Ipv6-15-2Mt-Book.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ipv6-15-2Mt-Book.Pdf IPv6 Configuration Guide, Cisco IOS Release 15.2MT Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. © 2012 Cisco Systems, Inc. All rights reserved. C O N T E N T S Start Here: Cisco IOS Software Release Specifics for IPv6 Features 1 Finding Feature Information 1 Cisco IOS Software Platform Dependencies and Restrictions 1 Cisco IOS IPv6 Features and Supported Software Releases 2 Cisco Platforms Supporting IPv6 Hardware Forwarding 27 Supported Platforms 27 Additional 12.2S Release Trains 29 Additional References 30 Implementing IPv6 Addressing and Basic Connectivity 39 Finding Feature Information 39 Prerequisites for Implementing IPv6 Addressing and Basic Connectivity 39 Restrictions for Implementing IPv6 Addressing and Basic Connectivity 40 Information About Implementing IPv6 Addressing and Basic Connectivity 40 IPv6 for Cisco Software 41 Large IPv6 Address Space for Unique Addresses 41 IPv6 Address Formats 42 IPv6 Address Type: Unicast 43 Aggregatable Global Address 43 Link-Local Address 44 IPv4-Compatible IPv6 Address 45 Unique Local Address 45 Site-Local Address 46 IPv6 Address Type: Anycast 46 IPv6 Address Type Multicast 46 IPv6 Multicast Groups 48 IPv6 Address Output Display 48 Simplified IPv6 Packet Header 49 Cisco Express Forwarding and Distributed Cisco Express Forwarding Switching for IPv6 52 Unicast Reverse Path Forwarding 53 IPv6 Configuration Guide, Cisco IOS Release 15.2MT iii Contents DNS for IPv6 54 Path MTU Discovery for IPv6 54 Cisco Discovery Protocol IPv6 Address Support 55 ICMP for IPv6 55 IPv6 ICMP Rate Limiting 55 IPv6 Neighbor Discovery 56 Stateful Switchover 56 IPv6 Neighbor Solicitation Message 56 Enhanced IPv6 Neighbor Discovery Cache Management 58 IPv6 Router Advertisement Message 59 Default Router Preferences for Traffic Engineering 60 IPv6 Neighbor Redirect Message 60 Per-Interface Neighbor Discovery Cache Limit 62 Link, Subnet, and Site Addressing Changes 62 IPv6 Stateless Autoconfiguration 62 Simplified Network Renumbering for IPv6 Hosts 62 IPv6 General Prefixes 63 DHCP for IPv6 Prefix Delegation 63 IPv6 Prefix Aggregation 64 IPv6 Site Multihoming 64 IPv6 Data Links 64 IPv6 for Cisco Software Support for Wide-Area Networking Technologies 65 IPv6 Addresses and PVCs 65 Routed Bridge Encapsulation for IPv6 65 IPv6 Redirect Messages 65 IPv6 on BVI Interfaces for Bridging and Routing 66 Dual IPv4 and IPv6 Protocol Stacks 66 How to Implement IPv6 Addressing and Basic Connectivity 67 Configuring IPv6 Addressing and Enabling IPv6 Routing 68 Configuring a Neighbor Discovery Cache Limit 69 Configuring a Neighbor Discovery Cache Limit on a Specified Router Interface 70 Configuring a Neighbor Discovery Cache Limit on All Device Interfaces 70 Customizing the Parameters for IPv6 Neighbor Discovery 71 Defining and Using IPv6 General Prefixes 72 Defining a General Prefix Manually 73 IPv6 Configuration Guide, Cisco IOS Release 15.2MT iv Contents Defining a General Prefix Based on a 6to4 Interface 73 Defining a General Prefix with the DHCP for IPv6 Prefix Delegation Client Function 74 Using a General Prefix in IPv6 74 Configuring an Interface to Support the IPv4 and IPv6 Protocol Stacks 75 Customizing IPv6 ICMP Rate Limiting 76 Configuring the DRP Extension for Traffic Engineering 77 Configuring Cisco Express Forwarding and Distributed Cisco Express Forwarding Switching for IPv6 78 Configuring Cisco Express Forwarding Switching on Distributed and Nondistributed Architecture Platforms 78 Configuring Unicast RPF 81 Mapping Hostnames to IPv6 Addresses 83 Mapping IPv6 Addresses to IPv6 ATM and Frame Relay Interfaces 84 Displaying IPv6 Redirect Messages 87 Examples 89 Configuration Examples for Implementing IPv6 Addressing and Basic Connectivity 92 Example: IPv6 Addressing and IPv6 Routing Configuration 92 Example: Customizing the Parameters for IPv6 Neighbor Discovery 93 Example: Dual-Protocol Stack Configuration 93 Example: IPv6 ICMP Rate Limiting Configuration 94 Example: Cisco Express Forwarding and Distributed Cisco Express Forwarding Configuration 94 Example: Hostname-to-Address Mappings Configuration 94 Examples: IPv6 Address to ATM and Frame Relay PVC Mapping Configuration 95 Example: IPv6 ATM PVC Mapping Configuration (Point-to-Point Interface) 95 Example: IPv6 ATM PVC Mapping Configuration (Point-to-Multipoint Interface) 95 Example: IPv6 Frame Relay PVC Mapping Configuration (Point-to-Point Interface) 96 Example: IPv6 Frame Relay PVC Mapping Configuration (Point-to-Multipoint Interface) 97 Additional References 97 Feature Information for Implementing IPv6 Addressing and Basic Connectivity 100 Implementing ADSL and Deploying Dial Access for IPv6 111 Finding Feature Information 111 Restrictions for Implementing ADSL and Deploying Dial Access for IPv6 111 Information About Implementing ADSL and Deploying Dial Access for IPv6 111 Address Assignment for IPv6 112 Stateless Address Autoconfiguration 112 IPv6 Configuration Guide, Cisco IOS Release 15.2MT v Contents Prefix Delegation 112 DHCP SIP Server Options 113 AAA over IPv6 113 RADIUS over IPv6 113 RADIUS Per-User Attributes for Virtual Access in IPv6 Environments 113 TACACS+ Over an IPv6 Transport 115 IPv6 Prefix Pools 115 How to Configure ADSL and Deploy Dial Access in IPv6 115 Configuring the NAS 115 Configuring the Remote CE Router 119 Configuring the DHCPv6 Server to Obtain Prefixes from RADIUS Servers 121 Configuring DHCPv6 AAA and SIP Options 122 Configuring TACACS+ over IPv6 123 Configuring the TACACS+ Server over IPv6 124 Specifying the Source Address in TACACS+ Packets 125 Configuring TACACS+ Server Group Options 126 Configuration Examples for Implementing ADSL and Deploying Dial Access for IPv6 127 Example Implementing ADSL and Deploying Dial Access for IPv6 127 Additional References 128 Feature Information for Implementing ADSL and Deploying Dial Access for IPv6 130 Implementing Bidirectional Forwarding Detection for IPv6 133 Finding Feature Information 133 Prerequisites for Implementing Bidirectional Forwarding Detection for IPv6 133 Restrictions for Implementing Bidirectional Forwarding Detection for IPv6 134 Information About Implementing Bidirectional Forwarding Detection for IPv6 134 Overview of the BFDv6 Protocol 134 BFDv6 Registration 134 BFDv6 Global and Link-Local Addresses 134 BFD for IPv4 and IPv6 on the Same Interface 135 Static Route Support for BFD over IPv6 135 BFDv6 Associated Mode 135 BFDv6 Unassociated Mode 136 BFD Support for OSPFv3 136 How to Configure Bidirectional Forwarding Detection for IPv6 136 Specifying a Static BFDv6 Neighbor 136 IPv6 Configuration Guide, Cisco IOS Release 15.2MT vi Contents Associating an IPv6 Static Route with a BFDv6 Neighbor 137 Configuring BFD Support for OSPFv3 138 Configuring Baseline BFD Session Parameters on the Interface 139 Configuring BFD Support for OSPFv3 for All Interfaces 140 Configuring BFDv6 Support for OSPFv3 on One or More OSPFv3 Interfaces 141 Retrieving BFDv6 Information for Monitoring and Troubleshooting 143 Configuration Examples for Bidirectional Forwarding
Recommended publications
  • Ipv6 Security: Myths & Legends
    IPv6 security: myths & legends Paul Ebersman – [email protected] 21 Apr 2015 NANOG on the Road – Boston So many new security issues with IPv6! Or are there… IPv6 Security issues • Same problem, different name • A few myths & misconceptions • Actual new issues • FUD (Fear Uncertainty & Doubt) Round up the usual suspects! Remember these? • ARP cache poisoning • P2p ping pong attacks • Rogue DHCP ARP cache poisoning • Bad guy broadcasts fake ARP • Hosts on subnet put bad entry in ARP Cache • Result: MiM or DOS Ping pong attack • P2P link with subnet > /31 • Bad buy sends packet for addr in subnet but not one of two routers • Result: Link clogs with routers sending packet back and forth Rogue DHCP • Client broadcasts DHCP request • Bad guy sends DHCP offer w/his “bad” router as default GW • Client now sends all traffic to bad GW • Result: MiM or DOS Look similar? • Neighbor cache corruption • P2p ping pong attacks • Rogue DHCP + rogue RA Solutions? • Lock down local wire • /127s for p2p links (RFC 6164) • RA Guard (RFC 6105) And now for something completely different! So what is new? • Extension header chains • Packet/Header fragmentation • Predictable fragment headers • Atomic fragments The IPv4 Packet 14 The IPv6 Packet 15 Fragmentation • Minimum 1280 bytes • Only source host can fragment • Destination must get all fragments • What happens if someone plays with fragments? IPv6 Extension Header Chains • No limit on length • Deep packet inspection bogs down • Confuses stateless firewalls • Fragments a problem • draft-ietf-6man-oversized-header-chain-09
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Ipv6, the DNS and Big Packets
    IPv6, the DNS and Big Packets Geoff Huston, APNIC The IPv6 Timeline… 2010 1990 2000 2020 The IPv6 Timeline… Yes, we’ve been working on this for close to 30 years! 2010 1990 2000 2020 The IPv6 Timeline… Yes, we’ve been working on this for close to 30 years! 2010 1990 2000 2020 In-situ transition… In-situ transition… Phase 1 – Early Deployment IPv4 Internet Edge Dual -Stack Networks IPv6 networks interconnect by IPv6-over-IPv4 tunnels In-situ transition… Phase 2 – Dual Stack Deployment Transit Dual-Stack Networks Edge Dual-Stack Networks IPv6 networks interconnect by Dual Stack transit paths In-situ transition… Phase 3 – IPv4 Sunset IPv6 Internet Edge Dual Stack Networks IPv4 networks interconnect by IPv4-over-IPv6 tunnels We are currently in Phase 2 of this transition Some 15% - 20% of Internet users have IPv6 capability Most new IP deployments use IPv6+ (NATTED) IPv4 IPv4-only Legacy networks are being (gradually) migrated to dual stack The Map of IPv6 penetration – August 2017 The Map of IPv6 penetration – August 2017 We are currently in Phase 2 of this transition Some 15% of Internet users have IPv6 capability Most new IP deployments use IPv6 IPv4-only Legacy networks are being (gradually) migrated to dual stack Today We appear to be in the middle of the transition! Dual Stack networks use apps that prefer to use a IPv6 connection over an IPv4 connection when both are available (*) This implies that the higher the IPv6 deployment numbers the less the level of use of V4 connection, and the lower the pressure on the NAT binding clients * Couple of problems with this: This preference is often relative, and in the quest for ever faster connections the ante keeps rising – Apple is now pressing for a 50ms differential.
    [Show full text]
  • Ipv6 Addressing and Basic Connectivity Configuration Guide Cisco IOS Release 15.1SG
    IPv6 Addressing and Basic Connectivity Configuration Guide Cisco IOS Release 15.1SG Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Ipv6: the Next Generation Internet Protocol 2
    GENERAL I ARTICLE IPv6: The Next Generation Internet Protocol 2. New Features in IPv6 Harsha Srinath IPv4, the workhorse protocol of the currently popular TePI IP protocol suite, is fast becoming obsolete. The exponen­ tial growth of the Internet is the main reason that has required the creation of the next generation of Internet Protocol-IPv6. IPv6 is ~uch more flexible and promises to take care of the address space and security issues in the Harsha Srinath is currently pursuing his MS foreseeable future. degree in Computer Science at the Center for In this part we explain the new features introduced in the Advanced Computer emerging Internet Protocol standard and why they have Studies (CACS) in been introduced. University of Louisiana at Lafayette, USA. His Birth of IPv6 research interests include networking with an As mentioned in Part 11 of the paper, the growth of the global emphasis on wireless Internet was exponential since its inception in the 1980's. The networks, distributed databases and data designers of this Internet Protocol (lPv4) never envisioned the mining. scale of the Internet, nor could they imagine its potential for growth. Unfortunately, this unprecedented growth apart from benefiting millions of users was not without ill consequences. It posed a potential threat that a day might come when virtually all Part 1, IPv4 and its shortcom­ IP address are exhausted. Further, with increasing monetary ings, Resonance, Vol.8, NO.3, pp.33-41,2003. transactions being done using the Internet, there was a need for more security features in the Internet Protocol. A development of a potential solution for this problem began during the late 1990s;The creation of a new version of the Internet Protocol, IPv6, the next-generation Internet Protocol (IPng), was approved by the Internet Engineering Steering Keywords Group on November 17, 1994 as a proposed standard.
    [Show full text]
  • ICMP for Ipv6
    ICMP for IPv6 ICMP in IPv6 functions the same as ICMP in IPv4. ICMP for IPv6 generates error messages, such as ICMP destination unreachable messages, and informational messages, such as ICMP echo request and reply messages. • Information About ICMP for IPv6, on page 1 • Additional References for IPv6 Neighbor Discovery Multicast Suppress, on page 3 Information About ICMP for IPv6 ICMP for IPv6 Internet Control Message Protocol (ICMP) in IPv6 functions the same as ICMP in IPv4. ICMP generates error messages, such as ICMP destination unreachable messages, and informational messages, such as ICMP echo request and reply messages. Additionally, ICMP packets in IPv6 are used in the IPv6 neighbor discovery process, path MTU discovery, and the Multicast Listener Discovery (MLD) protocol for IPv6. MLD is used by IPv6 devices to discover multicast listeners (nodes that want to receive multicast packets destined for specific multicast addresses) on directly attached links. MLD is based on version 2 of the Internet Group Management Protocol (IGMP) for IPv4. A value of 58 in the Next Header field of the basic IPv6 packet header identifies an IPv6 ICMP packet. ICMP packets in IPv6 are like a transport-layer packet in the sense that the ICMP packet follows all the extension headers and is the last piece of information in the IPv6 packet. Within IPv6 ICMP packets, the ICMPv6 Type and ICMPv6 Code fields identify IPv6 ICMP packet specifics, such as the ICMP message type. The value in the Checksum field is derived (computed by the sender and checked by the receiver) from the fields in the IPv6 ICMP packet and the IPv6 pseudoheader.
    [Show full text]
  • Empirical Analysis of Ipv4 and Ipv6 Networks Through Dual-Stack Sites
    information Article Empirical Analysis of IPv4 and IPv6 Networks through Dual-Stack Sites Kwun-Hung Li and Kin-Yeung Wong * School of Science and Technology, The Open University of Hong Kong, Hong Kong, China; [email protected] * Correspondence: [email protected] Abstract: IPv6 is the most recent version of the Internet Protocol (IP), which can solve the problem of IPv4 address exhaustion and allow the growth of the Internet (particularly in the era of the Internet of Things). IPv6 networks have been deployed for more than a decade, and the deployment is still growing every year. This empirical study was conducted from the perspective of end users to evaluate IPv6 and IPv4 performance by sending probing traffic to 1792 dual-stack sites around the world. Connectivity, packet loss, hop count, round-trip time (RTT), and throughput were used as performance metrics. The results show that, compared with IPv4, IPv6 has better connectivity, lower packet loss, and similar hop count. However, compared with IPv4, it has higher latency and lower throughput. We compared our results with previous studies conducted in 2004, 2007, and 2014 to investigate the improvement of IPv6 networks. The results of the past 16 years have shown that the connectivity of IPv6 has increased by 1–4%, and the IPv6 RTT (194.85 ms) has been greatly reduced, but it is still longer than IPv4 (163.72 ms). The throughput of IPv6 is still lower than that of IPv4. Keywords: IPv6; IPv4; network performance; Internet; IoT Citation: Li, K.-H.; Wong, K.-Y. Empirical Analysis of IPv4 and IPv6 1.
    [Show full text]
  • Ipv6 Tunneling Over an Ipv4 Network
    IPv6 Tunneling Over an IPv4 Network James M. Moscola, David Lim, Alan Tetley Department of Computer Science Washington University Campus Box 1045 One Brookings Drive Saint Louis, MO 63130 December 13, 2001 Abstract Due to the growth of the internet, the current address space provided provided by IPv4, with only 4; 294; 967; 296 addresses, has proven to be inadequate. Because of IPv4’s shortcomings, a new protocol, IPv6, has been created to take its place. This new protocol, using its 128-bit address scheme (thats 7x1023 addresses per square meter of earth!), should provide enough addresses for everyone’s computer, refrigerator and their toaster to have a connection to the internet. To help facilitate the movement from an IPv6 internet to an IPv4 internet we have created a module for the the Field Programmable Port Extender (FPX) in accordance with RFC1933. This module allows IPv6 packets coming from an IPv6 network to be packed into IPv4 packets, tunneled through an IPv4 network and then unpacked at the other end of the tunnel before reentering an IPv6 network. This approach to incorporating the new IPv6 specification allows a progressive changeover of networks from IPv4 to the newer IPv6. The current implementation runs at 80 MHz. 1 1 Introduction Due to the growth of the internet, the current address space provided by IPv4, with only 4; 294; 967; 296 addresses, has proven to be inadequate. A new protocol, IPv6 [1], has been developed and promises to facilitate the continual growth of the internet community. IPv6 is capable of offering 2128 internet addresses which amounts to approximately 340 trillion trillion trillion addresses (no that is not a typo, it is truly 340 trillion3).
    [Show full text]
  • Study of Packet Level UDP Performance of NAT44, NAT64 and Ipv6 Using Iperf in the Context of Ipv6 Migration
    Study of packet level UDP performance of NAT44, NAT64 and IPv6 using iperf in the context of IPv6 migration Vitruvius John D. Barayuga William Emmanuel S. Yu Institute of Computing Studies Department of Information Systems and Computer Science Ilocos Sur Polytechnic State College Ateneo de Manila Univeristy Santa Maria, Ilocos Sur, Philippines Quezon City [email protected] [email protected] Abstract— The Internet Assigned Number Authority (IANA) The initial design specification did not take into account the allocated the last of the available /8's of the IPv4 address space to need for the protocol to handle video-on-demand services, or the Regional Internet Registries (RIR's) on February 2011. It other types of large scale data, also with the advent of mobile could not be denied that IPv6 is the Internet of the next communications, set top boxes that have internet access taking generation, however its utilization and implementation in a wide presence in the home, each device requires an IP address, each scale had brought hesitation to the users since it will take time device requires an IP address. and there are concerns that need to be explored in the future. However, the need for a new technology is not paramount; Hence, this paper will lead the way for the acceptance of Internet the current 30-year-old technology has been modified to Protocol version 6 (IPv6) migration in the Philippines using a coincide with new ideas and ways of working. For a similar Network Address Translation (NAT) that there is an sustainable network to be developed and evolve over the next apparent means to be taken into consideration and NAT IPv6 to IPv4 (NAT64) can be a good choice for computer networks with few years a seamless migration over to IPv6 needs to be made.
    [Show full text]
  • Mobile IP Constraints
    EvolutionEvolution ofof thethe InternetInternet CoreCore andand EdgeEdge IPIP WirelessWireless NetworkingNetworking USENIX Annual Technical Conference June 28, 2001 Boston, MA JimJim BoundBound PrinciplePrinciple MemberMember ofof TechnicalTechnical StaffStaff [email protected]@compaq.comom CharlieCharlie PerkinsPerkins NokiaNokia FellowFellow charliepcharliep@@iprgiprg..nokianokia.com.com 1 DiscussionDiscussion § Internet and Current Wireline IP Evolution § Wireless Evolution § IPv6 Evolution § Mobile IP Evolution § The Future: Wireless and Wireline Integrated 2 Internet and Current Wireline IP Evolution 3 InternetInternet CoreCore andand EdgeEdge Edge Communications Core Communications 4 InternetInternet AccessAccess PointPoint End User Wireline Internet Edge and Core Internet Services Workstation Workstation Workstation Access Points Access Points Wireless IP SS7 IP Gateway Gateway Comm. Tower Comm. Tower Comm. Tower 5 End User Wireless End User Telephony InternetInternet CharacterizationCharacterization TodayToday § Virtual Private Networks – Tunnels – Private Addresses – Secure at Edge or Access Only § Network Address Translation (NAT) Required § End-2-End Model is Lost § Try getting a Globally Routable IPv4 Address in Europe or Asia; or a set of them for your business !!! § These are not optimal conditions for the evolution of the Internet 6 InternetInternet engineersengineers areare workingworking onon itit !!!!!! § The Next Generation Internet Protocol is IPv6 and will restore the End-2-End model of the Internet § 2.5G
    [Show full text]
  • Ipv6 Network
    #CLUS Designing and Deploying a Secure IPv6 Network Timothy Martin - @bckcntryskr Eric Vyncke - @evyncke Christopher Werny - @bcp38_ TECRST-2001 #CLUS Agenda • IPv6 Design Considerations • IPv6 Routing Protocols • IPv6 Translation Technologies • IPv6 Only, A case study • Securing the IPv6 Perimeter • Conclusion #CLUS TECRST-2001 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Live Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space Webex Teams will be moderated cs.co/ciscolivebot# TECRST-2001 by the speaker until June 16, 2019. #CLUS © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 IPv6 Design Considerations Tim Martin Solutions Specialist TECRST-2001 @bckcntryskr #2020 #CLUS Hardening IPv6 Management Plane • SSH, SNMPv3, Syslog, NTP, NetFlow v9 • Disable HTTP/HTTPS access if not needed • RADIUS over IPv6 • IPv6 access-class for SSH VTY access • Important: Harden the router, before enabling routing ipv6 access-list V6ACCESS permit ipv6 2001:db8:10:10::1/128 any deny ipv6 any any log-input line vty 0 4 ipv6 access-class V6ACCESS in transport input ssh #CLUS TECRST-2001 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 Routing Protocol Considerations • Enable IPv6 routing • ipv6 unicast-routing (ios) • no switchport (ios-xe) • IPv6 Next Hop • Link local addresses • Global address on interface not required • Topology & alignment with existing RP’s Management Routing • Router ID Switching Services • Unique 32-bit number identifier #CLUS TECRST-2001 © 2019 Cisco and/or its affiliates.
    [Show full text]
  • Comparing Tcp-Ipv4/ Tcp-Ipv6 Network Performance
    COMPARING TCP-IPV4/ TCP-IPV6 NETWORK PERFORMANCE A Thesis Presented to the Faculty of the Graduate School University of Missouri-Columbia ___________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science by HARSHIL SHAH Dr. Gordon K. Springer, Thesis Advisor DECEMBER 2013 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled COMPARING TCP-IPV4/ TCP-IPV6 NETWORK PERFORMANCE Presented by Harshil Shah A candidate for the degree of Master of Science And hereby certify that in their opinion it is worthy of acceptance. __________________________________________________ Dr. Gordon K Springer __________________________________________________ Dr. Dmitry Korkin __________________________________________________ Dr. Justin Legarsky ACKNOWLEDGEMENTS I would like to acknowledge and thank, with gratitude, the following people who helped me throughout my studies and completion of my project. First and foremost, my debt of thanks to my advisor, Gordon K Springer. I would like to thank him for his expert guidance, tutelage and confidence. I would also like to thank him for his patience entrusted upon me to complete the project, while living hundreds of miles away, employed in full-time job. The project would not have been successful without his motivation. Secondly I would like to thank to my committee members for taking time from their busy schedules and contribute valuable insights. Lastly I would like to thank to my friends and my family for their support and collaboration in completion of this project. My honors and achievements are dedicated to all of these people. ii TABLE OF CONTENTS ACKNOWLEDGMENTS.............................................................................................. ii LIST OF FIGURES ...................................................................................................... vi LIST OF TABLES .....................................................................................................
    [Show full text]