Using Plasmonic Nanostructures to Control Electrically Excited Light Emission
Total Page:16
File Type:pdf, Size:1020Kb
Using Plasmonic Nanostructures to Control Electrically Excited Light Emission S042 Thèse de doctorat de l'Université Paris-Saclay SACL préparée à l'Université Paris-Sud : 2018 École doctorale n°572 : Ondes et matières (EDOM) NNT Spécialité de doctorat : Nanophysique Thèse présentée et soutenue à Orsay, le 16 Février 2018, par Shuiyan CAO (曹水艳) Composition du Jury : Klaus KUHNKE Directeur de Recherche Nanoscience Department (– Max Planck Institute for Solid State Research) Président Olivier PLUCHERY Professeur Institut des NanoSciences de Paris (– Université Pierre et Marie Curie) Rapporteur Nordin FELIDJ Professeur ITODYS (– Université Paris Diderot) Rapporteur Dai ZHANG Academic with habilitation Institute of Physical and Theoretical Chemistry (– University of Tübingen) Examinateur Aloyse DEGIRON Chargé de Recherche Centre de Nanosciences et de Nanotechnologies (– Université Paris-Sud) Examinateur Elizabeth BOER-DUCHEMIN Maître de Conférences Institut des Sciences Moléculaires d’Orsay (– Université Paris-Sud) Directrice de thèse Gérald DUJARDIN Directeur de Recherche Institut des Sciences Moléculaires d’Orsay (– Université Paris-Sud) Co-Directeur de thèse Eric LE MOAL Chargé de Recherche Institut des Sciences Moléculaires d’Orsay (– Université Paris-Sud) Invité Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Contents Chapter 1 .............................................................................................................. 1 Introduction ......................................................................................................... 1 1.1 A brief history of SPP excitation in chronological order ...................................... 2 1.2 Interaction of SPPs and plasmonic nanostructures ............................................... 3 1.3 STM excitation and the study of the interaction of SPPs with plasmonic nanostructures ......................................................................................................................... 3 1.4 Outline of this thesis .............................................................................................. 4 Chapter 2 .............................................................................................................. 9 General considerations and experimental setups ............................................. 9 2.1 Surface plasmon polaritons ................................................................................. 10 2.2 Methods for SPP excitation ................................................................................. 15 2.2.1 Optical excitation ............................................................................................................ 16 2.2.2 Electrical excitation ........................................................................................................ 18 2.3 Leakage radiation microscopy............................................................................. 21 2.4 Fourier and real space imaging ........................................................................... 24 2.5 Radially polarized light ....................................................................................... 26 2.6 Electronic and electromagnetic local density of states ....................................... 28 2.7 Experimental setups ............................................................................................ 29 2.7.1 Veeco setup .................................................................................................................... 29 2.7.1.1 Scanning tunneling microscope and tips ........................................................ 30 2.7.1.2 Inverted optical microscope............................................................................ 31 2.7.1.3 Light detection systems .................................................................................. 32 2.7.2 JPK setup ........................................................................................................................ 33 2.7.2.1 STM head and inverted optical microscope ................................................... 34 2.7.2.2 Light detection systems .................................................................................. 34 2.7.3 Comparison between the “Veeco” and “JPK” setups ..................................................... 37 2.8 Conclusion ........................................................................................................... 39 Chapter 3 ............................................................................................................ 45 Using a circular plasmonic lens to control the emission of electrically excited light ..................................................................................................................... 45 3.1 Introduction ......................................................................................................... 46 3.2 Sample preparation .............................................................................................. 47 I 3.3 Comparison of the emission patterns obtained when a plasmonic lens and a thin Au film are electrically excited ............................................................................................ 48 3.3.1 Real space image comparison ......................................................................................... 48 3.3.2 Fourier space image comparison .................................................................................... 50 3.4 Effect of lens parameters on angular spread ....................................................... 52 3.4.1 Experimental results ....................................................................................................... 52 3.4.2 Simulation results ........................................................................................................... 54 3.5 STM excitation is off-centered on the plasmonic lens ........................................ 56 3.5.1 Experimental results ....................................................................................................... 56 3.5.2 Simulation results ........................................................................................................... 58 3.6 Angular spread as a function of wavelength ....................................................... 59 3.7 Angularly resolved spectral imaging of the light emitted from an STM-excited plasmonic lens ...................................................................................................................... 67 3.8 Spectral response: coupling of cavity modes and grating effects ....................... 71 3.9 Conclusion ........................................................................................................... 75 Chapter 4 ............................................................................................................ 81 Controlling the direction and angular spread of light beams using an STM- excited elliptical plasmonic lens ....................................................................... 81 4.1 Introduction ......................................................................................................... 82 4.2 Sample preparation .............................................................................................. 83 4.3 Excitation at a focal point of an elliptical plasmonic lens: collimated light beam 84 4.4 Theoretical explanation of collimated light emission when the excitation is located at a focal point of the elliptical plasmonic lens .................................................................... 89 4.5 Experimentally controlling the direction of a collimated light beam using different elliptical plasmonic lenses .................................................................................................... 95 4.6 Controlling the angular spread of collimated light beams using different elliptical plasmonic lenses ................................................................................................................... 99 4.7 Conclusion ......................................................................................................... 102 Chapter 5 .......................................................................................................... 105 Probing the optical band structure of a planar plasmonic multi-layer stack by STM excitation ........................................................................................... 105 5.1 Introduction ....................................................................................................... 106 5.2 Sample preparation ............................................................................................ 107 5.3 STM excitation of a plasmonic Au (30 nm)-SiO2 (310 nm)-Au (30 nm) multi- layer stack 108 II 5.3.1 Comparison between the STM excitation of the Au (30 nm)-SiO2 (310 nm)-Au (30 nm) structure and a thin Au film (50 nm) .......................................................................................... 108 5.3.2 Fourier space images acquired using different bandpass filters ................................... 110 5.3.3 Theoretical calculation results ...................................................................................... 116 5.4 Comparison of STM and laser excitation of the same structure ....................... 117 5.5 STM excitation of different plasmonic multi-layer stacks of various