Solving Incompressible Navier-Stokes Equations on Heterogeneous Parallel Architectures Yushan Wang

Total Page:16

File Type:pdf, Size:1020Kb

Solving Incompressible Navier-Stokes Equations on Heterogeneous Parallel Architectures Yushan Wang Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures Yushan Wang To cite this version: Yushan Wang. Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Sud - Paris XI, 2015. English. NNT : 2015PA112047. tel-01152623 HAL Id: tel-01152623 https://tel.archives-ouvertes.fr/tel-01152623 Submitted on 18 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´eParis-Sud ECOLE´ DOCTORALE 427 : INFORMATIQUE PARIS SUD Laboratoire de Recherche en Informatique THESE` DE DOCTORAT INFORMATIQUE par Yushan WANG Solving Incompressible Navier-Stokes Equations on Heterogeneous Parallel Architectures Date de soutenance: 09/04/2015 Composition du jury: Directeur de th`ese : Marc BABOULIN Professeur (Universit´eParis-Sud, Orsay) Co-directeur de th`ese : Olivier LE MAˆITRE Directeur de Recherche (LIMSI/CNRS, Orsay) Rapporteurs : Fabienne JEZ´ EQUEL´ Maˆıtrede Conf´erences (LIP6, Paris) Masha SOSONKINA Professeur (Old Dominion University, USA) Examinateurs : Abdel LISSER Professeur (Universit´eParis-Sud, Orsay) Michel KERN Charg´ede Recherche (INRIA, Le Chesnay) Membre invit´e: Yann FRAIGNEAU Ing´enieur de Recherche (LIMSI/CNRS, Orsay) ii R´esum´e Dans cette th`ese,nous pr´esentons notre travail de recherche dans le domaine du calcul haute performance en m´ecaniquedes fluides. Avec la demande croissante de simula- tions `ahaute r´esolution,il est devenu important de d´evelopper des solveurs num´eriques pouvant tirer parti des architectures r´ecentes comprenant des processeurs multi-cœurs et des acc´el´erateurs. Nous nous proposons dans cette th`esede d´evelopper un solveur efficace pour la r´esolutionsur architectures h´et´erog`enesCPU/GPU des ´equationsde Navier-Stokes (NS) relatives aux ´ecoulements 3D de fluides incompressibles. Tout d'abord nous pr´esentons un aper¸cude la m´ecaniquedes fluides avec les ´equationsde NS pour fluides incompressibles et nous pr´esentons les m´ethodes num´eriquesexistantes. Nous d´ecrivons ensuite le mod`elemath´ematique,et la m´ethode num´eriquechoisie qui repose sur une technique de pr´ediction-projection incr´ementale. Nous obtenons une distribution ´equilibr´eede la charge de calcul en utilisant une m´ethode de d´ecomposition de domaines. Une parall´elisation`adeux niveaux combin´eeavec de la vectorisation SIMD est utilis´eedans notre impl´ementation pour exploiter au mieux les capacit´esdes machines multi-cœurs. Des exp´erimentations num´eriquessur diff´erentes architectures parall`elesmontrent que notre solveur NS obtient des performances satis- faisantes et un bon passage `al'´echelle. Pour am´eliorerencore la performance de notre solveur NS, nous int´egronsle calcul sur GPU pour acc´el´ererles t^aches les plus co^uteuses en temps de calcul. Le solveur qui en r´esultepeut ^etreconfigur´eet ex´ecut´esur diverses architectures h´et´erog`enes en sp´ecifiant le nombre de processus MPI, de threads, et de GPUs. Nous incluons ´egalement dans ce manuscrit des r´esultats de simulations num´eriquespour des benchmarks con¸cus `apartir de cas tests physiques r´eels.Les r´esultatsobtenus par notre solveur sont compar´esavec des r´esultatsde r´ef´erence. Notre solveur a vocation `a^etreint´egr´edans une future biblioth`equede m´ecaniquedes fluides pour le calcul sur architectures parall`eles CPU/GPU. Mots cl´es: ´equations de Navier-Stokes, m´ethode de pr´ediction-projection, calcul haute performance, parall´elisationmulti-niveaux, calcul sur GPU. iv Abstract In this PhD thesis, we present our research in the domain of high performance software for computational fluid dynamics (CFD). With the increasing demand of high-resolution simulations, there is a need of numerical solvers that can fully take advantage of current manycore accelerated parallel architectures. In this thesis we focus more specifically on developing an efficient parallel solver for 3D incompressible Navier-Stokes (NS) equations on heterogeneous CPU/GPU architectures. We first present an overview of the CFD domain along with the NS equations for in- compressible fluid flows and existing numerical methods. We describe the mathematical model and the numerical method that we chose, based on an incremental prediction- projection method. A balanced distribution of the computational workload is obtained by using a domain decomposition method. A two-level parallelization combined with SIMD vectorization is used in our implementation to take advantage of the current distributed multicore machines. Numerical experiments on various parallel architectures show that this solver provides satisfying performance and good scalability. In order to further improve the performance of the NS solver, we integrate GPU comput- ing to accelerate the most time-consuming tasks. The resulting solver can be configured for running on various heterogeneous architectures by specifying explicitly the numbers of MPI processes, threads and GPUs. This thesis manuscript also includes simulation results for two benchmarks designed from real physical cases. The computed solutions are compared with existing reference results. The code developed in this work will be the base for a future CFD library for parallel CPU/GPU computations. Keywords: Navier-Stokes equations, prediction-projection method, Helmholtz solver, Poisson solver, high performance computing, multi-level parallelization, GPU comput- ing. vi Acknowledgements First of all, I would like to thank Marc Baboulin and Olivier Le Ma^ıtre for acting as advisors for my thesis. I appreciate very much their help in this multidisciplinary collaborative research work and their availability. I would also like to thank Yann Fraigneau, with whom I had detailed and fruitful dis- cussions about the code SUNFLUIDH. I also thank the referees of my thesis, Fabienne J´ez´equeland Masha Sosonkina, for constructive comments on the manuscript. I express my gratitude to Franck Cappello (Joint-Laboratory on Extreme Scale Com- puting) for funding my visit to Argonne National Laboratory, USA, in August 2013. I want to thank Jack Dongarra and Stanimire Tomov for giving me access to their com- puting resources at Innovative Computing Laboratory (University of Tennessee, USA). I acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this thesis. Finally, I want to express my gratitude to Jo¨elFalcou, Karl Rupp and the colleagues at LRI, who enabled me to progress in my thesis. vii Contents R´esum´e iii Abstract v Acknowledgements vii Contents viii List of Figures xi Introduction 1 1 Navier-Stokes equations 5 1.1 Computational fluid dynamics and Navier-Stokes equations . 5 1.1.1 Fluid mechanics ............................ 6 1.1.2 Equations of fluid dynamics ...................... 8 1.1.3 The dimensionless Navier-Stokes equations . 13 1.2 Numerical methods for the incompressible Navier-Stokes equations . 14 1.3 Incremental prediction-projection method . 15 1.4 Solution of the Helmholtz system ....................... 17 1.5 Solution of the Poisson equation ....................... 19 1.6 Spatial discretization .............................. 21 1.6.1 Staggered mesh ............................. 21 1.6.2 Spatial discretization for the Navier-Stokes equation . 24 1.7 Conclusion of Chapter 1 ............................ 27 2 Parallel algorithms for solving Navier-Stokes equations 29 2.1 Domain decomposition approach ....................... 30 2.2 Multi-level parallelism ............................. 34 2.2.1 Shared memory architecture ...................... 34 2.2.2 Distributed memory architecture ................... 35 2.2.3 Combining shared and distributed memory systems . 35 2.3 General structure of the solver ........................ 38 2.4 Accelerating the solution of the tridiagonal systems . 39 2.5 Performance results for Navier-Stokes computations . 44 2.5.1 Shared memory with pure MPI programming model . 44 ix Contents x 2.5.2 Performance using MPI + OpenMP . 48 2.5.3 Performance comparison with an iterative method . 49 2.6 Conclusion of Chapter 2 ............................ 51 3 Taking advantage of GPU in Navier-Stokes equations 53 3.1 Introduction to GPU computing ....................... 54 3.2 Using GPU for solving Navier-Stokes equations . 57 3.2.1 A GPU Helmholtz-like solver ..................... 57 3.2.2 A GPU Poisson solver ......................... 62 3.2.3 General structure of the GPU solver . 65 3.3 Experimental results .............................. 66 3.3.1 Overview of computational resources . 66 3.3.2 Performance of the Helmholtz solver . 67 3.3.3 Performance of the Poisson solver ................... 68 3.3.4 Performance of the hybrid CPU/GPU Navier-Stokes solver . 69 3.4 Conclusion of Chapter 3 ............................ 71 4 Simulations of Physical Problems 73 4.1 Three dimensional Taylor-Green vortices ................... 74 4.1.1 Benchmark settings .......................... 74 4.1.2 Validation
Recommended publications
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • Potential Flow Theory
    2.016 Hydrodynamics Reading #4 2.016 Hydrodynamics Prof. A.H. Techet Potential Flow Theory “When a flow is both frictionless and irrotational, pleasant things happen.” –F.M. White, Fluid Mechanics 4th ed. We can treat external flows around bodies as invicid (i.e. frictionless) and irrotational (i.e. the fluid particles are not rotating). This is because the viscous effects are limited to a thin layer next to the body called the boundary layer. In graduate classes like 2.25, you’ll learn how to solve for the invicid flow and then correct this within the boundary layer by considering viscosity. For now, let’s just learn how to solve for the invicid flow. We can define a potential function,!(x, z,t) , as a continuous function that satisfies the basic laws of fluid mechanics: conservation of mass and momentum, assuming incompressible, inviscid and irrotational flow. There is a vector identity (prove it for yourself!) that states for any scalar, ", " # "$ = 0 By definition, for irrotational flow, r ! " #V = 0 Therefore ! r V = "# ! where ! = !(x, y, z,t) is the velocity potential function. Such that the components of velocity in Cartesian coordinates, as functions of space and time, are ! "! "! "! u = , v = and w = (4.1) dx dy dz version 1.0 updated 9/22/2005 -1- ©2005 A. Techet 2.016 Hydrodynamics Reading #4 Laplace Equation The velocity must still satisfy the conservation of mass equation. We can substitute in the relationship between potential and velocity and arrive at the Laplace Equation, which we will revisit in our discussion on linear waves.
    [Show full text]
  • Chapter 5 Constitutive Modelling
    Chapter 5 Constitutive Modelling 5.1 Introduction Lecture 14 Thus far we have established four conservation (or balance) equations, an entropy inequality and a number of kinematic relationships. The overall set of governing equations are collected in Table 5.1. The Eulerian form has a one more independent equation because the density must be determined, 1 whereas in the Lagrangian form it is directly related to the prescribed initial densityρ 0. Physical Law Eulerian FormN Lagrangian Formn DR ∂r Kinematics: Dt =V , 3, ∂t =v, 3; Dρ ∇ · Mass: Dt +ρ R V=0, 1,ρ 0 =ρJ, 0; DV ∇ · ∂v ∇ · Linear momentum:ρ Dt = R T+ρF , 3,ρ 0 ∂t = r p+ρ 0f, 3; Angular momentum:T=T T , 3,s=s T , 3; DΦ ∂φ Energy:ρ =T:D+ρB ∇ ·Q, 1,ρ =s: e˙+ρ b ∇ r ·q, 1; Dt − R 0 ∂t 0 − Dη ∂η0 Entropy inequality:ρ ∇ ·(Q/Θ)+ρB/Θ, 0,ρ ∇r (q/θ)+ρ b/θ, 0. Dt ≥ − R 0 ∂t ≥ − 0 Independent Equations: 11 10 Table 5.1: The governing equations for continuum mechanics in Eulerian and Lagrangian form. N is the number of independent equations in Eulerian form andn is the number of independent equations in Lagrangian form. Examining the equations reveals that they involve more unknown variables than equations, listed in Table 5.2. Once again the fact that the density in the Lagrangian formulation is prescribed means that there is one fewer unknown compared to the Eulerian formulation. Thus, in either formulation and additional eleven equations are required to close the system.
    [Show full text]
  • Correct Expression of Material Derivative and Application to the Navier-Stokes Equation —– the Solution Existence Condition of Navier-Stokes Equation
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2020 doi:10.20944/preprints202003.0030.v4 Correct Expression of Material Derivative and Application to the Navier-Stokes Equation |{ The solution existence condition of Navier-Stokes equation Bo-Hua Sun1 1 School of Civil Engineering & Institute of Mechanics and Technology Xi'an University of Architecture and Technology, Xi'an 710055, China http://imt.xauat.edu.cn email: [email protected] (Dated: June 15, 2020) The material derivative is important in continuum physics. This paper shows that the expression d @ dt = @t + (v · r), used in most literature and textbooks, is incorrect. This article presents correct d(:) @ expression of the material derivative, namely dt = @t (:) + v · [r(:)]. As an application, the form- solution of the Navier-Stokes equation is proposed. The form-solution reveals that the solution existence condition of the Navier-Stokes equation is that "The Navier-Stokes equation has a solution if and only if the determinant of flow velocity gradient is not zero, namely det(rv) 6= 0." Keywords: material derivative, velocity gradient, tensor calculus, tensor determinant, Navier-Stokes equa- tions, solution existence condition In continuum physics, there are two ways of describ- derivative as in Ref. 1. Therefore, to revive the great ing continuous media or flows, the Lagrangian descrip- influence of Landau in physics and fluid mechanics, we at- tion and the Eulerian description. In the Eulerian de- tempt to address this issue in this dedicated paper, where scription, the material derivative with respect to time we revisit the material derivative to show why the oper- d @ dv @v must be defined.
    [Show full text]
  • Introduction to Compressible Computational Fluid Dynamics James S
    Introduction to Compressible Computational Fluid Dynamics James S. Sochacki Department of Mathematics James Madison University [email protected] Abstract This document is intended as an introduction to computational fluid dynamics at the upper undergraduate level. It is assumed that the student has had courses through three dimensional calculus and some computer programming experience with numer- ical algorithms. A course in differential equations is recommended. This document is intended to be used by undergraduate instructors and students to gain an under- standing of computational fluid dynamics. The document can be used in a classroom or research environment at the undergraduate level. The idea of this work is to have the students use the modules to discover properties of the equations and then relate this to the physics of fluid dynamics. Many issues, such as rarefactions and shocks are left out of the discussion because the intent is to have the students discover these concepts and then study them with the instructor. The document is used in part of the undergraduate MATH 365 - Computation Fluid Dynamics course at James Madi- son University (JMU) and is part of the joint NSF Grant between JMU and North Carolina Central University (NCCU): A Collaborative Computational Sciences Pro- gram. This document introduces the full three-dimensional Navier Stokes equations. As- sumptions to these equations are made to derive equations that are accessible to un- dergraduates with the above prerequisites. These equations are approximated using finite difference methods. The development of the equations and finite difference methods are contained in this document. Software modules and their corresponding documentation in Fortran 90, Maple and Matlab can be downloaded from the web- site: http://www.math.jmu.edu/~jim/compressible.html.
    [Show full text]
  • INCOMPRESSIBLE FLOW AERODYNAMICS 3 0 0 3 Course Category: Programme Core A
    COURSE CODE COURSE TITLE L T P C 1151AE107 INCOMPRESSIBLE FLOW AERODYNAMICS 3 0 0 3 Course Category: Programme core a. Preamble : The primary objective of this course is to teach students how to determine aerodynamic lift and drag over an airfoil and wing at incompressible flow regime by analytical methods. b. Prerequisite Courses: Fluid Mechanics c. Related Courses: Airplane Performance Compressible flow Aerodynamics Aero elasticity Flapping wing dynamics Industrial aerodynamics Transonic Aerodynamics d. Course Educational Objectives: To introduce the concepts of mass, momentum and energy conservation relating to aerodynamics. To make the student understand the concept of vorticity, irrotationality, theory of air foils and wing sections. To introduce the basics of viscous flow. e. Course Outcomes: Upon the successful completion of the course, students will be able to: Knowledge Level CO Course Outcomes (Based on revised Nos. Bloom’s Taxonomy) Apply the physical principles to formulate the governing CO1 K3 aerodynamics equations Find the solution for two dimensional incompressible inviscid CO2 K3 flows Apply conformal transformation to find the solution for flow over CO3 airfoils and also find the solutions using classical thin airfoil K3 theory Apply Prandtl’s lifting-line theory to find the aerodynamic CO4 K3 characteristics of finite wing Find the solution for incompressible flow over a flat plate using CO5 K3 viscous flow concepts f. Correlation of COs with POs: COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H L H L M H H CO2 H L H L M H H CO3 H L H L M H H CO4 H L H L M H H CO5 H L H L M H H H- High; M-Medium; L-Low g.
    [Show full text]
  • Continuum Fluid Mechanics
    CONTINUUM FLUID MECHANICS Motion A body is a collection of material particles. The point X is a material point and it is the position of the material particles at time zero. x3 Definition: A one-to-one one-parameter mapping X3 x(X, t ) x = x(X, t) X x X 2 x 2 is called motion. The inverse t =0 x1 X1 X = X(x, t) Figure 1. Schematic of motion. is the inverse motion. X k are referred to as the material coordinates of particle x , and x is the spatial point occupied by X at time t. Theorem: The inverse motion exists if the Jacobian, J of the transformation is nonzero. That is ∂x ∂x J = det = det k ≠ 0 . ∂X ∂X K This is the statement of the fundamental theorem of calculus. Definition: Streamlines are the family of curves tangent to the velocity vector field at time t . Given a velocity vector field v, streamlines are governed by the following equations: dx1 dx 2 dx 3 = = for a given t. v1 v 2 v3 Definition: The streak line of point x 0 at time t is a line, which is made up of material points, which have passed through point x 0 at different times τ ≤ t . Given a motion x i = x i (X, t) and its inverse X K = X K (x, t), it follows that the 0 0 material particle X k will pass through the spatial point x at time τ . i.e., ME639 1 G. Ahmadi 0 0 0 X k = X k (x ,τ).
    [Show full text]
  • Shallow-Water Equations and Related Topics
    CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10.
    [Show full text]
  • Lattice Boltzmann Modeling for Shallow Water Equations Using High
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Lattice Boltzmann modeling for shallow water equations using high performance computing Kevin Tubbs Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Engineering Science and Materials Commons Recommended Citation Tubbs, Kevin, "Lattice Boltzmann modeling for shallow water equations using high performance computing" (2010). LSU Doctoral Dissertations. 34. https://digitalcommons.lsu.edu/gradschool_dissertations/34 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. LATTICE BOLTZMANN MODELING FOR SHALLOW WATER EQUATIONS USING HIGH PERFORMANCE COMPUTING A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Engineering Science by Kevin Tubbs B.S. Physics , Southern University, 2001 M.S. Physics, Louisiana State University, 2004 May, 2010 To my family ii ACKNOWLEDGMENTS I want to acknowledge the love and support of my family and friends which was instrumental in completing my degree. I would like to especially thank my parents, John and Veronica Tubbs and my siblings Kanika Tubbs and Keosha Tubbs. I dedicate this dissertation in loving memory of my brother Kendrick Tubbs and my grandmother Gertrude Nicholas. I would also like to thank Dr.
    [Show full text]
  • Ch.1. Description of Motion
    CH.1. DESCRIPTION OF MOTION Multimedia Course on Continuum Mechanics Overview 1.1. Definition of the Continuous Medium 1.1.1. Concept of Continuum Lecture 1 1.1.2. Continuous Medium or Continuum 1.2. Equations of Motion 1.2.1 Configurations of the Continuous Medium 1.2.2. Material and Spatial Coordinates Lecture 2 1.2.3. Equation of Motion and Inverse Equation of Motion 1.2.4. Mathematical Restrictions 1.2.5. Example Lecture 3 1.3. Descriptions of Motion 1.3.1. Material or Lagrangian Description Lecture 4 1.3.2. Spatial or Eulerian Description 1.3.3. Example Lecture 5 2 Overview (cont’d) 1.4. Time Derivatives Lecture 6 1.4.1. Material and Local Derivatives 1.4.2. Convective Rate of Change Lecture 7 1.4.3. Example Lecture 8 1.5. Velocity and Acceleration 1.5.1. Velocity Lecture 9 1.5.2. Acceleration 1.5.3. Example 1.6. Stationarity and Uniformity 1.6.1. Stationary Properties Lecture 10 1.6.2. Uniform Properties 3 Overview (cont’d) 1.7. Trajectory or Pathline 1.7.1. Equation of the Trajectories 1.7.2. Example 1.8. Streamlines Lecture 11 1.8.1. Equation of the Streamlines 1.8.2. Trajectories and Streamlines 1.8.3. Example 1.8.4. Streamtubes 1.9. Control and Material Surfaces 1.9.1. Control Surface 1.9.2. Material Surface Lecture 12 1.9.3. Control Volume 1.9.4. Material Volume 4 1.1 Definition of the Continuous Medium Ch.1. Description of Motion 5 The Concept of Continuum Microscopic scale: Matter is made of atoms which may be grouped in molecules.
    [Show full text]
  • 1 David Apsley 3. APPROXIMATIONS and SIMPLIFIED EQUATIONS
    3. APPROXIMATIONS AND SIMPLIFIED EQUATIONS SPRING 2021 3.1 Steady-state vs time-dependent flow 3.2 Two-dimensional vs three-dimensional flow 3.3 Incompressible vs compressible flow 3.4 Inviscid vs viscous flow 3.5 Hydrostatic vs non-hydrostatic flow 3.6 Boussinesq approximation for density 3.7 Depth-averaged (shallow-water) equations 3.8 Reynolds-averaged equations (turbulent flow) Examples Fluid dynamics is governed by equations for mass, momentum and energy. The momentum equation for a viscous fluid is called the Navier-Stokes equation; it is based upon: • continuum mechanics; • the momentum principle; • shear stress proportional to velocity gradient. A fluid for which the last is true is called a Newtonian fluid. This is the case for most fluids in engineering. However, there are important non-Newtonian fluids; e.g. mud, cement, blood, paint, polymer solutions. CFD is very useful for these, as their governing equations are usually impossible to solve analytically. The full equations are time-dependent, 3-dimensional, viscous, compressible, non-linear and highly coupled. However, in most cases it is possible to simplify analysis by adopting a reduced equation set. Some common approximations are listed below. Reduction of dimension: • steady-state; • two-dimensional. Neglect of some fluid property: • incompressible; • inviscid. Simplified forces: • hydrostatic; • Boussinesq approximation for density. Approximations based upon averaging: • depth-averaging (shallow-water equations); • Reynolds-averaging (turbulent flows). The consequences of these approximations are examined in the following sections. CFD 3 – 1 David Apsley 3.1 Steady-State vs Time-Dependent Flow Many flows are naturally time-dependent. Examples include waves, tides, turbines, reciprocating pumps and internal combustion engines.
    [Show full text]
  • 1. Transport and Mixing 1.1 the Material Derivative Let Be The
    1. Transport and mixing 1.1 The material derivative LetV() x, t be the velocity of a fluid at the pointx = ()x,, y z and timet . Consider also some scalar fieldχ()x, t such as the temperature or density. We are interested not only in the partial derivative ofχ with respect to time,∂χ ∂⁄ t , but also in the time derivative following the motion of the fluid,dχ ⁄ dt . The latter is the so-called material derivative: dχ ⁄dt = lim [] χ(x+ V() x, t δt, t+ δ t )– χ()x, t δ⁄ t δt → 0 . (1.1) = (∂⁄ ∂t + V ⋅ ∇ )χ (),, ∇() ∂ ,,∂ ∂ In Cartesian coordinates,V = u v w ,= x y z and dχ ⁄dt = ∂ χ ∂⁄ t + u∂χ ∂⁄ x +v∂χ ∂⁄ y + w∂χ ∂⁄ z . (1.2) We will also be using spherical coordinates. The notation()u,, v w is conventional for the (eastward, northward, radially outward) components of the velocity field. In addition to the radial distance from the origin,r , we use the symbolθ for latitude (–π ⁄ 2 at the south pole,π ⁄ 2 at the north pole) andλ for longitude (ranging for zero to2π ). The gradient operator in these coordi- nates is ∇= λˆ ()r cosθ –1(∂⁄ ∂λ )+ θˆ r–1()∂⁄ ∂θ + rˆ()∂⁄ ∂r , (1.3) so that d⁄ dt = ∂⁄ ∂t +()r cosθ –1u()∂⁄ ∂λ +r–1v()∂⁄ ∂θ + w()∂⁄ ∂r . (1.4) The material derivative of a vector, such as the velocityV itself, is defined just as in 1.1. But care is required when considering the material derivative of a component of a vector if the unit vectors of one’s coordinate system are position dependent, as they are in spherical coordi- nates.
    [Show full text]