Defining Interactions and Interfaces in Engineering Design

Total Page:16

File Type:pdf, Size:1020Kb

Defining Interactions and Interfaces in Engineering Design Downloaded from orbit.dtu.dk on: Sep 24, 2021 Defining Interactions and Interfaces in Engineering Design Parslov, Jakob Filippson Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Parslov, J. F. (2016). Defining Interactions and Interfaces in Engineering Design. Technical University of Denmark. DCAMM Special Report No. S200 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Defi ning Interactions and Interfaces in Engineering Design PhD Thesis Jakob Filippson Parslov DCAMM Special Report No. S200 March 2016 Thesis for the degree of Doctor of Philosophy Defining Interactions and Interfaces in Engineering Design by Jakob Filippson Parslov Department of Mechanical Engineering Technical University of Denmark March, 2016 Defining Interactions and Interfaces in Engineering Design Jakob Filippson Parslov Section of Engineering Design and Product Development Department of Mechanical Engineering Technical University of Denmark Produktionstorvet, Bld. 426 B DK-2800 Kgs. Lyngby Denmark PhD Thesis ISBN: 978-87-7475-447-3 DCAMM Special Report No.: S200 © Copyright by Jakob F. Parslov All rights reserved 2016 ii iii Supervisor Niels Henrik Mortensen, PhD Head of Section, Professor Section of Engineering Design and Product Development Department of Mechanical Engineering Technical University of Denmark Co-supervisor Lars Hvam, PhD Professor Operations Management Department of Management Engineering Technical University of Denmark Company supervisor Tommy Bysted, PhD R&D Director New Product Development Radiometer Medical ApS Opponents Johan Malmqvist, PhD Dean of education MATS, Chair Professor Product and Production Development Chalmers University of Technology Christian Weber, PhD Dean of Department of Mechanical Engineering Technical University of Ilmenau Michael Wörösch, PhD Director of Systems Engineering GN Resound This PhD thesis was publicly defended on June 3rd, 2016 iv Abstract This PhD thesis focuses on the understanding and definition of interactions and interfaces during the architectural decomposition of complex, multi-technological products. The Interaction and Interface Framework developed in this PhD project contribute to the field of engineering design research. Developing complex, multi-technological products involves the joint effort of multiple engineering disciplines in order to arrive at an end product, which satisfies its requirements. A major challenge is however the fact that bringing together engineers from different technical backgrounds means that they have different conceptual viewpoints on the product and use different ‘technical languages’ to communicate. Some terms like an interface, is used frequently in engineering however with no commonly declared meaning and is thus subject to much interpretation across engineering disciplines. It is well-known that most problems arise at the interfaces during product development, which is why there is a need for a rigorous and multi-disciplinary treatment of the concept of interfaces as well as interactions. On the basis of a two-year case study at a medical device manufacturer, the role of interactions and interfaces in product family development has been investigated. The case study showed that for this particular case, interaction and interface descriptions represents the rationales needed to reuse documentation across multiple product variants. The interaction and interface descriptions thus become documents of legal matter and must therefore be unambiguously and completely described. Following this observation, a comprehensive and systematic literature review has been performed in order to investigate the definition and perception of an interface. The review resulted in a classification revealing 13 dominant perceptions of what an interface is from an academic perspective including the observation of an apparent confusion between the terms interaction and interface. In addition, a case example of a solenoid valve was examined in order to reason out the likely causes of problems occurring at interfaces. The case example showed that interfaces that reside at the boundary between engineering disciplines are vulnerable to misinterpretation and rework. Based on this understanding, this thesis presents a first principles, physics-based Interaction and Interface Framework, which provides a ‘common language’ across any engineering discipline for describing and communicating about interactions and interfaces in engineering design. The framework contains classifications of three key terms; interaction, interaction mechanism, and interface. Due to the first principles, physics-based approach to deriving the framework, it has been possible to arrive at a classification of interaction mechanism, which is mutually exclusive (no overlap) and collectively exhaustive (no gaps). This contribution changes the existing paradigm of reasoning about interactions and allows for an unambiguous architectural decomposition of a product. The framework further proposes an 8-step architecting approach explicitly articulating how to systematically apply the framework top-down thus enabling complete and unambiguous descriptions of interactions and interfaces throughout the system. A tool called an Interaction Specification Wheel (ISW) is introduced to support consistency in writing requirements and specifications. All of the contributions have been evaluated in an initial test, which indicated a positive effect on their ability to capture interactions and unambiguously specify them. Further research is needed to obtain statistical significance. Future research may investigate how to incorporate the framework into practice and further evaluate the high level effects. This will most likely require two or more case studies in real-life projects. v vi Resume Denne PhD afhandling omhandler forståelsen og definitionen af interaktioner og interfaces ved arkitekturnedbrydning af komplekse og multi-teknologiske produkter. Interaktions- og Interface Frameworket, som er fremkommet af dette forskningsprojekt, bidrager således til Engineering Design forskningsfeltet For at kunne udvikle komplekse og multi-teknologiske produkter som opfylder dets krav om ønsket funktionalitet og performance, er det nødvendigt med et produktivt samarbejde mellem forskellige ingeniørdiscipliner. En hovedudfordring er dog, at der ikke findes et fælles sprog for visse begreber såsom et interface (dvs. en grænseflade), hvilket resulterer i at forskellige ingeniørdiscipliner anvender deres egen fortolkning af begrebet. Alvoren af dette forstærkes yderligere af, at interfaces er det sted i produktet, hvor flest problemer opstår under udviklingen, hvorfor der er et udtalt behov for en stringent og multidisciplinær behandling af begrebet interface såvel som det nært beslægtede begreb interaction. Den overordnede rolle af interaktions- og interfacebeskrivelser er blevet undersøgt i et toårigt casestudie hos en medikoudstyrsproducent. Casestudiet viste, at i dette specifikke tilfælde, bliver interaktions- og interfacebeskrivelserne brugt som rationaler for genbrug af dokumentation på tværs af produktvarianter. Interaktions- og interfacebeskrivelserne bliver således ophøjet til dokumenter af juridisk karakter, hvorfor de nødvendigvis bør fremstå helt entydige og komplette. Som følge af denne observation blev der foretaget et omfattende og systematisk litteraturstudie for at undersøge definitionen og opfattelsen af et interface. Reviewet resulterede i en klassifikation med 13 forskellige opfattelser af hvad et interface er fra et akademisk perspektiv, herunder en erkendelse af en sammenblanding mellem begreberne interaktion og interface. Derudover blev et case eksempel af en solenoid ventil brugt til at udlede de sandsynlige årsager til at problemer opstår ved interfaces. Case eksemplet viste, at interfaces, som er placeret i grænsefeltet mellem tekniske discipliner, er følsomme overfor fejlfortolkning og bør håndteres intensivt. For at adressere de identificerede fænomener introducerer denne PhD afhandling et first principles, fysikbaseret Interaktions- og Interface Framework som giver et fælles sprog på tværs af alle ingeniørdiscipliner til at beskrive og kommunikere omkring interaktioner og interfaces indenfor Engineering Design. Frameworket indeholder klassifikationer af tre nøglebegreber; interaktion, interaktionsmekanisme og interface. Som følge af en first principles, fysik-baseret tilgang til at udlede frameworket har det været muligt at komme frem til en klassifikation af interaktionsmekanismer som er gensidig uafhængig (ingen overlap) og helt komplet (ingen mangler). Dette framework ændrer det eksisterende paradigme omkring at ræsonnere om interaktioner og interfaces og tillader en entydig nedbrydning af arkitekturen af et produkt. Frameworket
Recommended publications
  • Chapter 1 Introduction and Overview
    Chapter 1 Introduction and Overview Particle physics is the most fundamental science there is. It is the study of the ultimate constituents of matter (the elementray particles) and of how these particles interact with one another (the fundamental forces). The primary aim of this module is to introduce you to what people mean when they refer to the Standard Model of Particle Physics To do this we need to describe the very small (via quantum mechanics) and the very fast since when elementary particles move, they travel at or close to the speed of light (via special relativity). These requirements demand we work in the language of Quantum Field Theory(QFT). QFT as a subject is a huge (and rather advanced) subject in its own right but thankfully we will be able to use a prescriptive (and rather simple) approach to the QFT which is embodied in the Feynman Rules - for those who want to go further into the theoretical structure of the Standard Model see module PX430 - Gauge Theories of Particle Physics. It is a remarkable fact that, theoretically, the fundamental interactions derive from an invariance of the QFT with respect to certain internal symmetry transformations known as local gauge transformations. The resulting dynamical theories of electromagnetism, the weak interaction and the strong interaction and known respectively as Quantum Elec- trodynamics(QED), the electroweak (or Glashow-Weinberg-Salam) theory and Quantum Chromodynamics(QCD). It is this collection of local gauge theories which have become known as the Standard Model(SM). N.B. Gravity plays a negligible role in Particle Physics and a workable quantum theory of gravity does not exist.
    [Show full text]
  • Pulsar,Pulsar Timing Array,And Gravitational Experiments
    Pulsar,pulsar timing array,and gravitational experiments K. J. Lee ( 李柯伽 ) Kavli institute for astronomy and astrophysics, Peking university [email protected] 2019 Outline ● Pulsars ● Gravitational wave ● Gravitational wave detection using pulsar timing array Why we care about gravity theories? ● Two fundamental philosophical questions ● What is the space? ● What is the time? ● Gravity theory is about the fundamental understanding of the background, on which other physics happens, i.e. space and time ● Define the ultimate boundary of any civilization ● After GR, it is clear that the physical description and research of space time will be gravitational physics. ● But this idea can be traced back to nearly 300 years ago Parallel transport. Locally, the surface is flat, one can define the parallel transport. However after a global round trip, the direction will be different. b+db v b V' a a+da The mathematics describing the intrinsic curvature is the Riemannian tensor. Riemannian =0 <==> flat surface The energy density is just the curvature! Gravity theory is theory of space and time! Geometrical interpretation Transverse and traceless i.e. conserve spatial volume to the first order + x Generation of GW R In GW astronomy, we are detecting h~1/R. Increasing sensitivity by a a factor of 10, the number of source is 1000 times. For other detector, they depend on energy flux, which goes as 1/R^2, number of source increase as 100 times. Is GW real? ● Does GW carry energy? – Bondi 1950s ● Can we measure it? – Yes, we can find the gauge invariant form! GW detector ● Bar detector Laser interferometer as GW detector ● Interferometer has long history.
    [Show full text]
  • Three Dimensional Equation of State for Core-Collapse Supernova Matter
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Three Dimensional Equation of State for Core-Collapse Supernova Matter Helena Sofia de Castro Felga Ramos Pais [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Astrophysics and Astronomy Commons Recommended Citation de Castro Felga Ramos Pais, Helena Sofia, "Three Dimensional Equation of State for Core-Collapse Supernova Matter. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1712 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Helena Sofia de Castro Felga Ramos Pais entitled "Three Dimensional Equation of State for Core-Collapse Supernova Matter." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. Michael W. Guidry, Major Professor We have read this dissertation and recommend its acceptance: William Raphael Hix, Joshua Emery, Jirina R. Stone Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Three Dimensional Equation of State for Core-Collapse Supernova Matter A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Helena Sofia de Castro Felga Ramos Pais May 2013 c by Helena Sofia de Castro Felga Ramos Pais, 2013 All Rights Reserved.
    [Show full text]
  • Geometric Justification of the Fundamental Interaction Fields For
    S S symmetry Article Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces Vesselin G. Gueorguiev 1,2,* and Andre Maeder 3 1 Institute for Advanced Physical Studies, Sofia 1784, Bulgaria 2 Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ 07043, USA 3 Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Based on the principle of reparametrization invariance, the general structure of physically relevant classical matter systems is illuminated within the Lagrangian framework. In a straight- forward way, the matter Lagrangian contains background interaction fields, such as a 1-form field analogous to the electromagnetic vector potential and symmetric tensor for gravity. The geometric justification of the interaction field Lagrangians for the electromagnetic and gravitational interactions are emphasized. The generalization to E-dimensional extended objects (p-branes) embedded in a bulk space M is also discussed within the light of some familiar examples. The concept of fictitious accelerations due to un-proper time parametrization is introduced, and its implications are discussed. The framework naturally suggests new classical interaction fields beyond electromagnetism and gravity. The simplest model with such fields is analyzed and its relevance to dark matter and dark energy phenomena on large/cosmological scales is inferred. Unusual pathological behavior in the Newtonian limit is suggested to be a precursor of quantum effects and of inflation-like processes at microscopic scales. Citation: Gueorguiev, V.G.; Maeder, A. Geometric Justification of Keywords: diffeomorphism invariant systems; reparametrization-invariant matter systems; matter the Fundamental Interaction Fields lagrangian; homogeneous singular lagrangians; relativistic particle; string theory; extended objects; for the Classical Long-Range Forces.
    [Show full text]
  • Executive Summary Research Hub for Fundamental Symmetries
    Section A - Executive Summary Research Hub for Fundamental Symmetries, Neutrinos, and Applications to Nuclear Astrophysics: The Inner Space/Outer Space/Cyber Space Connections of Nuclear Physics Intellectual Merit: The first goal of this proposal is to create a coordinated NSF national theory effort at the nuclear physics core of three of the most exciting \discovery" areas of physics: ◦ Neutrino Physics: Beyond-the-standard model (BSM) physics of neutrinos, including their mixing phenomena on earth and in extreme astrophysical environments; the absolute mass scale and the eigenstate behavior under particle-antiparticle conjugation, and the implication of mass and lepton number violation for cosmological evolution; and the relevance of neutri- nos to astrophysics both in transporting energy and lepton number, and as a probe of the otherwise hidden physics that governs the cores of stars and compact objects. ◦ Dense Matter: The recent start of Advanced LIGO Run 1 could well lead to the observation of the gravitational wave signatures from neutron star (NS) mergers by the end of the decade. This follows the observation of a NS of nearly two solar masses by Shapiro delay, and of \black-widow" systems hinting of even higher masses. Current and anticipated observations provide unprecedented opportunities to determine nuclear matter properties at densities and isospins not otherwise reachable, and to relate them to those we measure in laboratory nuclei. ◦ Dark Matter: Definitive evidence that dark matter (DM) dominates our universe is the second demonstration of BSM physics. Nuclear physics can play an important role in this field by helping direct-detection experimenters understand the variety and nature of the possible responses of their nuclear targets, by connecting the stellar processes we study to the feedback mechanisms that can alter galactic structure, and by contributing to the understanding of composite dark matter in cases where lattice QCD methods are relevant.
    [Show full text]
  • THE STANDARD MODEL of FUNDAMENTAL PARTICLES and THEIR INTERACTIONS by the STANDARD MODEL Mesgun Sebhatu of FUNDAMENTAL PARTICLES and THEIR INTERACTIONS 1
    MISN-0-305 THE STANDARD MODEL OF FUNDAMENTAL PARTICLES AND THEIR INTERACTIONS by THE STANDARD MODEL Mesgun Sebhatu OF FUNDAMENTAL PARTICLES AND THEIR INTERACTIONS 1. Overview . 1 2. Historical Introduction a. Gravity . 2 b. Electromagnetism . 2 RUN 7339 EVENT 1279 c. The Weak \Nuclear" Force . 3 e+ e- d. The Strong \Nuclear" Force . 4 ET = 50 GeV ET = 11 GeV 3. The Standard Model a. Symmetry . 5 b. Constituents and Mediators of the Standard Model . 6 c. Weak Isospin and W Bosons . 7 d. Electroweak Theory . 7 e. Spontaneously Broken Symmetry|Phase Transition . 8 + 27 3.0 f. Higgs Bosons . 8 0.0 + g. Relations Between Electroweak Theory Parameters . 9 f h h. Experimental Detection of the W Boson . 9 - i. The Uni¯cation of QCD and Electroweak Theory . 10 90 .0 -3.0 Acknowledgments . 13 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-305 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Standard Model of Fundamental Particles and Their OF PROJECT PHYSNET Interactions The goal of our project is to assist a network of educators and scientists in Author: Mesgun Sebhatu, Department of Physics, Winthrop College, transferring physics from one person to another. We support manuscript Rock Hill, SC 29733 processing and distribution, along with communication and information Version: 11/14/2001 Evaluation: Stage 0 systems. We also work with employers to identify basic scienti¯c skills as well as physics topics that are needed in science and technology. A Length: 2 hr; 20 pages number of our publications are aimed at assisting users in acquiring such Input Skills: skills.
    [Show full text]
  • A Pulsar (Portmanteau of Pulsating Star) Is a Highly Magnetized, Rotating Neutron Star That Emits a Beam of Electromagnetic Radiation
    What was the problem with the original Hubble mirror? The telescope mirror was distorted. Why the Hubble telescope has to operate in space? The atmospheric blurring affects the view on Earth just like ripples in water warp the objects below the surface. What fundamental interaction explains the formation of galaxies? Gravitational interaction. What are black holes? Singularities of space-time, where space is infinitely curved. Their gravitational field is so strong that nothing can escape from a black hole. What are worm holes? A wormhole, also known as an Einstein–Rosen bridge, is a hypothetical topological feature of spacetime that would be fundamentally a "shortcut" through spacetime. What is a quasar? What are quasars? A quasi-stellar radio source ("quasar", /ˈkweɪzɑr/) is a very energetic and distant active galactic nucleus. What is a pulsar? A pulsar (portmanteau of pulsating star) is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. What are stellar nebulae? A nebula (from Latin: "cloud";[1] pl. nebulae or nebulæ, with ligature, or nebulas) is an interstellar cloud of dust, hydrogen, helium and other ionized gases. How do we observe gravitational lensing? A gravitational lens refers to a distribution of plates (such as a cluster of galaxies) between a distant source (a background galaxy) and an observer, that is capable of bending (lensing) the light from the source, as it travels towards the observer. This effect is known as gravitational lensing and is one of the predictions of Albert Einstein's general theory of relativity. When and how the universe was born? In a process called Big Bang about 13.7 billion years ago.
    [Show full text]
  • Let's Have a Coffee with the Standard Model of Particle Physics!
    Physics Education PAPER • OPEN ACCESS Related content - Exploring the standard model of particles Let’s have a coffee with the Standard Model of K E Johansson and P M Watkins - Physics at the Large Hadron Collider. particle physics! Higgs boson (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 February 2014) To cite this article: Julia Woithe et al 2017 Phys. Educ. 52 034001 - Consistency in the construction and use ofFeynman diagrams Peter Dunne View the article online for updates and enhancements. Recent citations - Pitfalls in the teaching of elementary particle physics Oliver Passon et al - A machine of superlatives Niels Tuning - An argument against global no miracles arguments Florian J. Boge This content was downloaded from IP address 141.30.247.98 on 13/06/2019 at 20:56 IOP Physics Education Phys. Educ. 52 P A P ER Phys. Educ. 52 (2017) 034001 (9pp) iopscience.org/ped 2017 Let’s have a coffee with the © 2017 IOP Publishing Ltd Standard Model of particle PHEDA7 physics! 034001 Julia Woithe1,2, Gerfried J Wiener1,3 J Woithe et al and Frederik F Van der Veken1 1 CERN, European Organization for Nuclear Research, Geneva, Switzerland Let’s have a coffee with the Standard Model of particle physics! 2 Department of Physics/Physics Education Group, University of Kaiserslautern, Germany 3 Austrian Educational Competence Centre Physics, University of Vienna, Austria Printed in the UK E-mail: [email protected], [email protected] and [email protected] PED Abstract The Standard Model of particle physics is one of the most successful theories 10.1088/1361-6552/aa5b25 in physics and describes the fundamental interactions between elementary particles.
    [Show full text]
  • Review Article STANDARD MODEL of PARTICLE PHYSICS—A
    Review Article STANDARD MODEL OF PARTICLE PHYSICS—A HEALTH PHYSICS PERSPECTIVE J. J. Bevelacqua* publications describing the operation of the Large Hadron Abstract—The Standard Model of Particle Physics is reviewed Collider and popular books and articles describing Higgs with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health bosons, magnetic monopoles, supersymmetry particles, physics are emphasized and specific applications are pre- dark matter, dark energy, and new particle discoveries sented. The capability of the Standard Model to provide health (PDG 2008). Many of the students’ questions arise from physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the misconceptions regarding the Standard Model and its rela- calculation of the neutron mean lifetime. tionship to the field of health physics (Bevelacqua 2008a). Health Phys. 99(5):613–623; 2010 The increasing number and complexity of these questions Key words: accelerators; beta particles; computer calcula- and misconceptions of the Standard Model motivated the tions; neutrons author to write this review article. The intent of this paper is to present the Standard Model to health physicists in a manner that minimizes the INTRODUCTION mathematical complexity. This is a challenge because the THE THEORETICAL formulation describing the properties Standard Model of Particle Physics is a theory of interacting and interactions of fundamental particles is embodied in fields. It contains the electroweak interaction (Glashow the Standard Model of Particle Physics (Bettini 2008; 1961; Weinberg 1967; Salam 1969) and quantum chromo- Cottingham and Greenwood 2007; Guidry 1999; Grif- dynamics (QCD) (Gross and Wilczek 1973; Politzer 1973).
    [Show full text]
  • Gravitation: the Most Fundamental Interaction
    Gravitation: the most fundamental interaction Johan Hansson* Division of Physics Lule˚aUniversityof Technology SE-971 87 Lule˚a,Sweden Abstract The comprehensive analysis by Niels Bohr shows that the classical world is a necessary additional independent structure not derivable from quantum mechanics. The results of measurement must be ex- pressed classically; there must be a classical region of every experiment where physicists can set apparatus, read pointers and so on. As we will see, the events constituting spacetime of general relativity is this classical structure. Hence, gravitation is required to make the for- mal quantum mechanical coexistence of many mutually incompatible possibilities result in the concrete reality of the normal world, mak- ing gravitation the most fundamental interaction. It also means that \Quantum Gravity" is a pseudo-problem, a mirage, \Quantum Space- time" an oxymoron. *[email protected] 1 Gravitation presents the opportunity to connect, and resolve, two of the outstanding unsolved problems in fundamental physics: 1.) \Quantum Gravity" - that is, how quantum mechanics can be made to \peacefully coexist" with general relativity. 2.) \The Quantum Measurement Problem" - that is, how the ghostly co-existing superpositions of many mutually incompatible possibilities in the formalism of quantum mechanics - linear probability amplitudes - turn into the real world of concrete occurrences that we experience, even though both we and our measuring instruments are made of atoms described by quantum mechanics. From what we today know about nature a solution of the mea- surement problem must be nonlinear, to break quantum superposition1, and nonlocal, required by Bell's theorem [7] and its numerous experimental tests [8], showing correlation of space-like separated events.
    [Show full text]
  • About Face 3: the Essentials of Interaction Design, Third Edition
    01_084113 ffirs.qxp 4/3/07 5:59 PM Page iii About Face 3 The Essentials of Interaction Design Alan Cooper, Robert Reimann, and Dave Cronin 01_084113 ffirs.qxp 4/3/07 5:59 PM Page ii 01_084113 ffirs.qxp 4/3/07 5:59 PM Page i About Face 3 01_084113 ffirs.qxp 4/3/07 5:59 PM Page ii 01_084113 ffirs.qxp 4/3/07 5:59 PM Page iii About Face 3 The Essentials of Interaction Design Alan Cooper, Robert Reimann, and Dave Cronin 01_084113 ffirs.qxp 4/3/07 5:59 PM Page iv About Face 3: The Essentials of Interaction Design Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2007 Alan Cooper Published by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-08411-3 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec- tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub- lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis- sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • Arxiv:2012.01441V2 [Quant-Ph] 10 Jun 2021
    A no-go theorem on the nature of the gravitational field beyond quantum theory Thomas D. Galleyx,1, ∗ Flaminia Giacominix,1, y and John H. Selbyx2, z 1Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada 2ICTQT, University of Gda´nsk,Wita Stwosza 63, 80-308 Gda´nsk,Poland Recently, table-top experiments involving massive quantum systems have been proposed to test the interface of quantum theory and gravity. In particular, the crucial point of the de- bate is whether it is possible to conclude anything on the quantum nature of the gravitational field, provided that two quantum systems become entangled due to solely the gravitational interaction. Typically, this question has been addressed by assuming an underlying physical theory to describe the gravitational interaction, but no systematic approach to characterise the set of possible gravitational theories which are compatible with the observation of entan- glement has been proposed. Here, we introduce the framework of Generalised Probabilistic Theories (GPTs) to the study of the nature of the gravitational field. This framework has the advantage that it only relies on the set of operationally accessible states, transforma- tions, and measurements, without presupposing an underlying theory. Hence, it provides a framework to systematically study all theories compatible with the detection of entanglement generated via the gravitational interaction between two non-classical systems. Assuming that such entanglement is observed we prove a no-go theorem stating that the following state- ments are incompatible: i) the two non-classical systems are independent subsystems, ii) the gravitational field is a physical degree of freedom which mediates the interaction and iii) the gravitational field is classical.
    [Show full text]