The shape derivative of the Gauss curvature∗ An´ıbal Chicco-Ruiz, Pedro Morin, and M. Sebastian Pauletti UNL, Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas, FIQ, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina. achicco,pmorin,
[email protected] August 25, 2017 Abstract We introduce new results about the shape derivatives of scalar- and vector-valued functions. They extend the results from [8] to more general surface energies. In [8] Do˘gan and Nochetto consider surface energies defined as integrals over surfaces of functions that can depend on the position, the unit normal and the mean curvature of the surface. In this work we present a systematic way to derive formulas for the shape derivative of more general geometric quantities, including the Gauss curvature (a new result not available in the literature) and other geometric invariants (eigenvalues of the second fundamental form). This is done for hyper-surfaces in the Euclidean space of any finite dimension. As an application of the results, with relevance for numerical methods in applied problems, we introduce a new scheme of Newton-type to approximate a minimizer of a shape functional. It is a mathematically sound generalization of the method presented in [5]. We finally find the particular formulas for the first and second order shape derivative of the area and the Willmore functional, which are necessary for the Newton-type method mentioned above. 2010 Mathematics Subject Classification. 65K10, 49M15, 53A10, 53A55. arXiv:1708.07440v1 [math.OC] 24 Aug 2017 Keywords. Shape derivative, Gauss curvature, shape optimization, differentiation formulas. 1 Introduction Energies that depend on the domain appear in applications in many areas, from materials science, to biology, to image processing.