Lepidoptera: Tortricidae), a Candidate for Biological Control of Brazilian Peppertree

Total Page:16

File Type:pdf, Size:1020Kb

Lepidoptera: Tortricidae), a Candidate for Biological Control of Brazilian Peppertree APPLICATION OF THE F1 STERILE INSECT TECHNIQUE (F1SIT) FOR FIELD HOST RANGE TESTING OF Episimus utilis ZIMMERMAN (LEPIDOPTERA: TORTRICIDAE), A CANDIDATE FOR BIOLOGICAL CONTROL OF BRAZILIAN PEPPERTREE By ONOUR ELIZABETH MOERI A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Onour Elizabeth Moeri 2 To my parents 3 ACKNOWLEDGMENTS I thank my major advisor James P. Cuda and co-adviser William A. Overholt for their support and guidance. I thank my other committee members, James L. Carpenter and Stephanie Bloem for sharing their vast knowledge of inherited sterility and providing an immeasurable amount of support throughout the project. I thank Judy Gillmore and the staff of the weed biological control lab, whom without their help with insect rearing and plant cultivation, this project would not be possible. I thank Dr. Burrell Smittle, Carl Gillis, and Suzanne Fraser at the Florida Accelerator Services and Technology Gainesville, FL for their support and assistance with irradiation of the E. utilis moths. In addition, I thank my family and friends for always being there to listen and provide encouragement. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION ..................................................................................................................10 2 LITERATURE REVIEW .......................................................................................................14 The F1 Sterile Insect Technique (F1SIT) ................................................................................14 Description ......................................................................................................................14 History .............................................................................................................................14 Field Application of F1SIT ..............................................................................................16 Host Range Testing Protocols ................................................................................................19 No-Choice Tests ..............................................................................................................19 Choice Tests ....................................................................................................................20 Open Field Testing ..........................................................................................................20 Schinus terebinthifolius Raddi................................................................................................22 Taxonomy........................................................................................................................22 Common Names ..............................................................................................................23 Description ......................................................................................................................23 Distribution......................................................................................................................23 Environmental Impacts...........................................................................................................24 Ecosystem........................................................................................................................24 Human and Animal Health..............................................................................................25 Beneficial Uses................................................................................................................25 Controlling Brazilian Peppertree ............................................................................................26 Mechanical Control .........................................................................................................26 Physical Control ..............................................................................................................26 Chemical Control.............................................................................................................27 Biological Control ...........................................................................................................27 Episimus utilis Zimmerman....................................................................................................28 Taxonomy........................................................................................................................28 Biology ............................................................................................................................28 History of Introduction of E. utilis ..................................................................................29 5 3 USE OF THE F1 STERILE INSECT TECHNIQUE (F1SIT) AS A TOOL FOR FIELD HOST RANGE TESTING OF Epismus utilis ZIMMERMAN (LEPIDOPTERA: TORTRICIDAE), A CANDIDATE BIOLOGICAL CONTROL AGENT OF BRAZILIAN PEPPERTREE..................................................................................................38 Introduction.............................................................................................................................38 Materials and Methods ...........................................................................................................41 Colony Rearing................................................................................................................41 Radiation Biology Study .................................................................................................42 Statistical Analysis for Radiation Biology Study............................................................44 Inherited Sterility Methodology ......................................................................................45 Statistical Analysis for Inherited Sterility .......................................................................46 Results.....................................................................................................................................46 Radiation Biology Study .................................................................................................46 Inherited Sterility.............................................................................................................46 Discussion...............................................................................................................................47 4 CONCLUSIONS ....................................................................................................................59 LIST OF REFERENCES...............................................................................................................62 BIOGRAPHICAL SKETCH .........................................................................................................71 6 LIST OF FIGURES Figure page 2-1 Dense stands of Schinus terebinthifolius in Florida...........................................................31 2-2 Morphology of Schinus terebinthifolius ............................................................................32 2-3 Native distribution of Brazilian peppertree in South America by country ........................33 2-4 Worldwide distribution of Brazilian peppertree ................................................................34 2-5 Distribution of Brazilian peppertree in Florida..................................................................35 2-6 A-F. Life cycle of E. utilis .................................................................................................36 2-7 Effect of E. utilis on Brazilian peppertree .........................................................................37 3-1 Results of laboratory no-choice tests performed with E. utilis..........................................50 3-2 Potted BP plant covered by a clear acrylic cylinder. .........................................................51 3-3 Materials used for irradiation of E. utilis moths. ...............................................................52 3-4 Cesium-137 Gammacell® 1000 irradiator (F.A.S.T. Gainesville, FL)...............................52 3-5 Waxed paper oviposition chamber for mating and ovipositing by E. utilis moths............53 3-6 Fecundity (mean number of eggs laid) per mated female of E. utilis adults for three crosses................................................................................................................................54 3-7 Fertility (mean percentage of eggs that hatched) of E. utilis adults for three crosses treated with increasing dose of gamma radiation.. ............................................................55 3-8 Fecundity (mean number of eggs laid) of F1 crosses of E. utilis adults as a result of radiation administered to parental males.. .........................................................................56 3-9 Fertility (mean percentage of eggs that hatched) of F1 crosses of E. utilis adults as a result of radiation administered
Recommended publications
  • Efficacy of Pheromones for Managing of the Mediterranean Flour Moth
    12th International Working Conference on Stored Product Protection (IWCSPP) in Berlin, Germany, October 7-11, 2018 HOSSEININAVEH, V., BANDANI, A.R., AZMAYESHFARD, P., HOSSEINKHANI, S. UND M. KAZZAZI, 2007. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515-522. ISHAAYA, I. UND R. HOROWITZ, 1995. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies. Mechanism and resistance management. Pestic. Sci., 43: 227–232. ISHAAYA, I., BARAZANI, A., KONTSEDALOV, S. UND A.R. HOROWITZ, 2007. Insecticides with novel mode of action: Mechanism, selectivity and cross-resistance. Entomol. Res., 37: 148-152. IZAWA, Y., M. UCHIDA, T. SUGIMOTO AND T. ASAI, 1985. Inhibition of Chitin Biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens. Pestic. Biochem. Physiol., 24: 343-347. KLJAJIC, P. UND I. PERIC, 2007. Effectiveness of wheat-applied contact insecticide against Sitophilus granarius (L.) originating from different populations. J. Stored Prod. Res., 43: 523-529. KONNO, T., 1990. Buprofezin: A reliable IGR for the control of rice pests. Soci. Chem. Indus., 23: 212 - 214. KOSTYUKOVSKY, M. UND A. TROSTANETSKY, 2006. The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages ofTribolium castaneum (Herbst). J. Stored Prod. Res., 42: 136-148. KOSTYUKOVSKY, M., CHEN, B., ATSMI, S. UND E. SHAAYA, 2000. Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem. Mol. Biol., 30: 891-897. LIANG, P., CUI, J.Z., YANG, X.Q. UND X.W. GAO, 2007. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • Ecological Factors Associated with Pre-Dispersal Predation of Fig Seeds
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 3-22-2018 Ecological factors associated with pre-dispersal predation of fig seeds and wasps by fig-specialist lepidopteran larvae Finn Piatscheck Iowa State University, [email protected] Justin Van Goor Iowa State University, [email protected] Derek D. Houston Iowa State University John D. Nason Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Plant Sciences Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/272. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ecological factors associated with pre-dispersal predation of fig seeds and wasps by fig-specialist lepidopteran larvae Abstract In brood pollination mutualisms, predation of developing fruit can have large negative repercussions for both plant and pollinator population dynamics. The onorS an Desert rock fig Ficus petiolaris and its highly- coevolved wasp pollinator are subject to frequent attack by lepidopteran larvae that consume fig fruit and the developing seeds and larval pollinators they contain. We used generalized linear mixed models to investigate how the phenology, quantity, and spatial distribution of fig fruits is associated with variation in lepidopteran damage intensity on individual trees at nine geographic locations spanning a 741 km latitudinal transect along Mexico’s Baja California Peninsula.
    [Show full text]
  • Indian Meal Moth Plodia Interpunctella
    Indian Meal Moth Plodia interpunctella Description QUICK SCAN Adults: Up to 13 mm (0.5 inches) long with wings that have copper brown tips. The part of the wings closest to the head is off white. SIZE / LENGTH Eggs: Oval, ivory in color and 2 mm (0.08 inches) long Adult 0.5 inch (13 mm) Larvae: Creamy white, brown head capsule. Coloration varies from Eggs 0.08 inch (2 mm) cream to light pink color, sometimes pale green. Pupae: Pupal cases are whitish with a yellow to brownish colored pupa COLOR RANGE inside. Adult Long wings with copper tips Larvae Creamy white, brown head Life Cycle Adult moths live for 10-14 days. Mated females can lay 200-400 eggs LIFE CYCLE singly or in groups. Eggs hatch in 3-5 days in warmer months and up to 7 days in cooler months. Larvae feed and become mature in 21 days Adults Live 10-14 days or as long as 30 days depending on food quality, temperature and Eggs Hatch 3-7 days humidity. Larvae will wander and pupation will occur away from infested materials. Adults emerge from the pupae in 7 to 10 days depending on temperature. FEEDING HABITS Damage and Detection Larvae Prefer: woolens, furs, and materials made with hair and Granular frass the size of ground pepper can be found in, on food feathers. materials such as nuts, dried fruits, cereals and processed foods containing nuts or seeds and made from wheat, rice or corn. The use of pheromone traps and inspections can determine location and degree of INFESTATION SIGNS infestation.
    [Show full text]
  • Functional Response of Habrobracon Hebetor Say (Hym.: Braconidae) to Mediterranean Flour Moth (Anagasta Kuehniella Zeller), in Response to Pesticides
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 53, No. 4 (2013) DOI: 10.2478/jppr-2013-0059 FUNCTIONAL RESPONSE OF HABROBRACON HEBETOR SAY (HYM.: BRACONIDAE) TO MEDITERRANEAN FLOUR MOTH (ANAGASTA KUEHNIELLA ZELLER), IN RESPONSE TO PESTICIDES Vahid Mahdavi1*, Moosa Saber2 1 Young Researchers Club, Parsabad Moghan Branch, Islamic Azad University, Parsabad, 56918-53356, Iran 2 Department of Plant Protection, College of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran Received: April 1, 2013 Accepted: October 21, 2013 Abstract: The functional response is a behavioral phenomena defined as the relation between the parasitized host per each parasitoid and host density. This phenomenon can be useful in assessing parasitoid efficiency for the biological control of the host. Parasitoid wasps are most important insects and they play a significant role in the natural control of pests via their parasitism activities. In this study, the effects of diazinon and malathion were evaluated on the functional response of Habrobracon hebetor Say to different densi- ties of last instar larvae of Anagasta kuehniella Zeller. Young adult females (< 24 h old) of the parasitoid were exposed to LC30 values of pesticides. Host densities of 2, 4, 8, 16, 32, and 64 were offered, to treated young females for 24 h in 10 cm Petri dishes. At this point, the parasitism data were recorded. The experiments were conducted in eight replications. The functional response was type Ш in the control and insecticide treatments. Searching efficiency in the control, diazinon and malathion-treated wasps were 0.008±0.002, 0.003±0.002, and 0.004±0.002 h–1, handling times were 1.38±0.1, 7.95±0.91, and 6.4±0.81 h, respectively.
    [Show full text]
  • PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
    PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris.
    [Show full text]
  • Indian Meal Moth.Pub
    CORNELL COOPERATIVE EXTENSION OF ONEIDA COUNTY 121 Second Street Oriskany, NY 13424-9799 (315) 736-3394 or (315) 337-2531 FAX: (315) 736-2580 Indian Meal Moth Plodia interpunctella Injury The Indian meal moth is one of the more common moths infesting stored grains and grains products. Others may include the Mediterranean flour moth and the meal moth. The larval stage causes the injury. Larvae feed on flour and meal products, dried fruits, nuts, bird food and dried pet foods. As the larva feeds it spins a web leaving behind a silken thread wherever it crawls. Small particles of food often adhere loosely to the thread making it conspicuous. Many times an infestation is noticed when moths are seen flying around the home in the evening. They are attracted to lights and often appear in front of the television screen. Description The Indian meal moth has a wingspan of about 3/4 inch (18-20mm). The outer 2/3 of the wings are bronze to reddish brown, while the inner 1/3 is a Indian meal moth Plodia interpunctella (Hübner) Life grayish white. The larvae (caterpillars) are about 1/2 Cycle inch (12.5mm) long when mature. They are a dirty Photo by Clemson University - USDA Cooperative Exten- white color, sometimes exhibiting pink or green sion Slide Series hues. The pupa (resting stage) is in a loose silken cocoon spun by the larvae and is a light brown color. Life History A female Indian meal moth can lay from 100 to 300 eggs during her lifetime. Eggs are laid singly, or in groups on the food materials.
    [Show full text]
  • Influence of Host-Plant Quality on the Performance of Episimus
    BioControl (2009) 54:475–484 DOI 10.1007/s10526-008-9196-3 Influence of host-plant quality on the performance of Episimus unguiculus, a candidate biological control agent of Brazilian peppertree in Florida Veronica Manrique Æ J. P. Cuda Æ W. A. Overholt Æ S. M. L. Ewe Received: 18 June 2008 / Accepted: 30 October 2008 / Published online: 15 November 2008 Ó International Organization for Biological Control (IOBC) 2008 Abstract Brazilian peppertree, Schinus terebinthifo- addition, higher survival (40%), faster development lius Raddi (Sapindales: Anacardiaceae), introduced (34 day) and higher fertility (88% eggs hatched) from South America, invades a variety of habitats in occurred in high-nutrient treatments. Based on these Florida (e.g. disturbed sites, coastal mangrove forests). results, field releases should be conducted in favorable The objective of this study was to evaluate the effect of habitats (e.g., low salinity, high fertility soils) to host-plant quality on the performance of Episimus maximize the possibility of establishment and popu- unguiculus Clarke (=E. utilis Zimmerman) (Lepidop- lation growth of E. unguiculus in Florida. tera: Tortricidae), a potential biocontrol agent of Brazilian peppertree. Experiments were conducted in Keywords Insect–plant interactions Á the laboratory using Brazilian peppertrees exposed Weed biological control Á Tortricidae Á either to different salinity levels (0, 6, 12 parts per Anacardiaceae Á Schinus terebinthifolius thousand), or to different nutrient levels (low, medium, high). Higher survival (55%) and faster development (32 day) to adulthood was observed on plants grown in fresh-water environments (0 ppt) compared to low (6 ppt) or high-salinity environments (12 ppt). In Introduction Brazilian peppertree, Schinus terebinthifolius Raddi Handling Editor: John Scott.
    [Show full text]
  • Influence of a Diet Containing Tobacco on the Biology of Ephestia Kuehniella (Lepidoptera: Pyralidae) and Its Parasitoid Habrobr
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 117: 190–198, 2020 http://www.eje.cz doi: 10.14411/eje.2020.020 ORIGINAL ARTICLE Infl uence of a diet containing tobacco on the biology of Ephestia kuehniella (Lepidoptera: Pyralidae) and its parasitoid Habrobracon hebetor (Hymenoptera: Braconidae) CLEDER PEZZINI 1, 2, SIMONE MUNDSTOCK JAHNKE 1 and ANDREAS KÖHLER 2 1 Laboratory of Biological Control of Insects, Faculty of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 7712, Porto Alegre, Rio Grande do Sul, Brazil; e-mail: [email protected], [email protected] 2 Laboratory of Entomology, Department of Life Sciences, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul, Brazil; e-mail: [email protected] Key words. Hymenoptera, Braconidae, Habrobracon hebetor, Lepidoptera, Pyralidae, Ephestia kuehniella, biological control, ectoparasitoid, stored products, artifi cial diet, Nicotiana tabacum Abstract. Host diet often infl uences its biological parameters and the success of their parasitoids, both in mass rearing, fi eld research and parasitism in applied biological control programs. Habrobracon hebetor (Say, 1836) (Hymenoptera: Braconidae) is an important biological control agent of the fl our moth Ephestia kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae), which infests tobacco, grain and other products in storage. This study aimed to evaluate the effect of different proportions of tobacco in artifi cial diets on the biological parameters of the host E. kuehniella and its parasitoid H. hebetor. Four classes of Virginia tobacco with dif- ferent sugar and nicotine concentrations were added to fl our diets for moths in different percentages (5, 10 and 15%).The experi- mental design was completely randomized in a 3 × 4 factorial scheme (percentage of dietary tobacco × class of tobacco).
    [Show full text]
  • Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome.
    [Show full text]
  • TORTS Newsletter of the Troop of Reputed Tortricid Systematists ISSN 1945-807X (Print) ISSN 1945-8088 (Online)
    Volume 11 14 February 2010 Issue 1 TORTS Newsletter of the Troop of Reputed Tortricid Systematists ISSN 1945-807X (print) ISSN 1945-8088 (online) NEW LEPIDOPTERISTS AT papers to Dr. B.-K. Byun - [email protected]. MAJOR INSTITUTIONS PDFs of 11 papers authored or co-authored by Jozef Razowski (2000-2009) can be found at WORLDWIDE http://species.wikimedia.org/wiki/Tortricidae. And as mentioned in a previous issue of the It’s been a remarkable year for those newsletter, issues of Polskie Pismo young scienstists in the job market seeking a Entomologiczne 2006-2009 also are available career postion in Lepidoptera systematics, on-line at http://pte.au.poznan.pl/ppe/ppe.htm. with positions becoming available at The ______________________________________ Natural History Museum, London, U.K., the Australian National Insect Collection TAXONOMIC ADDITIONS AND (ANIC), Canberra, Australia, and The McGuire Center for Lepidoptera and CHANGES PROPOSED IN 2008 Biodiversity, University of Florida, Gainesville. While a new lepidopterist has Below is a list of the new tortricid taxa been hired at The Natural History Museum, proposed in 2008 (with a few overlooked from potential candidates are still being evaluated previous years), followed by a list of new at ANIC and the McGuire Center. synonyms, new combinations, and mis- Thomas Simonsen, most recently from spellings, followed by the literature that the lab of Felix Sperling at the University of supports the proposed additions and changes. Alberta, Edmonton, Canada, accepted the position in London in late 2009. Stay tuned Acleris for news on the positions in Canberra and Gainesville. nishidai Brown, in Brown & Nishida, 2008 ____________________________________ (Acleris), SHILAP Revista de Lepidoptero- logia 36: 342.
    [Show full text]