Physical Causal Cognition in Parrots

Total Page:16

File Type:pdf, Size:1020Kb

Physical Causal Cognition in Parrots Physical Causal Cognition in Parrots Doctoral thesis for obtaining the academic degree Doctor of Natural Sciences submitted by Laurence O’Neill at the Faculty of Sciences Department of Biology Konstanz, 2020 1 Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2r13ubpt9miv6 Date of the oral examination: 07/08/2020 1. Reviewer: Dr. Dina Dechmann 2. Reviewer: Prof. Dr. Manfred Gahr 2 Contents Summary ................................................................................................................................... 5 Zussamenfassung ...................................................................................................................... 7 1 General Introduction ..................................................................................................... 9 1.1 Causal cognition .........................................................................................................11 1.2 Parrots ........................................................................................................................18 1.3 Parrots as a model in comparative cognition and the selection of a study species ......23 1.4 How to test causal cognition .......................................................................................27 1.5 Experimental plan .......................................................................................................37 2 Chapter 1 - Primate Cognition Test Battery in Parrots .................................................39 2.1 Abstract ......................................................................................................................40 2.2 Introduction .................................................................................................................41 2.3 Materials and Methods ................................................................................................45 2.4 Results ........................................................................................................................52 2.5 Discussion ..................................................................................................................58 3 Chapter 2 - Two macaw species can learn to solve an optimised two-trap problem, but without functional causal understanding ....................................................................................72 3.1 Abstract ......................................................................................................................73 3.2 Introduction .................................................................................................................74 3.3 Methods ......................................................................................................................78 3.5 Discussion ..................................................................................................................85 4 Chapter 3 - Causal Understanding of the Stone Dropping Task in Two Species of Macaw .................................................................................................................................... 101 4.1 Abstract .................................................................................................................... 102 4.4 Results ...................................................................................................................... 114 4.5 Discussion ................................................................................................................ 116 5 General Discussion ................................................................................................... 130 5.1 Summary of Primate Cognition Test Battery (PCTB) in Parrots ................................. 130 5.2 Summary of the Trap-table test ................................................................................. 133 5.3 Summary of Stone dropping ..................................................................................... 137 5.4 To what extent do parrots show causal understanding? ............................................ 142 5.5 Psychometrics in causal cognition tests .................................................................... 144 6 Overall Conclusions .................................................................................................. 147 3 7 References ................................................................................................................ 148 8 Author Contributions .................................................................................................. 161 9 Ethical Statement ...................................................................................................... 162 10 Acknowledgments ..................................................................................................... 163 4 Summary The study of comparative cognition aims to elucidate the evolution of different domains of cognition. By comparing and contrasting closely and distantly related species we can identify the selective pressures that may have lead to their specific cognitive traits. Causal cognition is considered a more complex cognitive trait and is defined as how individuals understand cause and effect relationships. Causal relationships can be learned associatively, but there also appears to be some species that have an intuitive understanding of the mechanisms that underlie causal relationships. Parrots represent a relatively understudied and diverse group of birds that display complex cognitive traits. Studying causal cognition in parrots therefore provides information on a broad range of species that are adapted to a varied range of niches, which vastly broadens our perspective of cognitive evolution. I studied whether different species of parrots were capable of using understanding of causal relationships to guide their behaviour, and specifically whether this causal understanding was driven by learned associations or by complex cognitive processes based on underlying mechanisms. I tested four species of parrots from the Psittacidae family: three species from the Arinae subfamily, Ara ambiguus (great green macaws), Ara glaucogularis (blue throated macaws) and Primolius couloni (blue headed macaws), and one species from the Psittacinae subfamily, Psittacus erithacus (African grey parrot). In the first chapter I tested all four species on an established test battery to evaluate a broad range of cognitive factors from both the physical and social domain. I was able to compare the parrots’ results to both apes and monkeys that had previously completed the same test battery. The parrots did poorly, but it was likely due to issues with task design that made the tests especially difficult for the parrots compared to primates. Following this, in the second chapter, I tested the two Ara species on an established causal cognition test: the trap-tube. Although many subjects were relatively successful in the task, the macaws showed a preference to use learned rules to find a solution rather than an understanding based on the underlying mechanism of the apparatus. Finally, in the third chapter, I once again tested the two Ara species in another causal cognition test: the stone- dropping task. There was a division between the two Ara species in their approach to solve the task. It appears that most of the Ara ambiguus were able to solve the task through exploratory behaviour alone whereas the Ara glaucogularis appeared to require information on the underlying mechanism of the apparatus to solve it. 5 The first two chapters entailed choice tasks, where subjects were required to pick between two or three options to find a reward. I discuss how this type of testing is not suitable for exploring aspects of complex cognition as most subjects can solve these tasks using simple learned rules. However, based on results of the second chapter, I discuss how if choice tests must be used then there are ways to improve subjects’ motivation to not use simple learned rules. Based on the results of the third chapter, I was able to discuss in more detail what kind of causal understanding the two Ara species used. I came to the conclusion that although they may have the capacity to use causal understanding based on the underlying mechanisms of apparatuses, they do not appear to have a drive to do so, favouring learned causal associations where possible. Finally, I contextualise these results on what we know about these parrots ecology and suggest that a causal understanding based on functional mechanisms may not be a factor that is especially vital for macaw cognition. 6 Zussamenfassung Das Studium der vergleichenden Kognition zielt darauf ab die Evolution von verschiedenen Domänen der Kognition aufzuklären. Indem wir nah und entfernt verwandte Arten vergleichen und gegenüberstellen, können wir mögliche Selektionsdrucke identifizieren, welche zu artspezifischen kognitiven Anpassungen geführt haben könnten. Kausale Kognition wird als eine komplexe kognitive Fähigkeit eingestuft und definiert sich als ein Verständnis des Zusammenhang zwischen Ursache und Wirkung. Kausale Zusammenhänge können assoziativ erlernt werden, aber es scheint, dass gewisse Arten ein intuitives Verständnis des zugrundeliegenden Mechanismus von kausalen Zusammenhängen haben könnten. Papageien repräsentieren eine nur mäßig untersuchte und diverse taxonomische Gruppierung von Vögeln, die komplexe kognitive Fähigkeiten aufweisen. Das Studium von kausaler Kognition
Recommended publications
  • TAG Operational Structure
    PARROT TAXON ADVISORY GROUP (TAG) Regional Collection Plan 5th Edition 2020-2025 Sustainability of Parrot Populations in AZA Facilities ...................................................................... 1 Mission/Objectives/Strategies......................................................................................................... 2 TAG Operational Structure .............................................................................................................. 3 Steering Committee .................................................................................................................... 3 TAG Advisors ............................................................................................................................... 4 SSP Coordinators ......................................................................................................................... 5 Hot Topics: TAG Recommendations ................................................................................................ 8 Parrots as Ambassador Animals .................................................................................................. 9 Interactive Aviaries Housing Psittaciformes .............................................................................. 10 Private Aviculture ...................................................................................................................... 13 Communication ........................................................................................................................
    [Show full text]
  • The First Complete Mitogenome of Red-Bellied Parrot (Poicephalus Rufiventris) Resolves Phylogenetic Status Within Psittacidae
    Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: http://www.tandfonline.com/loi/tmdn20 The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae Subir Sarker, Shubhagata Das, Seyed A. Ghorashi, Jade K. Forwood, Karla Helbig & Shane R. Raidal To cite this article: Subir Sarker, Shubhagata Das, Seyed A. Ghorashi, Jade K. Forwood, Karla Helbig & Shane R. Raidal (2018) The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae, Mitochondrial DNA Part B, 3:1, 195-197, DOI: 10.1080/23802359.2018.1437818 To link to this article: https://doi.org/10.1080/23802359.2018.1437818 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 10 Feb 2018. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 MITOCHONDRIAL DNA PART B: RESOURCES, 2018 VOL. 3, NO. 3, 195–197 https://doi.org/10.1080/23802359.2018.1437818 MITOGENOME ANNOUNCEMENT The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae Subir Sarkera , Shubhagata Dasb, Seyed A. Ghorashib, Jade K. Forwoodc, Karla Helbiga and Shane R. Raidalb aDepartment of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia; bSchool of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Albury, Australia; cSchool of Biomedical Sciences, Charles Sturt University, Albury, Australia ABSTRACT ARTICLE HISTORY This paper describes the genomic architecture of a complete mitogenome from a red-bellied parrot Received 18 January 2018 (Poicephalus rufiventris).
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Phylogeography of the Military Macaw (Ara Militaris) and the Great Green Macaw (A
    The Wilson Journal of Ornithology 127(4):661–669, 2015 PHYLOGEOGRAPHY OF THE MILITARY MACAW (ARA MILITARIS) AND THE GREAT GREEN MACAW (A. AMBIGUUS) BASED ON MTDNA SEQUENCE DATA JESSICA R. EBERHARD,1,5 EDUARDO E. IÑIGO-ELIAS,2 ERNESTO ENKERLIN-HOEFLICH,3 AND E. PAÙL CUN4 ABSTRACT.—The Military Macaw (Ara militaris) and the Great Green Macaw (A. ambiguus) are species whose close relationship is reflected in their morphological similarity as well as their geographic ranges. Military Macaws have a disjunct distribution, found in Mexico as well as several areas in South America, while Great Green Macaws have two or more disjunct populations from Honduras to eastern Ecuador. We used mitochondrial sequence data to examine the phylogenetic relationships between these two species, and also among representative samples across their ranges. Our data clearly support recognition of the two species as being distinct evolutionary lineages, and while we found significant phylogeographic structure within A. militaris (between samples collected in eastern and western Mexico), we did not find any evidence of lineage divergence between A. ambiguus from Costa Rica and Ecuador. Received 12 December 2014. Accepted 30 May 2015. Key words: disjunct distribution, Great Green Macaw, Military Macaw, phylogeny, phylogeography. The Military Macaw (Ara militaris) and the South America, primarily east of the Andes from Great Green Macaw (A. ambiguus), sometimes northwestern Colombia and northwestern Vene- named Buffon’s Macaw, are both large macaws zuela to north-western Argentina (Ridgway 1916; that are closely related and possibly conspecific Chapman 1917; Alvarez del Toro 1980; Ridgely (Fjeldså et al. 1987, Collar et al.
    [Show full text]
  • AWI-WL-Hyacinth-Macaw-Comments
    January 27, 2017 VIA Electronic Submission to: http://www.regulations.gov Public Comments Processing Attn: FWS–R9– ES–2012–0013 Division of Policy and Directives Management U.S. Fish and Wildlife Service 4401 N. Fairfax Drive Arlington, VA 22203 Dear Branch Chief Van Norman: Thank you for the opportunity to comment on the proposed threatened listing and draft 4(d) rule for the hyacinth macaw (Anodorhynchus hyacinthinus). These comments are submitted on behalf of the Center for Biological Diversity (Center) and the Animal Welfare Institute (AWI). The Center is a nonprofit conservation organization with more than 1,200,000 members and online activists dedicated to the protection of endangered species and wild places. The Center and its members have a long standing interest in the conservation of foreign species and their habitat, including the hyacinth macaw. AWI is a nonprofit, charitable organization founded in 1951 and dedicated to reducing animal suffering caused by people. AWI has been engaged in efforts to confront issues associated with wildlife trade, particularly the commercial trade in wild-caught birds. We have had a long-standing interest in the conservation of the hyacinth macaw and concern for the detrimental effects of trade coupled with habitat loss on the species. We vehemently disagree with the suggestion that the hyacinth macaw should be listed as threatened instead of endangered under the Endangered Species Act (ESA or Act). Habitat loss is still a significant threat to this species, as is the pet trade. Moreover, the United States Fish and Wildlife Service’s (USFWS or Service) Significant Portion of the Range Policy (SPOR policy) is unlawful as evidenced by the agency’s decision here that the birds are threatened throughout their range and therefore a significant portion of their range need not be analyzed.
    [Show full text]
  • Volume 32 Issue 1
    The Minnesota River Valley Audubon Chapter Trumpeter Volume 53 Issue 1–Bloomington MN Josh Sweet, Trumpeter Editor www.MRVAC.org August - September 2019 [email protected] Special Presentation on September 26 Board Members Elected Birding and Seabird Research submitted by the MRVAC Board of Directors in Alaska’s Bering Sea Ten candidates were chosen to serve on the Minnesota presented by Joel Vos Valley Audubon Chapter’s Board of Directors at the Alaska is home to many incredible seabirds and can be meeting on Thursday, May 23. The Board now consists a haven for rare vagrant sightings for any birder. Come of the following people who will serve during the 2019-2020 term. hear about the seabird research and incredible birding experiences Joel participated in while working in the Matthew Schaut, President Pribilof and Aleutian Islands of the Alaska Maritime Steve Weston, Vice President National Wildlife Refuge. Walt Stull, Treasurer Rob Daves, Secretary An enthusiastic birder since his youth, Joel Vos is a U.S. Rita Baden, Director at Large Fish and Wildlife Service Park Ranger at the Minnesota Greg Burnes, Director at Large Lee Ann Landstrom, Director at Large Valley National Wildlife Refuge. Before starting at the Ken Oulman, Director at Large Minnesota Valley in 2018, Joel previously worked at Monica Rauchwarter, Director at Large Savannah Coastal Refuges Complex near Savannah, Bob Williams, Director at Large Georgia, but started his career with the USFWS in 2012 at the Alaska Maritime National Wildlife Refuge in Homer, Alaska. Joel graduated from Saint Olaf College New Editor of The Trumpeter with a bachelor’s degree (BA) in Environmental Studies, by Josh Sweet, Trumpeter Editor and received a graduate certificate in Environmental Education along with a master’s degree in Education It is an honor and my pleasure to become the next (MEd) from the University of Minnesota, Duluth.
    [Show full text]
  • Pdf Projdoc.Pdf
    Coming Through the Hard Times One Earth Conservation Annual Report 2020 Table of Contents Letter from the Co-Directors 3 Mission & Accomplishments 4 Going Virtual 6 Science 8 Conservation 2020 10 Organization 20 Financial Report 22 Thank You! 24 Letter from the Co-directors 2 Dear One Earthers, The past year, 2020, was a very hard one for so many who were overwhelmed by the pandemic, politics, protests, powerful precipitation, and precarious populations of parrots, among other things. One Earth Conservation’s parrot conservation projects have had more than their share of hard times. Just when it seems that we have come through one hard time, along comes another, and another. Paraphrasing Stephen Foster’s song “Hard Times Come Again No More,” there are frail forms fainting at the door, and though their voices are silent, their pleading looks rock us to the core. How can we keep hard times coming no more, for ourselves and others? The short answer is we cannot. Life is hardship and tragedy. And it is also joy and beauty. There is no beauty without tragedy, and no tragedy without beauty. Both are woven into existence, but we do believe it is possible to weave more color into the drab fabric that smothers so many lives. We do so by bringing hope, and, at the same time, this work allows one to live joyously while in a state of profound grief. This hope arises from our faith that we can accept reality just as it is in all its beauty and tragedy. We see the suffering of others, and how our lives interweave with the tragedy of the commons that causes hunger through ecosystem failure and loss of biodiversity and climate crisis-fueled hurricanes.
    [Show full text]
  • A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus Hyacinthinus) Pair
    The Pegasus Review: UCF Undergraduate Research Journal (URJ) Volume 12 Issue 1 Article 2 2020 A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair Pamela Mulkay University of Central Florida Find similar works at: https://stars.library.ucf.edu/urj University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Office of Undergraduate Research at STARS. It has been accepted for inclusion in The Pegasus Review: UCF Undergraduate Research Journal (URJ) by an authorized editor of STARS. For more information, please contact [email protected]. Recommended Citation Mulkay, Pamela (2020) "A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair," The Pegasus Review: UCF Undergraduate Research Journal (URJ): Vol. 12 : Iss. 1 , Article 2. Available at: https://stars.library.ucf.edu/urj/vol12/iss1/2 Mulkay: A Courting Behavioral Study on a Hyacinth Macaw Published 9-17 Vol. 12.1: April 8, 2020 THE PEGASUS REVIEW: UNIVERSITY OF CENTRAL FLORIDA UNDERGRADUATE RESEARCH JOURNAL A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair By: Pamela Mulkay Faculty Mentor: Frank Logiudice UCF Department of Biology ABSTRACT: This study observes the courtship behaviors of an Anodorhynchus hyacinthinus pair in the Central Florida Zoo and Botanical Gardens in Sanford, Florida. A. hyacinthinus reproductive behaviors occur in four steps in the following order: Allopreening, Cloacal allopreening, Back to Back Copulation Position and finally, Copulation (Schneider 2006). Behavioral observations were taken twice a week for an average of 2 to 3 hours each day for ten weeks. The resulting data was analyzed based on the different actions, types of movement, and types of maintenance observed of the A.
    [Show full text]
  • Pinho & Nogueira.Fm
    ORNITOLOGIA NEOTROPICAL 14: 29–38, 2003 © The Neotropical Ornithological Society HYACINTH MACAW (ANODORHYNCHUS HYACINTHINUS) REPRODUCTION IN THE NORTHERN PANTANAL, MATO GROSSO, BRAZIL João Batista Pinho1 & Flávia M.B. Nogueira2 Instituto de Biociências, Universidade Federal de Mato Grosso, Av. Fernando Correa da Costa, s/n, 78060-900, Cuiabá, MT, Brazil. E-mail: [email protected] & [email protected] Resumo. – Reprodução de Arara Azul (Anodorhynchus hyacinthinus) no norte do Pantanal de Mato Grosso, Brasil. – A Arara Azul (Anodorhynchus hyacinthinus) é uma das muitas espécies da fauna bra- sileira que é ameaçada pela atividade humana, principalmente devido a perda de habitat. A população total com de cerca de 3.000 indivíduos de Arara Azul de vida livre ocorrem principalmente no Pantanal de Mato Grosso, Brasil, uma das maiores áreas alagadas do mundo. Queimadas para a manutenção das pastagens e o tráfico ilegal tem sido e ainda são as maiores ameaças para a sobrevivência da espécie no Pantanal. Nós estudamos as necessidades ambientais, o sucesso reprodutivo e aspectos da biologia reprodutiva da Arara Azul em uma área de 31.000 ha na região norte do Pantanal, de modo a aumentar as informações necessá- rias para elaboração de estratégias de manejo e conservação desta espécie. Procuramos por ninhos, marca- mos e medimos as cavidades dos ninhos e tentamos identificar o potencial de forrageamento e de sítios de nidificação que podem ser colonizados no futuro. Na área de estudo, as Araras Azuis usam cavidades de árvores para nidificar, em árvores entre 10–25 m de altura, a maioria nas bordas de matas. Catorze ninhos foram encontrados (0,045 ninho/100 ha), sendo 12 (85,7%) em apenas uma espécie de árvore, Sterculia ape- tala (Sterculiaceae).
    [Show full text]
  • AMADOR BIRD TRACKS Monthly Newsletter of the Amador Bird Club June 2014 the Amador Bird Club Is a Group of People Who Share an Interest in Birds and Is Open to All
    AMADOR BIRD TRACKS Monthly Newsletter of the Amador Bird Club June 2014 The Amador Bird Club is a group of people who share an interest in birds and is open to all. Happy Father’s Day! Pictured left is "Pale Male" with offspring, in residence at his 927 Fifth Avenue NYC apartment building nest, overlooking Central Park. Perhaps the most famous of all avian fathers, Pale Male’s story 3 (continued below) ... “home of the rare Amadorian Combo Parrot” Dates of bird club President’s Message The Amador Bird Club meeting will meetings this year: be held on: • June 13* Hi Everyone, hope you are enjoying the Friday, June 13, 2014 at 7:30 PM • July 11 warmer weather as I know that some of the • August 8 birds are "getting into the swing of things" and Place : Administration Building, • Sept. 12** producing for all of you breeders. This month Amador County Fairgrounds, • October 10 we will be having a very interesting and Plymouth informative presentation on breeding and • November 14 showing English budgies by Mary Ann Silva. I • December 12 Activity : Breeding and Showing am hoping that you all can attend as it will be English Budgies by Mary Ann (Xmas Party) your loss if you miss this night. Silva *Friday-the-13 th : drive carefully! We will be signing up for the Fair booth Refreshments: Persons with ** Semi-Annual attendance and manning so PLEASE mark it last names beginning with S-Z. Raffle on your calendar. The more volunteers the easier it is for EVERYONE. Set-up is always the Wed.
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • A New Parrot Taxon from the Yucatán Peninsula, Mexico—Its Position Within Genus Amazona Based on Morphology and Molecular Phylogeny
    A new parrot taxon from the Yucatán Peninsula, Mexico—its position within genus Amazona based on morphology and molecular phylogeny Tony Silva1, Antonio Guzmán2, Adam D. Urantówka3 and Paweª Mackiewicz4 1 Miami, FL, United States of America 2 Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico 3 Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland 4 Faculty of Biotechnology, University of Wrocªaw, Wrocªaw, Poland ABSTRACT Parrots (Psittaciformes) are a diverse group of birds which need urgent protection. However, many taxa from this order have an unresolved status, which makes their conservation difficult. One species-rich parrot genus is Amazona, which is widely distributed in the New World. Here we describe a new Amazona form, which is endemic to the Yucatán Peninsula. This parrot is clearly separable from other Amazona species in eleven morphometric characters as well as call and behavior. The clear differences in these features imply that the parrot most likely represents a new species. In contrast to this, the phylogenetic tree based on mitochondrial markers shows that this parrot groups with strong support within A. albifrons from Central America, which would suggest that it is a subspecies of A. albifrons. However, taken together tree topology tests and morphometric analyses, we can conclude that the new parrot represents a recently evolving species, whose taxonomic status should be further confirmed. This lineage diverged from its closest relative about 120,000 years ago and was subjected to accelerated morphological and behavioral changes like some other representatives of the Submitted 14 December 2016 genus Amazona.
    [Show full text]