Metamaterial Lensing Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Efficiency, Wideband GRIN Lenses with Intrinsically Matched Unit-Cells
1 High-efficiency, Wideband GRIN Lenses with Intrinsically Matched Unit-cells Nicolas Garcia, Student Member, IEEE, Jonathan Chisum, Senior Member, IEEE, Abstract—We present an automated design procedure for the rapid realization of wideband millimeter-wave lens antennas. The design method is based upon the creation of a library of matched unit-cells which comprise wideband impedance matching sections on either side of a phase-delaying core section. The phase accu- mulation and impedance match of each unit-cell is characterized over frequency and incident angle. The lens is divided into rings, each of which is assigned an optimal unit-cell based on incident angle and required local phase correction given that the lens must collimate the incident wavefront. A unit-cell library for a given realizable permittivity range, lens thickness, and unit-cell stack-up can be used to design a wide variety of flat wideband lenses for various diameters, feed elements, and focal distances. A demonstration GRIN lens antenna is designed, fabricated, and measured in both far-field and near-field chambers. The antenna functions as intended from 14 GHz to 40 GHz and is therefore suitable for all proposed 5G MMW bands, Ku- and Ka-band fixed satellite services. The use of intrinsically matched unit- cells results in aperture efficiency ranging from 31% to 72% over the 2.9:1 bandwidth which is the highest aperture efficiency demonstrated across such a wide operating band. Index Terms—GRIN lens antenna, matched unit-cell, unit-cell Fig. 1. Each lens has rotational symmetry about the central axis (z^-axis) library and mirror symmetry across the center of the lens (x^y^-plane). -
High Efficiency Near Diffraction-Limited Mid- Infrared Flat Lenses Based on Metasurface Reflectarrays
Vol. 24, No. 16 | 8 Aug 2016 | OPTICS EXPRESS 18024 High efficiency near diffraction-limited mid- infrared flat lenses based on metasurface reflectarrays 1,8 2,3,8 4 SHUYAN ZHANG, MYOUNG-HWAN KIM, FRANCESCO AIETA, ALAN 1 5 1 SHE, TOBIAS MANSURIPUR, ILAN GABAY, MOHAMMADREZA 1 1,6 7 KHORASANINEJAD, DAVID ROUSSO, XIAOJUN WANG, MARIANO 7 2 1,* TROCCOLI, NANFANG YU, AND FEDERICO CAPASSO 1John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA 2Department of Applied Physics & Applied Mathematics, Columbia University, 500 West 120th St, New York, NY 10027, USA 3Department of Physics, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA 4LEIA 3D, Menlo Park CA 94025, USA 5Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA 6University of Waterloo, Waterloo, ON N2L 3G1, Canada 7AdTech Optics, Inc., 18007 Courtney Court, City of Industry, CA 91748, USA 8These authors contributed equally. *[email protected] Abstract: We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 μm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs. -
Design of an Acoustic Superlens Using Single-Phase Metamaterials with a Star-Shaped Lattice Structure
www.nature.com/scientificreports OPEN Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure Received: 3 October 2017 Meng Chen1,2, Heng Jiang1,2, Han Zhang3, Dongsheng Li4 & Yuren Wang1,2 Accepted: 27 December 2017 We propose a single-phase super lens with a low density that can achieve focusing of sound beyond the Published: xx xx xxxx difraction limit. The super lens has a star-shaped lattice structure made of steel that ofers abundant resonances to produce abnormal dispersive efects as determined by negative parameter indices. Our analysis of the metamaterial band structure suggests that these star-shaped metamaterials have double-negative index properties, that can mediate these efects for sound in water. Simulations verify the efective focusing of sound by a single-phase solid lens with a spatial resolution of approximately 0.39 λ. This superlens has a simple structure, low density and solid nature, which makes it more practical for application in water-based environments. Achieving high-resolution super focusing of sound has been a longstanding challenge. Te critical issue in solving super-resolution imaging centers around how to detect evanescent waves1, and this problem has been considera- bly ameliorated by the recent development of sonic metamaterials2–5. Sonic metamaterials are usually engineered in a complex fashion through subwavelength-scale resonant units to produce exotic physical properties through negative moduli6,7 and a negative mass density8,9. Tese properties enable the focusing of sound to overcome the difraction limit according to the negative refraction and surface states2. Based on the super-resolution imaging approach ofered by metamaterials1, a series of super lenses has been developed using a variety of sonic metamate- rials with double-negative10–13, single-negative14–17 or near-zero mass properties18,19. -
DIGITAL PLASMONICS: from the Concept to Microscopy
UvA-DARE (Digital Academic Repository) Digital plasmonics: from concept to microscopy Gjonaj, B. Publication date 2012 Link to publication Citation for published version (APA): Gjonaj, B. (2012). Digital plasmonics: from concept to microscopy. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 CHAPTER 6 OUTLOOK AND VALORIZATION In this chapter we do not provide new experiments or theory. In this chapter we discuss possible application of the results already presented in the previous chapters. We will describe the potential for the plasmonic microscope along with some other potential applications. Part of the information in this chapter has been filed for a patent. 91 OUTLOOK AND VALORIZATION 6.1 Introduction In this chapter we describe ideas for applications based on amplitude and phase structured plasmonic waves. -
High-Throughput Plasmonic Nanolithography
High-Throughput Plasmonic Nanolithography by Liang Pan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair Professor Roberto Horowitz Professor Ming Wu Fall 2010 High-Throughput Plasmonic Nanolithography ©2010 by Liang Pan Abstract High-Throughput Plasmonic Nanolithography by Liang Pan Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair The conventional projection-type photolithography approach to nanoscale manufacturing is facing possibly insurmountable challenges, especially to invent novel technical solutions that remain economical for the next generation of semi-conductor integrated circuits. Although extreme ultra violet (EUV) lithography with the next generation photo-masks and 193-nm immersion lithography with double patterning are expected to deliver 22 nm and smaller nodes, it still cannot effectively address the reliability and cost issues required for mass production. Maskless nanolithography is a potentially agile and cost effective approach, but most of the current solutions have throughputs that are too low for manufacturing purposes. This dissertation reports a new low-cost high-throughput approach to maskless nanolithography that uses an array of plasmonic lenses (PL) that "fly" above the rotating surface to be patterned, concentrating short wavelength surface plasmons into sub-100 nm spots. However, these nanoscale spots are only formed in the near field (within a few nanometers of the surface), which makes it very difficult to scan the array above the surface at high speeds. -
Flat Lens Criterion by Small-Angle Phase
Flat Lens Criterion by Small-Angle Phase Peter Ott,1 Mohammed H. Al Shakhs,2 Henri J. Lezec,3 and Kenneth J. Chau2 1Heilbronn University, Heilbronn, Germany 2School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada 3Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland, USA We show that a classical imaging criterion based on angular dependence of small-angle phase can be applied to any system composed of planar, uniform media to determine if it is a flat lens capable of forming a real paraxial image and to estimate the image location. The real paraxial image location obtained by this method shows agreement with past demonstrations of far-field flat-lens imaging and can even predict the location of super-resolved images in the near-field. The generality of this criterion leads to several new predictions: flat lenses for transverse-electric polarization using dielectric layers, a broadband flat lens working across the ultraviolet-visible spectrum, and a flat lens configuration with an image plane located up to several wavelengths from the exit surface. These predictions are supported by full-wave simulations. Our work shows that small-angle phase can be used as a generic metric to categorize and design flat lenses. 2 I. INTRODUCTION Glass lenses found in cameras and eyeglasses have imaging capabilities derived from the shapes of their entrance and exit faces. Under certain conditions, it is possible to image with unity magnification using a perfectly flat lens constructed from planar, homogeneous, and isotropic media. Unlike other lenses that are physically flat (such as graded-index lenses or meta-screens), a flat lens has complete planar symmetry and no principle optical axis, which affords the unique possibility of imaging with an infinite aperture. -
Focusing and Scanning Microscopy with Propagating Surface Plasmons
week ending PRL 110, 266804 (2013) PHYSICAL REVIEW LETTERS 28 JUNE 2013 Focusing and Scanning Microscopy with Propagating Surface Plasmons B. Gjonaj,1,* J. Aulbach,1 P. M. Johnson,1 A. P. Mosk,2 L. Kuipers,1 and A. Lagendijk1 1FOM-Institute for Atomic and Molecular Physics AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands 2Complex Photonic Systems, Faculty of Science and Technology, and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands (Received 18 March 2013; published 26 June 2013) Here we demonstrate a novel surface plasmon polariton (SPP) microscope which is capable of imaging below the optical diffraction limit. A plasmonic lens, generated through phase-structured illumination, focuses SPPs down to their diffraction limit and scans the focus with steps as small as 10 nm. This plasmonic lens is implemented on a metallic nanostructure consisting of alternating hole array gratings and bare metal arenas. We use subwavelength scattering holes placed within the bare metal arenas to determine the resolution of our microscope. The resolution depends on the size of the scanning SPP focus. This novel technique has the potential for biomedical imaging microscopy, surface biology, and functionalization chemistry. DOI: 10.1103/PhysRevLett.110.266804 PACS numbers: 73.20.Mf, 68.37.Àd, 87.64.MÀ In conventional microscopy, features smaller than about microscopy. Nevertheless, due to intrinsic problems of half a wavelength cannot be resolved due to the diffraction these techniques (the degree of complexity, resolution, limit of far-field optics. As the basic constituents of cells field of view, or speed), superresolution plasmonic micros- and nanotechnological devices are smaller than the wave- copy has yet to be implemented. -
Plasmonic Waveguide As an Efficient Transducer for High-Density Data
APPLIED PHYSICS LETTERS 95, 171112 ͑2009͒ Plasmonic waveguide as an efficient transducer for high-density data storage ͒ D. O’Connor,1 M. McCurry,2 B. Lafferty,2 and A. V. Zayats1,a 1Centre for Nanostructured Media, The Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom 2Seagate Technology, 1 Disc Drive, Derry BT48 0BF, United Kingdom ͑Received 17 July 2009; accepted 9 October 2009; published online 30 October 2009͒ A design of high optical throughput nanoscale light sources has been proposed based on plasmonic wedge waveguides. It provides localization of the 1500 nm wavelength light at the output of less than 30ϫ30 nm2 area at about 80% coupling efficiency from a dielectric loaded surface plasmon polariton waveguide and nearly 90% efficient power deposition in the absorbing media placed at the output for an experimentally viable 10 nm apex radius of the wedge. Such nanoscale light sources can be useful for high-density data storage, scanning near-field optical microscopy, and sensing. © 2009 American Institute of Physics. ͓doi:10.1063/1.3257701͔ As the areal density of digital data storage increases to- a planar plasmonic lens and plasmonic nanoparticle concen- ward the Tb/in2 regime, the dimensions of individual bits trator has been proposed for the use in HAMR.5,6 A metal- shrink down to below 500 nm2 size. Manipulation of data on insulator-metal taper has also been modeled and optimized such dimensions in optical, magneto-optical, and indeed for high power throughput.7 The coupling efficiency of about magnetic media relying on heat-assisted magnetic recording 8% into 74ϫ80 nm spot in a recording medium at 830 nm ͑HAMR͒ requires development of viable optical means of has been achieved using two coupled disks.6 The outcoupling efficient confinement and delivery of high power light to ϫ 1,2 into a perfectly matched layer with mode size 21 24 nm at nanometer-sized areas. -
Focusing of Electromagnetic Waves by a Left- Handed Metamaterial Flat Lens
Focusing of electromagnetic waves by a left- handed metamaterial flat lens Koray Aydin and Irfan Bulu Department of Physics, Bilkent University, Bilkent, 06800, Ankara Turkey [email protected] Ekmel Ozbay Nanotechnology Research Center and Department of Physics, Bilkent University, Bilkent, 06800, Ankara Turkey Abstract: We present here the experimental results from research conducted on negative refraction and focusing by a two-dimensional (2D) left-handed metamaterial (LHM) slab. By measuring the refracted electromagnetic (EM) waves from a LHM slab, we find an effective refractive index of -1.86. A 2D scanning transmission measurement technique is used to measure the intensity distribution of the EM waves that radiate from the point source. The flat lens behavior of a 2D LHM slab is demonstrated for two different point source distances of ds = 0.5λ and λ. The full widths at half maximum of the focused beams are 0.36λ and 0.4λ, respectively, which are both below the diffraction limit. ©2005 Optical Society of America OCIS codes: (110.2990) Image formation theory; (120.5710) Refraction; (220.3630) Lenses References and links 1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 504 (1968). 2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998). 3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). -
Decorative Plasmonic Surfaces
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Decorative Plasmonic Surfaces Hamid T. Chorsi, Ying Zhu, and John X. J. Zhang However, the implementation of these concepts in real Abstract— Low-profile patterned plasmonic surfaces are microsystems are limited by a variety of factors, including synergized with a broad class of silicon microstructures to greatly technological challenges in realizing three-dimensional enhance near-field nanoscale imaging, sensing, and energy specific nano-structured patterns; inherent device sensitivity to harvesting coupled with far-field free-space detection. This fabrication induced disorder and losses; and experiment- concept has a clear impact on several key areas of interest for the guided modeling of structure interaction with photons across MEMS community, including but not limited to ultra-compact multiple scales. microsystems for sensitive detection of small number of target molecules, and “surface” devices for optical data storage, micro- Inspired by the concepts of optical metamaterials and the imaging and displaying. In this paper, we review the current peculiar features of plasmonic nanopatterns, “Plasmonic state-of-the-art in plasmonic theory as well as derive design microsystems” is an emerging field that is evolving into a guidance for plasmonic integration with microsystems, novel paradigm for the conception of optical plasmonic fabrication techniques, and selected applications in biosensing, surfaces. Plasmonic patterning is the 2-D sub-wavelength including refractive-index based label-free biosensing, plasmonic conformal arrangements of plasmonic nanoparticles, integrated lab-on-chip systems, plasmonic near-field scanning nanoantennas, and nanoapertures or nanogrooves to achieve optical microscopy and plasmonics on-chip systems for cellular unconventional optical wave interactions with nanoscale imaging. -
High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces
High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces Item Type text; Electronic Dissertation Authors Ozdemir, Aytekin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 20:18:27 Link to Item http://hdl.handle.net/10150/626664 HIGH EFFICIENT ULTRA-THIN FLAT OPTICS BASED ON DIELECTRIC METASURFACES by Aytekin Ozdemir __________________________ Copyright © Aytekin Ozdemir 2018 A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2018 2 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. -
Proximity Correction and Resolution Enhancement of Plasmonic Lens Lithography Far Beyond the Near Cite This: RSC Adv.,2017,7,12366 field Diffraction Limit†
RSC Advances View Article Online PAPER View Journal | View Issue Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near Cite this: RSC Adv.,2017,7,12366 field diffraction limit† Yunfei Luo,‡a Ling Liu,‡ab Wei Zhang,a Weijie Kong,a Chengwei Zhao,a Ping Gao,a Zeyu Zhao,a Mingbo Pu,a Changtao Wanga and Xiangang Luo*a Near-field optical imaging methods have been suffering from the issue of a near field diffraction limit, i.e. imaging resolution and fidelity depend strongly on the distance away from objects, which occurs due to the great decay effect of evanescent waves. Recently, plasmonic cavity lens with off-axis light illumination was proposed as a method for going beyond the near field diffraction limit for imaging dense nanoline patterns. In this paper, this investigation was further extended to more general cases for isolated and discrete line patterns, by enhancing the resolution and correcting the proximity effect with assistant peripheral groove structures. Experiment results demonstrate that the width of single, double Received 4th January 2017 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. and multiple line patterns is well controlled and the uniformity is significantly improved in lithography Accepted 15th February 2017 with a 365 nm light wavelength and 120 nm working distance, being approximately ten times the air DOI: 10.1039/c7ra00116a distance defined by the near field diffraction limit. The methods are believed to find applications in rsc.li/rsc-advances nanolithography, high density