTA (co-directeur de thèse) M. Philippe ROSNET ii Contents Abstract vii R´esum´eix Acknowledgments xi Introduction 1 1 Introduction to the Quark-Gluon Plasma 3 1.1TheStandardModel....................... 4 1.1.1 Anhistoricaloverviewofparticlesdiscovery...... 4 1.1.2 Elementary particles and fundamental interactions . 5 1.1.3 BasisofQuantumChromo-Dynamics......... 7 1.2TheQGPandtheQCDphasediagram............ 11 1.3 Heavy Ion Collisions ....................... 12 1.3.1 Evolution of a collision .................. 14 1.4ProbesoftheQGP........................ 16 1.4.1 GlobalObservables.................... 17 1.4.2 SoftProbes........................ 17 1.4.3 Hardprobes........................ 18 1.5Thecharmoniumfamily..................... 19 1.5.1 ProductionMechanism.................. 21 1.5.2 ColdNuclearMatterEffects............... 25 1.5.3 Charmonium production in presence of a QGP .... 30 1.5.4 TheoreticalModels.................... 34 1.6ExperimentalResultsfromSPStoLHC............ 38 1.6.1 SuperProtonSynchrotron................ 38 1.6.2 Relativistic Heavy Ion Collider ............. 39 1.6.3 Large Hadron Collider .................. 40 iii iv CONTENTS 2 The ALICE Detector 51 2.1ALICEattheLHC........................ 52 2.1.1 General description of the LHC ............. 52 2.1.2 DescriptionoftheALICEdetector........... 55 2.2DetectorsfromtheCentralBarrel............... 57 2.2.1 TheInnerTrackingSystem(ITS)............ 57 2.2.2 TheTime-ProjectionChamber(TPC)......... 58 2.2.3 TheTransitionRadiationDetector(TRD)....... 59 2.2.4 The Time-Of-Flight detector (TOF) .......... 60 2.2.5 The High-Momentum Particle Identification Detector (HMPID)......................... 60 2.2.6 PhotonSpectrometer(PHOS).............. 61 2.2.7 ElectroMagneticCalorimeter(EMCal)......... 61 2.2.8 ALICECosmicRayDetector(ACORDE)....... 61 2.3ForwardDetectors........................ 62 2.3.1 ZeroDegreeCalorimeter(ZDC)............. 62 2.3.2 PhotonMultiplicityDetector(PMD).......... 63 2.3.3 ForwardMultiplicityDetector(FMD)......... 63 2.3.4 V0detector........................ 64 2.3.5 T0detector........................ 64 2.4TheMuonSpectrometer..................... 65 2.4.1 GeneralLayout...................... 65 2.4.2 TrackingChambers.................... 66 2.4.3 TriggerChambers.................... 67 2.4.4 TrackreconstructionintheMuonSpectrometer.... 71 2.5Triggeranddataacquisitionsystems.............. 72 2.5.1 The Central Trigger Processor and High Level Trigger 72 2.5.2 DataAcquisitionsystem................. 73 3 Measurement of ψ(2S) production 75 3.1 Centrality Determination and Nuclear Overlap Function . 78 3.2DataandEventselection.................... 80 3.2.1 QualityAssurance.................... 80 3.2.2 Physicsselection..................... 81 3.3Signalextraction......................... 82 3.3.1 FitFunctionsusedforthesignal............ 84 3.3.2 FitFunctionsusedforthebackground......... 86 3.3.3 DirectFit......................... 87 3.3.4 Fit after event-mixing .................. 89 3.3.5 Systematicuncertainty.................. 94 CONTENTS v 3.3.6 Results.......................... 95 3.4 Acceptance times Efficiency determination ........... 98 3.4.1 Calculation of the Aε .................. 98 3.4.2 Systematics uncertainties on the Aε ..........101 3.5Numberofequivalentminimumbiasevents..........103 3.5.1 The Fnorm calculationmethods.............103 3.5.2 Pile-Upfactor.......................105 3.5.3 Results..........................106 3.6 ψ(2S) cross-section in pp collisions ...............107 3.6.1 Signalextraction.....................108 3.6.2 Acceptanceandefficiencycorrection..........109 3.6.3 Result...........................111 3.6.4 Energy-extrapolatedCrossSection...........111 3.7Summaryofthesystematicsuncertainties...........113 3.8 Evaluation of Confidence limits with the CLs method . 115 3.8.1 TestStatistic.......................116 3.8.2 Applicationtoasimpleexample............117 3.8.3 Inclusionofthesystematicuncertainties........119 3.8.4 Application to the ψ(2S)signalextraction.......120 3.8.5 Application to the RAA .................122 3.9 Measurement of the ψ(2S)NuclearModificationfactor....123 3.9.1 NuclearModificationFactor...............124 3.9.2 SingleRatio........................126 3.9.3 DoubleRatio.......................130 3.9.4 Comparisontomodels..................134 4 Upgrades of the ALICE detector : the Muon Identifier (MID) - Estimation of the data flow 141 4.1Physicsmotivations.......................142 4.2ALICEUpgrades.........................145 4.3TheMuonIdentifier(MID)...................150 4.4EstimationoftheDataFlow..................153 4.4.1 EventFormat.......................154 4.4.2 Dataflowfromscalers..................155 Conclusion 167 A Confidence Limit on the J/ψ signal 169 vi CONTENTS B Comparison of the model prediction 173 B.1 CoMover Interaction Model and Transport Model comparison 173 B.2CoMoverInteractionModel...................175 B.3TransportModel.........................177 Abstract Measurement of the ψ(2S) production in presence of a Quark- Gluon Plasma The nuclear matter, which constitues the atomic nuclei, is composed of quarks and gluons and interactions between them are described by quantum chromo-dynamics (QCD). Under ordinary conditions, quarks and gluons cannot be observed isolated and are confined inside hadrons such as protons and neutrons. The Quark-Gluon Plasma (QGP) is a state of nuclear matter predicted by QCD where quarks and gluons are deconfined. Experimentally, a QGP can be created in ultra-relativistic heavy ion collisions such as the lead-lead collisions delivered at the LHC, corresponding to speeds close to the speed of light. It is possible to obtain information on the characteris- tics of the QGP by measuring a large number of observables. In particular, the production of charmonium states such as the J/ψ and the ψ(2S), heavy particles composed of a charm and anti-charm pair (cc¯), is studied to inves- tigate the plasma. Indeed, the presence of QGP is expected to modify the charmonium production yields, due to a balance between the mechanism of color screening of the charm quark potential and a mechanism called recom- bination. This balance depends on the collision energy, the temperature of the plasma and nature on the considered particle, in particular one expects the ψ(2S) to be more suppressed than the J/ψ. − In this thesis the inclusive production of ψ(2S) in Pb Pb collisions√ at an energy per nucleon-nucleon collision in the center of mass frame of sNN = 5.02 TeV is measured in the dimuon-decay channel, using the ALICE Muon Spectrometer. The analysis is based on the data collected in ALICE (A Large Ion Collider Experiment) at the LHC in 2015 with an integrated −1 luminosity of 225 μb . The nuclear modification factor RAA is studied as a function of centrality. The ratio of the ψ(2S) and J/ψ RAA is also evaluated and shows that the ψ(2S) is more suppressed than the J/ψ for mid-central and central events. Compared with theoretical predictions, the vii viii ABSTRACT measurements are, within uncertainty, in agreement with theoretical model. The upgrade of the Muon Trigger, the MID (Muon Identifier), is also studied, in particular the expected data flow at a collisions√ rate of 100 kHz. Based on the Pb − Pb data at a collision energy of sNN =5.02 TeV, the estimations predict that the technology that will be implemented in the MID provides a sufficient bandwidth to sustain the data flow. Keywords: Quark Gluon Plasma, heavy ions, quarkonium, ψ(2S), ALICE, LHC. R´esum´e Mesure de la production de ψ(2S) en pr´esence d’un Plasma de Quark et de Gluons La mati`ere nucl´eaire, constituant le noyau des atomes, est form´ee de quarks et de gluons, dont l’interaction est d´ecritepar la th´eorie de la chro- modynamique quantique (QCD). Dans des conditions normales, quarks et gluons ne peuvent ˆetre observ´es de fa¸con isol´ee et sont confin´es dans des hadrons tels que les protons et les neutrons. Le Plasma de Quarks et de Gluons (PQG) est un ´etat de la mati`erenucl´eairepr´editpar la QCD pour lequel ces quarks et gluons sont d´econfin´es. Exp´erimentalement, le PQG peut ˆetre cr´e´e dans des collisions d’ions lourds ultra-relativistes, telles que les collisions d’ions lourds effectu´ees au LHC, correspondant `a des vitesses proche de celle de la lumi`ere. Il est possible d’obtenir des informations sur le PQG en mesurant un large nombre d’observables. En particulier, la production de charmonium tels que le J/ψ et le ψ(2S), particules lourdes constitu´ees d’une paire de quarks charme et anti-charme (cc¯) est mesur´ee pour ´etudier le plasma. En effet, la pr´esence d’un PQG est cens´eemodi- fier les taux de production des charmonia, `acause d’un ´equilibre entre un m´ecanisme d’´ecrantage de couleur du potentiel des quarks charme et un m´ecanisme dit de recombinaison. La position de cet ´equilibre d´epend de l’´energie de collision, la temp´eraturedu plasma, et la nature de la partic- ule consid´er´ee, et plus sp´ecifiquement, il est attendu que le ψ(2S) soit plus supprim´equeleJ/ψ. Dans cette th`ese, la production inclusive de ψ(2S)