University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting EFFECTS OF DIET AND DENSITY ON Lissachatina fulica (STYLOMMATOPHORA: ACHATINIDAE) By KATRINA L. DICKENS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2016 © 2016 Katrina L. Dickens To Theodora Dickens ACKNOWLEDGMENTS I would like to thank my advisor, Dr. John Capinera, for his mentoring, feedback and advice. I also thank Dr. Trevor Smith for acting as my committee member and for giving me the opportunity to do this research. Also I thank all of the workers at the Department of Agriculture and Consumer Services, Division of Plant Industry in Gainesville, Florida that helped in this research and colony maintenance, specifically Cory Penca, Amy Howe, Jessica McGuire, Shannen Leahy, Shweta Sharma, Addison Mertz, Cason Bartz, and Steven Rowley. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 ABSTRACT ..................................................................................................................... 9 CHAPTER 1 LITERATURE REVIEW .......................................................................................... 11 Agricultural Pest ...................................................................................................... 11 Nuisance ................................................................................................................. 11 Disease Vector ....................................................................................................... 12 Description .............................................................................................................. 12 Habitat .................................................................................................................... 13 Distribution .............................................................................................................. 14 Control .................................................................................................................... 16 Research Needed ................................................................................................... 19 2 HOST PLANT SUITABILITY ................................................................................... 23 Introduction ............................................................................................................. 23 Methods .................................................................................................................. 24 Results .................................................................................................................... 26 Discussion .............................................................................................................. 27 3 GROWTH AND REPRODUCTION ......................................................................... 34 Introduction ............................................................................................................. 34 Methods .................................................................................................................. 37 Rearing Methods .............................................................................................. 37 Neonate Growth ............................................................................................... 38 Maturity and Reproduction ............................................................................... 38 Pattern of growth ........................................................................................ 40 First oviposition .......................................................................................... 40 Sexual reproduction ................................................................................... 41 Self-fertilization .......................................................................................... 42 Results .................................................................................................................... 43 Growth .............................................................................................................. 43 First Oviposition ................................................................................................ 44 Sexual Reproduction ........................................................................................ 45 Self-Fertilization ................................................................................................ 45 5 Discussion .............................................................................................................. 46 4 EFFECTS OF DENSITY AND FOOD DEPRIVATION ON GROWTH AND SURVIVAL .............................................................................................................. 57 Introduction ............................................................................................................. 57 Methods .................................................................................................................. 59 Density Effects on Growth and Reproduction ................................................... 59 Food Deprivation Effects on Cannibalism......................................................... 61 Results .................................................................................................................... 62 Density Effects on Growth and Reproduction ................................................... 62 Food Deprivation Effects on Cannibalism......................................................... 63 Discussion .............................................................................................................. 63 LIST OF REFERENCES ............................................................................................... 69 BIOGRAPHICAL SKETCH ............................................................................................ 75 6 LIST OF TABLES Table page 2-1 List of known preferred or susceptible host plants of Lissachatina fulica that occur in the snail-infested area of Florida ........................................................... 30 2-2 Twenty-four diet treatments fed to juvenile Lissachatina fulica to assess suitability ............................................................................................................. 30 3-1 Means (± SD), medians, ranges, and sample sizes (number of snails, n) for height and mass of Lissachatina fulica ............................................................... 51 3-2 Means (± SD), medians, ranges, sample sizes (number of cages) for the number of days from hatching for Lissachatina fulica to lay eggs among diet and density treatments. Means (± SD), medians, ranges, sample sizes (number of snails) for the height of Lissachatina fulica at the first egg laying event ................................................................................................................... 51 3-3 Means (± SD), medians, ranges, and sample sizes (n) for the total number of eggs laid per snail, percent egg viability, and clutch sizes among diet treatments for eggs laid before 241 d for paired Lissachatina fulica ................... 52 3-4 Total eggs produced per snail, mean (± SD) egg viability, and mean (± SD) clutch size for egg produced 0-240 d and 0-540 d for solitary and paired Lissachatina fulica regardless of diet .................................................................. 52 3-5 Mean (± SD) eggs laid per snail, egg viability, and clutch size for eggs produced 0-540 d for solitary and paired Lissachatina fulica for each diet ......... 53 4-1 Mean (± SD) height, mass, percent mortality of Lissachatina fulica 240 d after hatch reared at three different density treatments .............................................. 66 4-2 Lissachatina fulica reproduction when reared at three different density treatments: mean (± SD) number of days from hatch to initiation of egg production, estimated number of eggs produced per snail (over a 60-day period), eggs per clutch, and percent egg viability .............................................. 66 7 LIST OF FIGURES Figure page 1-1 Lissachatina fulica shell ...................................................................................... 21 1-2 Shells of five snail species native to Florida and one non-native that may be confused with Lissachatina fulica ....................................................................... 22 2-1 Mean height and mass of newly hatched Lissachatina fulica after 70 d of feeding on a single diet treatment ....................................................................... 32 2-2 Mean percent survival of newly hatched Lissachatina fulica after 70 d of feeding on a single diet treatment ....................................................................... 33 3-1 The effects of rearing Lissachatina fulica at 6 constant temperatures ................ 54 3-2 Growth pattern of Lissachatina fulica reared on a diet of lettuce or synthetic diet. A polynomial regression was fitted on individual measurements for height .................................................................................................................. 55
Recommended publications
  • Evaluation of Pre-Mating Reproductive Isolation in Archachatina Marginata from Three Populations in the Humid Tropics
    African Journal of Biotechnology Vol. 10(65), pp. 14669-14677, 24 October, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.882 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Evaluation of pre-mating reproductive isolation in Archachatina marginata from three populations in the humid tropics Ogbu, C. C* and Ugwu, S. O. C. Department of Animal Science, University of Nigeria, Nsukka. Accepted 26 August, 2011 Three populations of Archachatina marginata snails (P 1, P 2 and P 3) obtained from natural snail habitats located in three states of Nigeria (one population per state) namely Enugu, Edo and River States were evaluated for pre-mating reproductive isolation using mate-choice tests. Total number of mated snails were very small (19.2%) compared to the number tested. Mating propensity (MP) varied significantly (P ≤ 0.05) among snail populations in two test groups and observed MP in the test groups differed significantly (chi-square test, P <<<0.05; 0.001) from that expected under random mating. Pair formation was significantly (chi-square test, P <<< 0.05; 0.001) influenced by differences in MP and within-population (homotypic) and between population (heterotypic) mating occurred in frequencies that differed significantly (chi-square test, P ℜℜℜ 0.05; 0.001) from that expected under random mating. Whereas observed heterotypic pair formation were less than that expected under random mating, homotypic pair formation were either equal or more than that expected under random mating. Duration of reproductive activities differed significantly (P ≤ 0.05) among test populations. It was concluded that reduced pair formation, elongated duration of courtship, and reduced mating between populations of A.
    [Show full text]
  • Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land 2 Snail Species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. Smith (1878) and 3 Achatina reticulata Pfeiffer 1845 (Gastropoda:Achatinidae) in Southwest Nigeria 4 5 6 7 8 9 Alexander B. Odaibo1 and Suraj O. Olayinka2 10 11 1,2Department of Zoology, University of Ibadan, Ibadan, Nigeria 12 13 Corresponding author: Alexander B. Odaibo 14 E.mail :[email protected] (AB) 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The aim of this study was to determine the differences in the shell, radula and genital 21 structures of 3 new invasive species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. 22 Smith (1878) and Achatina reticulata Pfeiffer, 1845 collected from southwestern Nigeria and to 23 determine features that would be of importance in the identification of these invasive species in 24 Nigeria.
    [Show full text]
  • Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
    Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect.
    [Show full text]
  • Coreopsideae Daniel J
    Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae.
    [Show full text]
  • 137-144. New Hemiplecta
    Biodiversity Journal , 2012, 3 (2): 137-144 A new species of Hemiplecta Albers, 1850 (Gastropoda, Pul - monata, Ariophantidae) from Sumatra, Indonesia David P. Cilia 1* & John Abbas 2 1 29, Triq il-Palazz l-Aħmar, Santa Venera, Malta 28, Jalan Demaga Baru, Muara Angke, Jakarta Utara Pos 14450, Jakarta, Indonesia *Corresponding author, e-mail: [email protected] ABSTRACT The ariophantid Hemiplecta belerang sp. nov. from South Sumatra is described in this paper. It is compared with its closest congeners, from which it is geographically and reproductively isolated. KEY WORDS Ariophantidae; Hemiplecta belerang n. sp.; Sumatra; Indonesia. Received 03.06.2012; accepted 21.06.2012; printed 30.06.2012 INTRODUCTION d'Histoire Naturelle, Paris, France (MNHN); Na - tural History Museum, London, United Kingdom The family Ariophantidae Godwin-Austen, (NHMUK); National Museum of Natural History, 1888 is nested within the limacoid clade of pulmo - Mdina, Malta (NMNH); Zoological Department nates and is native to south-east Asia and India of Tel Aviv University, Israel (TAU); Institut für (Hausdorf, 2000). Evolutionsbiologie und Umweltwissenschaften/ The family includes the genus Hemiplecta Al - Zoologisches Museum Universität Zürich-Irchel, bers, 1850, a group of medium to large-sized Switzerland (ZMZ). ground-inhabiting snails (Boonngam et al., 2008; Morphology and anatomy. DG = dart gland; Schilthuizen, 2008), and the Sumatran representa - DGR = dart gland retractor muscle; D = diameter; tives include H. abbasi Maassen, 2009, H. goliath E = epiphallus; EC = epiphallic caecum; F = fla - van Benthem Jutting, 1959, H. humphreysiana gellum; GA = genital atrium; H = height; ht = ho - (Lea, 1840), H. obliquata (Reeve, 1852) and H. lotype; P = penis; PRM = penial retractor muscle; obliqueundulata van Benthem Jutting, 1959 (see S = spermatheca; sd = standard deviation; U = um - van Benthem Jutting, 1959; Dharma, 2005; Maas - bilicus; V = vagina; VD = was deferens; x = mean sen, 2009).
    [Show full text]
  • Download Article (PDF)
    Rec. zool. Surv. India, 98(Part-3) : 67-70, 2000 NEW RECORDS OF PESTIFEROUS LAND MOLLUSCS FROM RAJASTHAN, INDIA SEEMA KUMAR and S.I. AHMED Arid forest Research Institute, P. O. Krishi Mandi, New Palsi Road, Jodhpur-342 005, Rajasthan, India INTRODUctION More than 1500 species of land mollusc are recorded from India. Out of these, twelve species viz. Achatina fulica Bowdich, Ariophanla bajadera (Pfeiffer), Ariophanta ligulata Ferrussac, Ariophanta solata (Benson), Bensonia monticola Hutton, Cryptozona belangiri Deshayes, Cryptozona (Nilgiria) semiru~ata (Seck.), Cryptozona (Xestina) bistrialis Beck., Macrochlamys indica (Godwin-Austen), Opeas gracile (Hutton), Zootecus insularis (Ehrenberg) and Mariaella dussumieri (Gray) are known to cause damage to agricultural, horticultural and plantation crops in India (Raut & Ghosh, 1984; Srivastava, 1992 and Subba Rao, 1975). So far, only two pestiferous land moliusc Opeas gracile (Hutton) and Zootecus insularis (Ehrenberg) are reported from Rajasthan (Subba Rao & Mitra, 1979 and Raut & Ghosh, 1984). Laevicaulis alte (Ferussac) is reported from Udaipur, Rajasthan but not as a pest (Ray & Mukherjee, 1963). The present paper reports for the first time, two more pestiferous land mollusc - Laevicaulis alte (Ferussac) and Macrochlamys indica (Godwin-Austen), as severe pests of neem seedlings in forest nurseries of Rajasthan along with new distributional records. SYSTEMATIC ACCOUNT 1. Laevicaulis aile (Ferussac, 1821) Phyllum MOLLUSCA Class GASTROPODA Subclass GYMNOMORPHA Order STYLOMMATOPHORA Family VERONICELLIDAE Genus Laevicaulis Simtoth, 1913. Laevicaulis aile (Ferussac, 1821) 1821. Vaginulus aile Ferussac, Tab1. Syst. Anim. Moll., Paris, p. 14. 1925. Meisenheimeria aile Hoffman. Tena. Z. Naturw., Jena, 61 : 226-228. PI. V, Fig. 45 b. 68 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA 1953.
    [Show full text]
  • Growth Response of Tiger Giant Land Snail Hatchlings Achatina Achatina Linne to Different Compounded Diets
    International Journal of Agriculture and Earth Science Vol. 3 No. 6 2017 ISSN 2489-0081 www.iiardpub.org Growth Response of Tiger Giant Land Snail Hatchlings Achatina Achatina Linne to Different Compounded Diets Akpobasa, B. I. O. Department of Agricultural Technology, Delta State Polytechnic, Ozoro, Delta State, Nigeria [email protected] Abstract This experiment was conducted at the snailery unit of the Delta State Polytechnic Ozoro to study the effects of different compounded diets on the growth response of hatlings Tiger giants land snail (Archatina archatina). Different feed ingredients were used for the compoundment. Three diets were formulated with crude protein percentage of 15%, 20% and 25%. A 2 x 3 factorial arrangement in CRD was used with six treatments. Each treatment was replicated thrice with five snails per replicate. The trial lasted for 90 days. The protein source main effects were significant (P<0.05) in average daily feed intake which was higher in feeds with soyabeen cake than groundnut cake. The higher crude protein percentage diet influence growth rate of the hatchlings more as well as been significant (P<0.05) in feed conversion ratio. Mortality was not recorded during the experiment. The diet with higher protein percentage 25% should be considered most appropriate since the growth rate of snail hatchlings increased as the crude protein level increased in the compounded diet. INTRODUCTION The present level of livestock production cannot meet daily demand for animal protein , this have affected the animal protein intake by Nigerians which is below 67g as recommended by the World Health Organization (Kehinde et al., 2002), and thus has led to an acute malnutrition amongst the greater percentage of the rural populace [FAO,1986].
    [Show full text]
  • Archachatina Marginata) and Its Parasites Collected from Three Communities in Edo State, Nigeria
    International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 793 ISSN 2229-5518 Assessment of Heavy Metals in African Giant Snail (Archachatina marginata) and its Parasites Collected from three communities in Edo State, Nigeria 1Awharitoma, A. O., *2Ewere, E. E., 3Alari, P. O., 4Idowu, D. O. and 5Osowe, K. A. 1,2,3,4,5Department of Animal and Environmental Biology, faculty of Life Sciences, University of Benin, P.M.B 1154, Benin City, Nigeria *Corresponding author: [email protected] Abstract—Archachatina marginata, a mollusk, is highly prized as food in Africa and Asia, and is a vector of parasites and defoliators. The environments where the snails thrive are highly contaminated with heavy metals through various anthropogenic activities. Levels of heavy metals (Fe, Ni, Mn, Cu, Pb, Cd and Co) in A. marginata (parasite infected and uninfected) and its parasites were assessed from three communities (Ugbogui, Ugo and Okogbo) in Edo State to check the pollution status. Samples of snail were collected, cracked and parasites were isolated from the samples using standard methods. The isolated parasites and the snail samples were analyzed for heavy metals using Flame Atomic Absorption Spectrophotometry (FAAS). The parasite isolated from the infected snail was identified as nematode (Rhabditis axei). The mean concentration of Fe, Ni, Mn, Cu, Pb, Cd and Co ranged 38.61 – 70.49mg/kg, 9.09 – 16.58mg/kg, 5.09 – 8.90mg/kg, 4.10 – 7.48mg/kg, 0.39 – 0.71mg/kg, 0.19 – 0.35mg/kg and 0.04 – 0.07mg/kg respectively in infected snail; 14.94 – 28.45mg/kg, 3.26 – 5.96mg/kg, 2.85 -4.79mg/kg, 1.47 – 2.69mg/kg, 0.14 – 0.26mg/kg, 0.07 – 0.13mg/kg and 0.03 – 0.05mg/kg respectively in uninfected snail tissues; 11.34 – 27.61mg/kg, 1.17 – 1.92mg/kg, 1.73 – 4.89mg/kg, 0.51 – 0.87mg/kg, 0.05 – 0.08mg/kg, 0.03 – 0.04mg/kg and 0.04 – 0.05mg/kg respectively in parasite.
    [Show full text]
  • Botanical Name: LEAFY PLANT
    LEAFY PLANT LIST Botanical Name: Common Name: Abelia 'Edward Goucher' Glossy Pink Abelia Abutilon palmeri Indian Mallow Acacia aneura Mulga Acacia constricta White-Thorn Acacia Acacia craspedocarpa Leatherleaf Acacia Acacia farnesiana (smallii) Sweet Acacia Acacia greggii Cat-Claw Acacia Acacia redolens Desert Carpet Acacia Acacia rigidula Blackbrush Acacia Acacia salicina Willow Acacia Acacia species Fern Acacia Acacia willardiana Palo Blanco Acacia Acalpha monostachya Raspberry Fuzzies Agastache pallidaflora Giant Pale Hyssop Ageratum corymbosum Blue Butterfly Mist Ageratum houstonianum Blue Floss Flower Ageratum species Blue Ageratum Aloysia gratissima Bee Bush Aloysia wrightii Wright's Bee Bush Ambrosia deltoidea Bursage Anemopsis californica Yerba Mansa Anisacanthus quadrifidus Flame Bush Anisacanthus thurberi Desert Honeysuckle Antiginon leptopus Queen's Wreath Vine Aquilegia chrysantha Golden Colmbine Aristida purpurea Purple Three Awn Grass Artemisia filifolia Sand Sage Artemisia frigida Fringed Sage Artemisia X 'Powis Castle' Powis Castle Wormwood Asclepias angustifolia Arizona Milkweed Asclepias curassavica Blood Flower Asclepias curassavica X 'Sunshine' Yellow Bloodflower Asclepias linearis Pineleaf Milkweed Asclepias subulata Desert Milkweed Asclepias tuberosa Butterfly Weed Atriplex canescens Four Wing Saltbush Atriplex lentiformis Quailbush Baileya multiradiata Desert Marigold Bauhinia lunarioides Orchid Tree Berlandiera lyrata Chocolate Flower Bignonia capreolata Crossvine Bougainvillea Sp. Bougainvillea Bouteloua gracilis
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Behavioral Responses of the Snail Lymnaea Acuminata Towards Photo and Chemo Attractants: a New Step in Control Program of Fasciolosis
    Hindawi Publishing Corporation International Journal of Zoology Volume 2013, Article ID 439276, 6 pages http://dx.doi.org/10.1155/2013/439276 Research Article Behavioral Responses of the Snail Lymnaea acuminata towards Photo and Chemo Attractants: A New Step in Control Program of Fasciolosis Anupam Pati Tripathi, V. K. Singh, and D. K. Singh Malacology Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009, India Correspondence should be addressed to D. K. Singh; dksingh [email protected] Received 21 February 2013; Revised 13 October 2013; Accepted 25 November 2013 Academic Editor: Roger P. Croll Copyright © 2013 Anupam Pati Tripathi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fasciolosis is water and food borne disease, caused by Fasciola hepatica and F. gigantica.SnailLymnaea acuminata is an intermediate host of these flukes. Snail control is one of the major methods to reduce the incidences of fasciolosis. Trapping of snails withthe help of photo- and chemoattractants for treatment purposes will be a new tool in control program of fasciolosis. The present study shows that maximum numbers of snails were attracted (52 to 60%), when exposed to photo- and chemostimulant simultaneously, rather than when only chemo- (control) (18 to 24%) or photo- (control) (14 to 19%) stimulus was given. Maximum change in AChE activity in nervous tissue was observed when red monochromatic light was used (258.37% of white light control) as opposed to blue (243.44% of white light control) and orange (230.37% of white light control).
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]