Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: a Review cosmetics Review Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review Laurentia Opperman 1 , Maryna De Kock 1, Jeremy Klaasen 1 and Farzana Rahiman 1,2,* 1 Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa; [email protected] (L.O.); [email protected] (M.D.K.); [email protected] (J.K.) 2 Skin Research Lab, Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town 7535, South Africa * Correspondence: [email protected] Received: 23 June 2020; Accepted: 13 July 2020; Published: 29 July 2020 Abstract: The indiscriminate use of non-regulated skin lighteners among African populations has raised health concerns due to the negative effects associated with skin lightener toxicity. For this reason, there is a growing interest in the cosmetic development of plants and their metabolites as alternatives to available chemical-derived skin lightening formulations. Approximately 90% of Africa’s population depends on traditional medicine, and the continent’s biodiversity holds plant material with various biological activities, thus attracting considerable research interest. This study aimed to review existing evidence and document indigenous African plant species capable of inhibiting the enzyme tyrosinase and melanogenesis for potential incorporation into skin lightening products. Literature search on melanin biosynthesis, skin lightening, and tyrosinase inhibitors resulted in the identification of 35 plant species were distributed among 31 genera and 21 families across 15 African countries and 9 South African provinces. All plants identified in this study showed competent tyrosinase and melanogenesis inhibitory capabilities. These results indicate that African plants have the potential to serve as alternatives to current chemically-derived skin lighteners. Keywords: skin lightening; cosmetics; indigenous plant extracts; tyrosinase; melanogenesis 1. Introduction Melanin is a widespread natural pigment that is responsible for color in hair, skin, and eyes. It provides protection against the deleterious effects of ultraviolet (UV) irradiation [1]. Melanogenesis is the physiological process of melanin formation in which TYR, a copper-dependent enzyme, initiates the first step. Tyrosinase catalyzes the rate-limiting step where L-tyrosine is converted to L-3,4,-dihydroxyphenylalanine (L-DOPA), leading to the eventual formation of the pigment (Illustrated by Scheme1)[ 2–5]. Abnormal TYR activity leads to pigmentary disorders, such as the abnormal accumulation of melanin (hyperpigmentation) that accounts for most dermatology visits [6–8]. Skin lighteners can be divided by their mechanisms of action, such as inhibition of tyrosinase transcription, inhibition of melanosome transfer, and accelerated epidermal turnover, with the most common target being tyrosinase (TYR) inhibition [9,10]. By decreasing the activity and/or expression of TYR, melanogenesis can be inhibited, leading to reduced melanin production [11]. Cosmetics 2020, 7, 60; doi:10.3390/cosmetics7030060 www.mdpi.com/journal/cosmetics CosmeticsCosmetics2020 2020, 7, 60, 7, x FOR PEER REVIEW 2 of2 14of 14 Scheme 1. Illustration of the melanogenesis pathway. Scheme 1. Illustration of the melanogenesis pathway. The skin lightening industry is one of the fastest-growing segments of the global beauty industry. Global industryThe skin analysts lightening (GIA) industry have predicted is one of that the byfastest-growing 2020, the universal segments skin lighteningof the global market beauty willindustry. reach $23 Global billion industry [12]. A recent analysts meta-analysis (GIA) have provided predicted evidence that by 2020, of the the global universal prevalence skin lightening of skin lighteningmarket will use byreach reporting $23 billion an estimate[12]. A recent of 27.7%, meta-ana withlysis Africa provided at a current evidence estimated of the global prevalence prevalence of 27.1%of [skin13]. Previouslightening epidemiological use by reporting studies an haveestimate also of reported 27.7%,a with high prevalenceAfrica at a of current skin lightener estimated useprevalence among African of 27.1% populations. [13]. Previous This is epidemiological evident among Southstudies African, have also Senegalese, reported and a high Nigerian prevalence study of populationsskin lightener that revealeduse among between African 32 populations. to 75% skin lightenerThis is evident use [14 among–16]. South African, Senegalese, and NigerianThis practice study ispopulations motivated that by revealed a long-standing between history 32 to 75% of socialskin lightener divisions, use including [14–16]. societal pressuresThis and practice stigmas, is leading motivated to the by demand a long-standing for lighter history skin tones of social [17,18 divisions,]. Creams, including lotions, soaps, societal andpressures injections and indicated stigmas, as leading a treatment to the for demand hyperpigmentation for lighter skin disorders tones [17,18]. are exceedingly Creams, lotions, abused soaps, as self-medicationand injections to indicated achieve a as lighter a treatment skin complexion for hyperpigmentation [19,20]. In many disorders African are countries, exceedingly a variety abused of as theseself-medication skin lightening to preparations achieve a lighter are easily skin obtainedcomplexion over-the-counter [19,20]. In many without African a medical countries, prescription, a variety of despitethese this skin being lightening a requirement preparations by law [15 ,are21]. easily The most obtained frequently over-the-cou used ingredientsnter without include steroids,a medical mercury,prescription, hydroquinone despite (HQ)this being (considered a requirement the gold by standard), law [15,21]. and The its derivatives most frequently [7]. Health used concernsingredients associatedinclude withsteroids, the long-termmercury, usehydroquinone of these skin (HQ) lightener (considered ingredients the gold include standard), exogenous and its ochronosis derivatives and[7]. infectious Health concerns dermatosis associated [22,23]. Furthermore,with the long-term heavy use metal of these exposure skin canlightener lead to ingredients damage to include the circulatoryexogenous and ochronosis urinary systems and infectio [24]. Dueus dermatosis to their toxicity, [22,23]. these Furtherm compoundsore, heavy have metal been prohibitedexposure can as skinlead lighteningto damage compounds to the circulatory in several and Africanurinary countries,systems [24]. including Due to South their toxicity, Africa, Nigeria, these compounds Kenya, andhave the Ivorybeen Coastprohibited [25,26 ].as Despiteskin lightening this ban, compounds these damaging in several chemicals African are often countries, illegally including introduced South intoAfrica, cosmetic Nigeria, formulations Kenya, and and, the the Ivory public Coast continues [25,26]. toDespite gain access this ban, via these informal damaging channels chemicals such as are streetoften vendors, illegally markets, introduced and non-pharmaceuticalinto cosmetic formulations shops [ 27and,,28 ].the In public contrast, continues botanicals to gain and naturalaccess via ingredientsinformal ochannelsffer safer such alternatives as street as theyvendors, may mark not exhibitets, and the non-pharmaceutical same kind of toxicity shops as synthetic [27,28]. In compoundscontrast, botanicals and could and exhibit natural much ingredients less harmful offer side safer eff ectsalternatives [29]. Despite as they this, may consumers not exhibit are the not same generallykind of aware toxicity that as natural synthetic products compounds are composed and coul ofd a varietyexhibit ofmuch chemical less compoundsharmful side that effects could [29]. leadDespite to the developmentthis, consumers of are some not adverse generally reactions. aware that These natural potential products effects are could composed be overcome of a variety by of researcherschemical chemically compounds characterizing that could lead extracts to the with develo respectpment to of its some composition adverse [reactions.30]. These potential effectsBotanicals could and be naturalovercome ingredients by researchers provide chemica abundantlly sourcescharacterizing of treatment extracts for variouswith respect diseases to its suchcomposition as cancer, diabetes, [30]. and dermatological conditions [31,32]. The use of plants is a common practice in traditionalBotanicals medicines and natural of many ingredients cultures usingprovide several abunda plantnt sources extracts of as treatment cosmetics for to improvevarious diseases skin healthsuch [33 as,34 cancer,]. This coulddiabetes, be attributed and dermatological to plant extracts conditions being a[31,32]. rich source The ofuse vitamins, of plants antioxidants, is a common oilspractice/essential in oils, traditional and other medicines bioactive compounds,of many cultures which using provide several the body plant with extracts nutrients as necessarycosmetics to forimprove healthy skin health [30]. Plants[33,34]. also This constitute could be attributed a variety to of plant chemical extracts compounds being a rich that source elicit of various vitamins, pharmacologicalantioxidants, activitiesoils/essential with oils, the possibilityand other that bioa thesective compounds compounds, act which synergistically provide tothe produce body with a nutrients necessary for healthy skin [30]. Plants also constitute a variety of chemical compounds that Cosmetics
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Insights Into Tyrosinase Inhibition by Compounds Isolated from Greyia Radlkoferi Syzsyl Using Biological Activity, Molecular Docking and Gene Expression Analysis
    Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Syzsyl using biological activity, molecular docking and gene expression analysis Namrita Lall a *, Elizabeth Mogapi a, Marco Nuno de Canha a, Bridget Crampton a, Mabatho Nqephe a, Ahmed Hussein a, b and Vivek Kumara a Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa, 0002 b Department of Chemistry, University of Western Cape, Private Bag X17, Bellville, 7535, Cape Town Corresponding author: Professor Namrita Lall Department of Plant and Soil Sciences Plant Science Complex, University of Pretoria Pretoria, South Africa, 0002 Email: [email protected] Tel.: 00 27 12 420 2524 Fax: 00 27 12 420 6668 1 ABSTRACT Greyia radlkoferi ethanol extract and its five compounds were tested for their inhibitory activity against the mushroom tyrosinase enzyme and melanin production on melanocytes. The crude extract showed significant tyrosinase inhibition with IC50 of 17.96µg/ml. This is the first report of the isolation of these 5 compounds from Greyia radlkoferi. 2’, 4’, 6’- trihydroxydihydrochalcone showed the highest tyrosinase inhibition at 17.70µg/ml (68.48µM), with low toxicity when compared with crude extract. This compound is therefore, a key component in the crude extract, which is responsible for tyrosinase inhibitory activity. The RT-qPCR indicated that the mechanism of action is most likely post transcriptional. Further, the molecular docking study showed that tyrosinase inhibitory activity depends on interaction of the compound with Cu2+ ions at the active site. This is the first report of the tyrosinase inhibitory activity of the G. radlkoferi extract and molecular insights on interaction of its compounds with Cu2+ ions as the driving factor for tyrosinase inhibition.
    [Show full text]
  • Calibrated Chronograms, Fossils, Outgroup Relationships, and Root Priors: Re-Examining the Historical Biogeography of Geraniales
    bs_bs_banner Biological Journal of the Linnean Society, 2014, 113, 29–49. With 4 figures Calibrated chronograms, fossils, outgroup relationships, and root priors: re-examining the historical biogeography of Geraniales KENNETH J. SYTSMA1,*, DANIEL SPALINK1 and BRENT BERGER2 1Department of Botany, University of Wisconsin, Madison, WI 53706, USA 2Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA Received 26 November 2013; revised 23 February 2014; accepted for publication 24 February 2014 We re-examined the recent study by Palazzesi et al., (2012) published in the Biological Journal of the Linnean Society (107: 67–85), that presented the historical diversification of Geraniales using BEAST analysis of the plastid spacer trnL–F and of the non-coding nuclear ribosomal internal transcribed spacers (ITS). Their study presented a set of new fossils within the order, generated a chronogram for Geraniales and other rosid orders using fossil-based priors on five nodes, demonstrated an Eocene radiation of Geraniales (and other rosid orders), and argued for more recent (Pliocene–Pleistocene) and climate-linked diversification of genera in the five recognized families relative to previous studies. As a result of very young ages for the crown of Geraniales and other rosid orders, unusual relationships of Geraniales to other rosids, and apparent nucleotide substitution saturation of the two gene regions, we conducted a broad series of BEAST analyses that incorporated additional rosid fossil priors, used more accepted rosid ordinal
    [Show full text]
  • Diversity, Above-Ground Biomass, and Vegetation Patterns in a Tropical Dry Forest in Kimbi-Fungom National Park, Cameroon
    Heliyon 6 (2020) e03290 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Diversity, above-ground biomass, and vegetation patterns in a tropical dry forest in Kimbi-Fungom National Park, Cameroon Moses N. Sainge a,*, Felix Nchu b, A. Townsend Peterson c a Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 8000, South Africa b Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa c Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA ARTICLE INFO ABSTRACT Keywords: Research highlights: This study is one of few detailed analyses of plant diversity and vegetation patterns in African Ecological restoration dry forests. We established permanent plots to characterize plant diversity, above-ground biomass, and vegetation Flora patterns in a tropical dry forest in Kimbi-Fungom National Park, Cameroon. Our results contribute to long-term Environmental assessment monitoring, predictions, and management of dry forest ecosystems, which are often vulnerable to anthropogenic Environmental health pressures. Environmental impact assessment Dry forest Background and objectives: Considerable consensus exists regarding the importance of dry forests in species di- Bamenda highlands versity and carbon storage; however, the relationship between dry forest tree species composition, species rich- Kimbi-Fungom National Park ness, and carbon stock is not well established. Also, simple baseline data on plant diversity are scarce for many dry Carbon forest ecosystems. This study seeks to characterize floristic diversity, vegetation patterns, and tree diversity in Semi-deciduous permanent plots in a tropical dry forest in Northwestern Cameroon (Kimbi-Fungom National Park) for the first Tree composition time.
    [Show full text]
  • Phylogeny and Historical Biogeography of Geraniaceae In
    Systematic Botany (2008), 33(2): pp. 326–342 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Historical Biogeography of Geraniaceae in Relation to Climate Changes and Pollination Ecology Omar Fiz, Pablo Vargas, Marisa Alarcón, Carlos Aedo, José Luis García, and Juan José Aldasoro1 Real Jardín Botanico de Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain 1Author for correspondence ([email protected]) Communicating Editor: Mark P. Simmons Abstract—Chloroplast (trnL–F and rbcL) sequences were used to reconstruct the phylogeny of Geraniaceae and Hypseocharitaceae. According to these data Hypseocharitaceae and Geraniaceae are monophyletic. Pelargonium and Monsonia are sisters to the largest clade of Geraniaceae, formed by Geranium, Erodium and California. According to molecular dating and dispersal-vicariance analysis, the split of the stem branches of Geraniaceae probably occurred during the Oligocene, in southern Africa or in southern Africa plus the Mediterranean area. However, their diversification occurred during the Miocene, coinciding with the beginning of major aridification events in their distribution areas. An ancestor of the largest clade of Geraniaceae (Geranium, Erodium, and California) colonised a number of habitats in the northern hemisphere and in South American mountain ranges. In summary, the evolution of the Geraniaceae is marked by the dispersal of ancestors from Southern Africa to cold, temperate and often disturbed habitats in the rest of world, where only generalist pollination and facultative autogamy could ensure sufficient seed production and survival. Keywords—autocompatibility, dispersal-vicariance, drought-tolerance, molecular dating, nectaries, P/O indexes. The Geraniaceae are included in the order Geraniales along are characteristic of the Afro-Arabian land mass (Hutchin- with the families Francoaceae, Greyiaceae, Ledocarpaceae, son 1969).
    [Show full text]
  • Topic- Natural Vegetation of Africa (Paper- V)
    S.S. COLLEGE; Jehanabad Class- B.A. Part- III Department- Geography Faculty- Dr. Sneha Swarup Topic- Natural Vegetation of Africa (Paper- V) Introduction- Africa is sometimes nicknamed the "Mother Continent" due to its being the oldest inhabited continent on Earth. Humans and human ancestors have lived in Africa for more than 5 million years. Africa, the second-largest continent, is bounded by the Mediterranean Sea, the Red Sea, the Indian Ocean, and the Atlantic Ocean. It is divided in half almost equally by the Equator. Africa has eight major physical regions: the Sahara, the Sahel, the Ethiopian Highlands, the savanna, the Swahili Coast, the rain forest, the African Great Lakes, and Southern Africa. Some of these regions cover large bands of the continent, such as the Sahara and Sahel, while others are isolated areas, such as the Ethiopian Highlands and the Great Lakes. Each of these regions has unique animal and plant communities. Natural vegetation types of Africa- Map: - Vegetation Types found in Africa Mainly 09 major types of vegetation cover found here- 1 1. Tropical Rain Forest 2. Tropical Moist Deciduous Forest 3. Tropical Dry Forest 4. Tropical Shrub land 5. Tropical Mountain Systems 6. Subtropical Humid Forest 7. Subtropical Dry Forest 8. Subtropical Steppe 9. Subtropical Mountain Systems Table -1: Africa: proportion of forest by ecological zones Subregions Tropical Subtropical Of Africa Forest area as proportion of ecological zone area Forest area as proportion of ecological zone (percent) area (percent) Rain Moist Dry Shrub Desert Mountain Humid Dry Steppe Desert Mountain Forest Central 65 44 74 23 Africa East 6 15 32 5 9 Africa North 497 20 23 7 Africa Southern 34 28 42 7 15 16 7 3 Africa West 47 35 74 1 6 Africa Total 57 31 48 4 11 16 19 4 Africa Source:- Data derived from an overlay of FRA 2000 global maps of forest cover and ecological zones (http://www.fao.org/3/y1997e/y1997e12.jpg) Brief account of all vegetation types of Africa:- 1.
    [Show full text]
  • Diversity and Relative Distribution of Honeybees Foraging Plants in Some Selected Reserves in Mubi Region, Sudan Savannah Ecological Zone of Nigeria
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2011, 2 (5):388-395 ISSN: 0976-8610 CODEN (USA): AASRFC Diversity and relative Distribution of Honeybees Foraging Plants in some selected Reserves in Mubi Region, Sudan Savannah Ecological zone of Nigeria Abdullahi G *1 ., Sule H 1., Chimoya I. A. 2, and Isah, M. D 3. 1Department of Crop Science, Adamawa State University, Mubi, Adamawa State- Nigeria 2Department of Agricultural Technology, Federal Polytechnic, Mubi, Adamawa State- Nigeria 3Department of Crop Science, University of Calabar, Calabar, Cross River State- Nigeria. ______________________________________________________________________________ ABSTRACT Surveys were conducted from August 2009 to June 2011 in some selected grazing and forest reserves of Mubi to study the diversity and distribution of honeybees foraging plant species. The survey was conducted through monthly visit to the selected sites located in some reserves in two randomly selected local government areas of Mubi region. One each of grazing and forest reserves was purposefully selected in every selected local government area to serve as study site. Four (4) transects of 1,000m in length were selected and stationed on two separate points on each site at every study visit. The start and end of each transect were marked with flags made from white or red clothes to enhance visibility. Moving on the transects, flowering plants found at about 50m radius were visited and observed for the presence and foraging activities of honeybees within a predetermined period of 10 minutes. Plants were scored as bee foraging species when at least three (3) honeybees had visited and foraged on the flowers within the observation period.
    [Show full text]
  • THE MAFINGA MOUNTAINS, ZAMBIA: Report of a Reconnaissance Trip, March 2018
    THE MAFINGA MOUNTAINS, ZAMBIA: Report of a reconnaissance trip, March 2018 October 2018 Jonathan Timberlake, Paul Smith, Lari Merrett, Mike Merrett, William Van Niekirk, Mpande Sichamba, Gift Mwandila & Kaj Vollesen Occasional Publications in Biodiversity No. 24 Mafinga Mountains, Zambia: a preliminary account, page 2 of 41 SUMMARY A brief trip was made in May 2018 to the high-altitude grasslands (2000–2300 m) on the Zambian side of the Mafinga Mountains in NE Zambia. The major objective was to look at plants, although other taxonomic groups were also investigated. This report gives an outline of the area's physical features and previous work done there, especially on vegetation, as well as an account of our findings. It was done at the request of and with support from the Wildlife and Environmental Conservation Society of Zambia under a grant from the Critical Ecosystem Partnership Fund. Over 200 plant collections were made representing over 100 species. Based on these collections, along with earlier, unconfirmed records from Fanshawe's 1973 vegetation study, a preliminary checklist of 430 taxa is given. Species of particular interest are highlighted, including four known endemic species and five near-endemics that are shared with the Nyika Plateau in Malawi. There were eight new Zambian records. Based on earlier studies a bird checklist is presented, followed by a brief discussion on mammals and herps. More detailed accounts are given on Orthoptera and some other arthropod groups. A discussion on the ecology and range of habitats is presented, with particular focus on the quartzite areas that are rather similar to those on the Chimanimani Mountains in Zimbabwe/ Mozambique.
    [Show full text]
  • Afrique Centrale 5
    Afrique 101 Chapitre 11 Afrique 1. Afrique du Nord 2. Afrique de l’Ouest 3. Afrique de l’Est 4. Afrique centrale 5. Afrique australe 6. Afrique – petites îles Couvert forestier d’après la carte des forêts du monde 2000 (FRA2000) Forêt fermée Forêt ouverte et fragmentée Figure 11-1. Afrique: division sous-régionale utilisée dans ce rapport L’Afrique (voir figure 11-1 27 et tableau 11-1) comprend Seul 1 pour cent de la superficie forestière est classée environ 650 millions d’hectares de forêts, soit 17 pour cent comme plantations forestières. Le changement net de la du total mondial. Le pourcentage de forêt par habitant est superficie forestière en Afrique est le plus important de de 0,85 hectare, chiffre proche de la moyenne mondiale. toutes les régions du monde. La perte annuelle nette, Presque toutes les forêts se situent dans le domaine suivant les données extraites des rapports nationaux, est écologique tropical, et l’Afrique renferme environ un quart estimée à -5,3 millions d’hectares par an, soit -0,78 pour de toutes les forêts tropicales ombrophiles du monde. cent par an. 27 La division en sous-régions a pour seul objectif de faciliter la synthèse des données à un niveau géographique intermédiaire et ne traduit aucune opinion ou considération politique dans le choix des pays. La représentation graphique des limites nationales des pays ne traduit aucune opinion de la FAO quant à l’étendue des pays ou au tracé de leurs frontières nationales. www.fao.org/forestry/fo/country/nav_world.jsp 102 FRA 2000 - Rapport principal Tableau 11-1.
    [Show full text]
  • Melliferous Plants for Cameroon Highlands and Adamaoua Plateau Honey
    Melliferous plants for Cameroon Highlands and Adamaoua Plateau honey April 2011 i Melliferous plants for Cameroon Highlands and Adamaoua Plateau honey A melliferous flower is a plant which produces substances that can be collected by insects and turned into honey. Many plants are melliferous, but only certain plants have pollen and nectar that can be harvested by honey bees (Apis mellifera adansonii in Cameroon). This is because of the bee’s physiognomy (their body size and shape, length of proboscis, etc.) A plant is classified as melliferous if it can be harvested by domesticated honey bees. This is a symbiotic relationship (both organisms benefit), with bees collecting nectar, and pollen for food, and useful plant substances to make propolis to fill gaps in the hive. Plants benefit from the transfer of pollen, which assures fertilization. The tables of 1. Native & Forest Plants, April 2011 i Melliferous plants for Cameroon Highlands and Adamaoua Plateau honey 2. Exotic, Agroforestry & Crop Trees and 3. Bee hating trees list many of the known melliferous plants in the Cameroon Highlands and Adamaoua Plateau. This is the mountain range stretching from Mt Oku in the Northwest, through the Lebialem Highlands and Dschang , to Mt Kupe and Muanengouba and to Mt Cameroon in the Southwest. The information presented covers the flowering period, the resources harvested by bees (Nectar, pollen, propolis, and honeydew). It is worth noting that each plant does not produce the same quantity or quality of these resources, and even among species production varies due to location, altitude, plant health and climate. Digital copies of presentations with photos of some of the plants can be obtained from CIFOR [email protected] , SNV, WHINCONET ([email protected]), ANCO ([email protected]) or ERUDEF [email protected] or [email protected] This data was collected from 2007 to 2010 based on interviews with beekeepers in the Northwest and Southwest, observations, information obtained from botanists in Cameroon and internationally, observations and a review of literature.
    [Show full text]
  • Are Plants Used for Skin Care in South Africa Fully Explored?
    Are plants used for skin care in South Africa fully explored? Namrita Lall*, Navneet Kishore Department of Plant Science, Plant Science Complex, University of Pretoria, Pretoria-0002, South Africa Corresponding Author: Prof. Namrita Lall Department of Plant Science, Plant Sciences Complex, University of Pretoria, Pretoria-0002, South Africa E-mail: [email protected] Phone: 012-420-2524; Fax: +27-12-420-6668 Co-author: Dr. Navneet Kishore Department of Plant Science, Plant Sciences Complex, University of Pretoria, Pretoria-0002, South Africa E-mail: [email protected] Phone: +27-12-420-6995 Graphical Abstract Scientific validation of South African medicinal plants used traditionally for skin care and their pharmacological properties associated with treating skin conditions. 1 Contents 1. Introduction 2. Plant as natural source for skin care 3. Abundance of active constituents is the backbone of phyto-derived products 4. Plants grown in South Africa, a potential source for new preparation with beneficial effects on the skin 4.1. Aloe ferox Mill. 4.2. Aspalathus linearis (Burm.f.) R. Dahlgren 4.3. Calodendrum capense (L.f.) Thunb. 4.4. Citrullus lanatus (Thunb.) 4.5. Elaeis guineensis Jacq 4.6. Eriocephalus africanus L. 4.7. Eriocephalus punctulatus L. 4.8. Greyia flanaganii Bolus 4.9. Olea europaea L. subsp. africana (Mill.) P.S.Green 4.10. Pelargonium graveolens L'Her. 4.11. Schinziophyton rautanenii Schinz 4.12. Sclerocarya birrea Sond. 4.13. Sesamum indicum L. 4.14. Sideroxylon inerme L. 4.15. Ximenia americana L. 5. Activities attributed to skin-care ethnobotanicals 5.1. Antioxidant activity 5.2. Anti-inflammatory activity 5.3.
    [Show full text]
  • Final Floral Impact Assessment
    Environmental Impact Assessment for the Mzimvubu Water Project Floral Impact Assessment 5.7 ALIEN AND INVASIVE PLANT SPECIES Alien invaders are plants that are of exotic origin and are invading previously pristine areas or ecological niches (Bromilow, 2001). Not all weeds are exotic in origin but, as these exotic plant species have very limited natural “check” mechanisms within the natural environment, they are often the most opportunistic and aggressively growing species within the ecosystem. Therefore, they are often the most dominant and noticeable within an area. Disturbance of soil through trampling, excavations or landscaping often lead to the dominance of exotic pioneer species that rapidly dominate the area. Under natural conditions, these pioneer species are overtaken by sub-climax and climax species through natural veld succession. This process, however, takes many years to occur, with the natural vegetation never reaching the balanced, pristine species composition prior to the disturbance. There are many species of indigenous pioneer plants, but very few indigenous species can out-compete their more aggressively growing exotic counterparts. Alien vegetation invasion causes degradation of the ecological integrity of an area, causing (Bromilow, 2001): A decline in species diversity; Local extinction of indigenous species; Ecological imbalance; Decreased productivity of grazing pastures and Increased agricultural input costs. During the floral study of the study area, all alien and weed species were identified and are listed in Table 18. Table 18: Dominant alien vegetation species identified during the general site assessment. Species English name Origin Category*CARA Trees/ shrubs Acacia mearnsii Black wattle Australia 2 Acacia dealbata Silver wattle Australia 1 Acacia baileyana Bailey’s wattle Australia 3 Eucalyptus camaldulensis Saligna India 3 Eucalyptus grandis Saligna gum Australia 2 Melia azedarach Syringa India 3 Nicotiana glauca Wild tobacco Argentina 1 Opuntia ficus indica Prickly pear Mexico 1 Ricinus communis var.
    [Show full text]