1. Transport and Mixing 1.1 the Material Derivative Let Be The
1. Transport and mixing 1.1 The material derivative LetV() x, t be the velocity of a fluid at the pointx = ()x,, y z and timet . Consider also some scalar fieldχ()x, t such as the temperature or density. We are interested not only in the partial derivative ofχ with respect to time,∂χ ∂⁄ t , but also in the time derivative following the motion of the fluid,dχ ⁄ dt . The latter is the so-called material derivative: dχ ⁄dt = lim [] χ(x+ V() x, t δt, t+ δ t )– χ()x, t δ⁄ t δt → 0 . (1.1) = (∂⁄ ∂t + V ⋅ ∇ )χ (),, ∇() ∂ ,,∂ ∂ In Cartesian coordinates,V = u v w ,= x y z and dχ ⁄dt = ∂ χ ∂⁄ t + u∂χ ∂⁄ x +v∂χ ∂⁄ y + w∂χ ∂⁄ z . (1.2) We will also be using spherical coordinates. The notation()u,, v w is conventional for the (eastward, northward, radially outward) components of the velocity field. In addition to the radial distance from the origin,r , we use the symbolθ for latitude (–π ⁄ 2 at the south pole,π ⁄ 2 at the north pole) andλ for longitude (ranging for zero to2π ). The gradient operator in these coordi- nates is ∇= λˆ ()r cosθ –1(∂⁄ ∂λ )+ θˆ r–1()∂⁄ ∂θ + rˆ()∂⁄ ∂r , (1.3) so that d⁄ dt = ∂⁄ ∂t +()r cosθ –1u()∂⁄ ∂λ +r–1v()∂⁄ ∂θ + w()∂⁄ ∂r . (1.4) The material derivative of a vector, such as the velocityV itself, is defined just as in 1.1. But care is required when considering the material derivative of a component of a vector if the unit vectors of one’s coordinate system are position dependent, as they are in spherical coordi- nates.
[Show full text]