ABHD12 Controls Brain Lysophosphatidylserine Pathways That Are Deregulated in a Murine Model of the Neurodegenerative Disease PHARC

Total Page:16

File Type:pdf, Size:1020Kb

ABHD12 Controls Brain Lysophosphatidylserine Pathways That Are Deregulated in a Murine Model of the Neurodegenerative Disease PHARC ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC Jacqueline L. Blankmana,b, Jonathan Z. Longa,b, Sunia A. Traugerc, Gary Siuzdakc, and Benjamin F. Cravatta,b,1 aThe Skaggs Institute for Chemical Biology and Departments of bChemical Physiology and cMolecular Biology, The Scripps Research Institute, La Jolla, CA 92037 Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved November 30, 2012 (received for review October 1, 2012) Advances in human genetics are leading to the discovery of new could contribute to the metabolism of the endogenous canna- disease-causing mutations at a remarkable rate. Many such muta- binoid 2-arachidonoylglycerol (2-AG) in the nervous system. tions, however, occur in genes that encode for proteins of unknown Nonetheless, the physiological metabolites regulated by ABHD12 function, which limits our molecular understanding of, and ability to in vivo, and the molecular and cellular mechanisms by which this enzyme contributes to PHARC, are unknown. Here, we have devise treatments for, human disease. Here, we use untargeted −/− metabolomics combined with a genetic mouse model to determine addressed these important questions by generating ABHD12 α β mice and analyzing these animals for metabolomic and behavioral that the poorly characterized serine hydrolase / -hydrolase do- −/− < main-containing (ABHD)12, mutations in which cause the human phenotypes. Young ABHD12 mice ( 6 mo old) were mostly normal in their behavior; however, as these animals age, they neurodegenerative disorder PHARC (polyneuropathy, hearing loss, develop an array of PHARC-related phenotypes, including de- ataxia, retinosis pigmentosa, and cataract), is a principal lysophos- −/− fective auditory and motor behavior, with concomitant cellular phatidylserine (LPS) lipase in the mammalian brain. ABHD12 mice pathology indicative of a neuroinflammatory response. Metab- − − display massive increases in a rare set of very long chain LPS lipids olomic characterization of brain tissue from ABHD12 / mice that have been previously reported as Toll-like receptor 2 activators. revealed striking elevations in a series of lysophosphatidylserine We confirm that recombinant ABHD12 protein exhibits robust LPS fl NEUROSCIENCE − − (LPS) lipids that occur before the onset of neuroin ammatory lipase activity, which is also substantially reduced in ABHD12 / fi − − and behavioral defects. We con rmed that LPS lipids are direct brain tissue. Notably, elevations in brain LPS lipids in ABHD12 / substrates for ABHD12 and that this enzyme is a major contri- mice occur early in life (2–6 mo) and are followed by age-dependent butor to bulk brain LPS lipase activity. These data, taken to- − − increases in microglial activation and auditory and motor defects gether, demonstrate that ABHD12 / mice are a suitable animal that resemble the behavioral phenotypes of human PHARC patients. model for investigating the mechanistic basis of PHARC and Taken together, our data provide a molecular model for PHARC, point to a functional role for an ABHD12-regulated LPS pathway where disruption of ABHD12 causes deregulated LPS metabolism in this disease. and the accumulation of proinflammatory lipids that promote microglial and neurobehavioral abnormalities. Results Targeted Disruption of the Abhd12 Gene. To generate mice lacking lipidomics | neuroinflammation ABHD12, a targeting construct was designed to delete exons 8–10 of the Abhd12 gene, including the predicted catalytic serine S246 contained within a canonical GXSXG motif, upon homologous enome mapping and sequencing have facilitated determi- recombination in C57BL/6-derived embryonic stem (ES) cells Gnation of the genetic basis for over 3,500 inherited diseases (Fig. 1A). One targeted ES clone, 96, was identified by Southern in humans (1), with additional pathogenic mutations still being blotting (Fig. 1B) and used to generate chimeric mice. These discovered. For many Mendelian disorders, however, the mo- chimeras gave germ-line transmission of the targeted mutation, as lecular and cellular mechanisms that link genotype to disease determined by Southern blotting (Fig. 1C) and PCR genotyping − − phenotype remain poorly understood. This problem is perhaps (Fig. 1D). Mice homozygous for the targeted allele (ABHD12 / most apparent for diseases where the causative mutations occur mice) were viable and born at the expected Mendelian frequency. in genes that encode for proteins with unannotated or poorly Loss of ABHD12 mRNA (Fig. 1E), protein (Fig. 1F), and activity − − characterized functions. Here, we focus on one such disease - the (Fig. 1G) were confirmed in the brains of ABHD12 / mice by neurodegenerative disorder PHARC (polyneuropathy, hearing RT-PCR, liquid chromatography–mass spectrometry (LC-MS) loss, ataxia, retinosis pigmentosa, and cataract). proteomics, and activity-based protein profiling (ABPP) (6), re- PHARC [Mendelian Inheritance in Man (MIM) no. 612674; spectively. Levels of other protein constituents of the endocanna- Online Mendelian Inheritance in Man database, http://omim.org] binoid system were unaffected by ABHD12 disruption (Fig. 1F). is a rare, autosomal recessive disorder that causes polymodal − − sensory and motor defects associated with demyelination of sen- ABHD12 / Mice Develop an Age-Dependent, PHARC-Related Phenotype. − − somotor neurons, retinal dystrophy, and cerebellar atrophy (2). ABHD12 / mice were fertile and largely indistinguishable from + + + − PHARC symptoms are slowly progressive and begin in the child- their WT (ABHD12 / ) and heterozygous (ABHD12 / ) litter- + + + − hood or teenage years; heterozygous carriers are unaffected (3). In mates at early stages of life. ABHD12 / , ABHD12 / , and 2010, PHARC was reported to be caused by homozygous muta- tions in ABHD12, which codes for the poorly characterized serine hydrolase enzyme α/β-hydrolase domain-containing (ABHD)12 Author contributions: J.L.B. and B.F.C. designed research; J.L.B. and S.A.T. performed (3). To date, five distinct ABHD12 mutations have been identified research; J.L.B. and J.Z.L. contributed new reagents/analytic tools; J.L.B., G.S., and B.F.C. in patients with PHARC, all of which are expected to lead to analyzed data; and J.L.B. and B.F.C. wrote the paper. complete loss of ABHD12 expression (3, 4). PHARC, therefore, The authors declare no conflict of interest. likely represents a human ABHD12 null model. This article is a PNAS Direct Submission. We demonstrated previously that ABHD12 is a membrane- 1To whom correspondence should be addressed. E-mail: [email protected]. bound enzyme that exhibits monoacylglycerol (MAG) lipase This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. activity in vitro (5). These initial data suggested that ABHD12 1073/pnas.1217121110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1217121110 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 Fig. 1. Generation and initial characterization of − − ABHD12 / mice. (A) ABHD12-targeting vector designed to replace Abhd12 exons 8–10 with a neomycin (Neo) selection cassette upon homolo- gous recombination. (B) Targeted clone no. 96 was identified by Southern analysis of EcoRI-digested ES cell genomic DNA with external 59 and 39 probes. Germ-line transmission was confirmed by Southern (C) and PCR (D) genotyping of genomic tail DNA. (E) RT-PCR confirmed loss of ABHD12 mRNA in ABHD12−/− mice. (F) Untargeted MS-based proteo- mics confirmed absence of ABHD12 protein in − − ABHD12 / brain tissue. Protein levels of other measured constituents of the endocannabinoid system were equivalent between genotypes. Values represent the mean ± SEM (n = 3). (G)Lackof ABHD12 activity in ABHD12−/− mice was confirmed by ABPP of brain membrane proteomes with the serine hydrolase probe fluorophosphonate (FP)- rhodamine. Other serine hydrolase activities were − − unaltered in ABHD12 / brain proteome. Fluores- cent gel shown in grayscale. − − ABHD12 / mice were assessed in a battery of behavioral tests auditory information, auditory brainstem responses (ABRs) were potentially relevant to the symptoms of PHARC disease. Initial measured in a cohort of 9- to 10-mo-old mice after confirming − − behavioral studies were performed with relatively young mice (5– that ABHD12 / mice exhibit a reduced auditory startle response 6 mo old), but considering that neurodegenerative phenotypes at this age (Fig. S1). The sinusoidal waveform of the brainstem − − often only become apparent in aged mice, even for disease auditory evoked potential (BAEP) was intact in ABHD12 / models with childhood onset in humans (7–10), this panel of tests mice (Fig. S1), and no genotypic differences were detected in was repeated when mice were 11–12 and 17–18 mo old. peak amplitude (Table S1). However, absolute latencies of waves − − Young ABHD12 / mice behaved similarly to control litter- IV, V, and VII (Table S1) and interpeak latencies of waves I–IV mates except for modest hypermotility, which was transitory and were delayed in ABHD12-disrupted mice (Fig. 2D), confirming not observed during the later testing sessions (Fig. S1). A slight impaired auditory signaling in these animals and suggesting that reduction in the auditory startle reflex was also observed in 5- to the hearing loss induced by ABHD12 disruption may be caused − − 6-mo-old ABHD12 / mice, although this effect failed to reach by reduced auditory conductance. − − statistical significance
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Expanded Endocannabinoid System/Endocannabinoidome As a Potential Target for Treating Diabetes Mellitus
    Current Diabetes Reports (2019) 19:117 https://doi.org/10.1007/s11892-019-1248-9 OBESITY (KM GADDE, SECTION EDITOR) The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus Alain Veilleux1,2,3 & Vincenzo Di Marzo1,2,3,4,5 & Cristoforo Silvestri3,4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D. Keywords Endocannabinoidome . Bioactive lipids . Peripheral tissues . Glucose . Insulin Introduction: The Endocannabinoid System cannabis-derived natural product, Δ9-tetrahydrocannabinol and its Subsequent Expansion (THC), responsible for most of the psychotropic, euphoric to the “Endocannabinoidome” and appetite-stimulating actions (via CB1 receptors) and immune-modulatory effects (via CB2 receptors) of marijuana, The discovery of two G protein-coupled receptors, the canna- opened the way to the identification of the endocannabinoids binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the (eCBs).
    [Show full text]
  • Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model
    Glaucoma Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model Sally Miller,1 Emma Leishman,1 Sherry Shujung Hu,2 Alhasan Elghouche,1 Laura Daily,1 Natalia Murataeva,1 Heather Bradshaw,1 and Alex Straiker1 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States 2Department of Psychology, National Cheng Kung University, Tainan, Taiwan Correspondence: Alex Straiker, De- PURPOSE. Cannabinoids, such as D9-THC, act through an endogenous signaling system in the partment of Psychological and Brain vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2- Sciences, Indiana University, Bloom- arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol ington, IN 47405, USA; lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic [email protected]. potential of harnessing eCBs to lower IOP. Submitted: February 16, 2016 Accepted: May 16, 2016 METHODS. We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal Citation: Miller S, Leishman E, Hu SS, cord of MAGL knockout (MAGLÀ/À) mice using high performance liquid chromatography/ et al. Harnessing the endocannabinoid tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of 2-arachidonoylglycerol to lower intra- ocular pressure in a murine model. MAGL in the mouse anterior chamber. Invest Ophthalmol Vis Sci. RESULTS. 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent 2016;57:3287–3296. DOI:10.1167/ manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary iovs.16-19356 epithelium.
    [Show full text]
  • Cannabidiol and Contributions of Major Hemp Phytocompounds to the “Entourage Effect”; Possible Mecha- Nisms
    Nahler G, et al., J Altern Complement Integr Med 2019, 5: 066 DOI: 10.24966/ACIM-7562/100066 HSOA Journal of Alternative, Complementary & Integrative Medicine Review Article cannabinoid found in “drug-type” cannabis (marijuana, an obso- Cannabidiol and Contributions of lete and pejorative slang term for drug-type Cannabis), Cannabidi- ol (CBD) is the main cannabinoid in hemp (“fibre-type” Cannabis). Major Hemp Phytocompounds to The term “hemp” is therefore used for those Cannabis varieties that are low in THC (<0.2% by European law), “drug-type Cannabis” for the “Entourage Effect”; Possible those that are rich in THC, and “Cannabis” as overall term. Mechanisms Cannabis cultivars are often characterised by their THC/CBD ra- tio but a variety of terpenes have also been described as characteristic, 1 2 3 Gerhard Nahler *, Trevor M Jones and Ethan B Russo additional markers among a number of other phytocompounds that 1Clinical Investigation Support GmbH, Kaiserstrasse, Austria vary considerably between chemical varieties or “chemovars” [3,4]. 2King’s College London, London, UK The term “strain” is commonly misapplied to chemovars of Can- 3International Cannabis and Cannabinoids Institute, Prague, Czech nabis in common parlance, but is properly pertinent to bacteria and Republic viruses, but not plants [5-8]. In fact, neither CBD nor THC is formed enzymatically by the plant. Both substances are the decarboxylated form of Cannabidiolic Acid (CBDA) and delta-9-Tetrahydrocannab- Abstract inolic Acid (THCA) respectively, induced in nature by slowly aging Cannabidiol (CBD) is the primary cannabinoid in “fibre-type” can- (mainly by light), or in post-harvest processing e.g., by heating.
    [Show full text]
  • Control of Analgesic and Anti-Inflammatory Pathways by Fatty Acid Amide Hydrolase Long, James Harry
    Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase Long, James Harry The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/3124 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase James Harry Long Thesis submitted for the degree of Doctor of Philosophy to the University of London Translational Medicine and Therapeutics William Harvey Research Institute Charterhouse Square, London, EC1M 6BQ Table of contents Table of Contents Declaration VIII Acknowledgements IX Abstract X Abbreviations XI Chapter 1 – Introduction 1 1.1. Pain and analgesia 2 1.1.1. Nociception 2 1.1.2. Inflammatory pain 5 1.1.3. Neuropathic pain 10 1.1.4. Analgesia 10 1.1.5. COX inhibitors 11 1.1.6. Opioid receptor agonists 12 1.1.7. Glucocorticoids 13 1.1.8. Anaesthetics 13 1.1.9. Antidepressants 14 1.1.10. Anticonvulsants 14 1.1.11. Muscle relaxants 15 1.1.12. An alternative analgesic pathway 15 1.2. Endocannabinoid system 16 1.2.1. Cannabinoid receptors 16 1.2.2. Endocannabinoids 18 1.2.3. Endocannabinoid biosynthesis 21 1.2.4. Endocannabinoid metabolism 21 1.2.5.
    [Show full text]
  • Chemical Probes to Potently and Selectively Inhibit Endocannabinoid
    Chemical probes to potently and selectively inhibit PNAS PLUS endocannabinoid cellular reuptake Andrea Chiccaa,1, Simon Nicolussia,1, Ruben Bartholomäusb, Martina Blunderc,d, Alejandro Aparisi Reye, Vanessa Petruccia, Ines del Carmen Reynoso-Morenoa,f, Juan Manuel Viveros-Paredesf, Marianela Dalghi Gensa, Beat Lutze, Helgi B. Schiöthc, Michael Soeberdtg, Christoph Abelsg, Roch-Philippe Charlesa, Karl-Heinz Altmannb, and Jürg Gertscha,2 aInstitute of Biochemistry and Molecular Medicine, National Centre of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; bDepartment of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland; cDepartment of Neuroscience, Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden; dBrain Institute, Universidade Federal do Rio Grande do Norte, Natal 59056- 450, Brazil; eInstitute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, D-55099 Mainz, Germany; fCentro Universitario de Ciencias Exactas e Ingenierías, University of Guadalajara, 44430 Guadalajara, Mexico; and gDr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany Edited by Benjamin F. Cravatt, The Scripps Research Institute, La Jolla, CA, and approved May 10, 2017 (received for review March 14, 2017) The extracellular effects of the endocannabinoids anandamide and ECs over arachidonate and other N-acylethanolamines (NAEs) 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after (15–19). However, although suitable inhibitors are available for crossing cellular membranes by facilitated diffusion. The lack of potent most targets within the ECS (20), the existing AEA uptake in- and selective inhibitors for endocannabinoid transport has prevented hibitors lack potency and show poor selectivity over the other the molecular characterization of this process, thus hindering its components of the ECS, in particular FAAH (21, 22).
    [Show full text]
  • Distinct Roles of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol in Social Behavior and Emotionality at Different Developmental Ages in Rats
    European Neuropsychopharmacology (2015) 25, 1362–1374 www.elsevier.com/locate/euroneuro Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats Antonia Manducaa, Maria Morenab,c, Patrizia Campolongob, Michela Servadioa, Maura Palmeryb, Luigia Trabaced, Matthew N. Hillc, Louk J.M.J. Vanderschurene,f, Vincenzo Cuomob, Viviana Trezzaa,n aDepartment of Science, Section of Biomedical Sciences and Technologies, University “Roma Tre”, Rome, Italy bDepartment of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy cHotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada dDepartment of Clinical and Experimental Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy eDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands fDepartment of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Received 30 November 2014; received in revised form 25 February 2015; accepted 1 April 2015 KEYWORDS Abstract Endocannabinoid sys- To date, our understanding of the relative contribution and potential overlapping roles of the tem; endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of Social behavior; brain function and behavior is still limited. To address this issue, we investigated the effects of Endocannabinoids; systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by Emotional behavior; inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and Rodents; adult rats. JZL195 JZL195, administered at the dose of 0.01 mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals.
    [Show full text]
  • Functional Selectivity at the Cannabinoid Receptor Both Endogenously and Exogenously Expressed in a Variety of Cell Lines and Tissues
    A Study of Functional Selectivity at the Cannabinoid Type 1 Receptor Richard Priestley, BSc (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 1 Abstract The cannabinoid CB1 receptor is a G protein-coupled receptor (GPCR) which is important in the regulation of neuronal function, predominately via coupling to heterotrimeric Gi/o proteins. The receptor has also been shown to interact with a variety of other intracellular signalling mediators, including other G proteins, several members of the mitogen activated kinase (MAP) superfamily and β- arrestins. The CB1 receptor is recognised by an array of structurally distinct endogenous and exogenous ligands and a growing body of evidence indicates that ligands acting at GPCRs are able to differently activate specific signalling pathways, a phenomenon known as functional selectivity or biased agonism. This is important in future drug development as it may be possible to produce drugs which selectively activate signalling pathways linked to therapeutic benefits, while minimising activation of those associated with unwanted side effects. The main aim of this thesis, therefore, was to investigate ligand-selective functional selectivity at the cannabinoid CB1 receptor both endogenously and exogenously expressed in a variety of cell lines. Chinese hamster ovary (CHO) and human embryonic kidney (HEK 293) cells stably transfected with the human recombinant CB1 receptor and untransfected murine Neuro 2a (N2a) cells, were exposed to a number of cannabinoid
    [Show full text]
  • The Serine Hydrolases MAGL, ABHD6 and ABHD12 As Guardians of 2-Arachidonoylglycerol Signalling Through Can- Nabinoid Receptors
    Acta Physiol 2012, 204, 267–276 REVIEW The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through can- nabinoid receptors J. R. Savinainen, S. M. Saario and J. T. Laitinen School of Medicine, Institute of Biomedicine/Physiology, University of Eastern Finland (UEF), Kuopio, Finland Received 25 February 2011, Abstract revision requested 10 March 2011, The endocannabinoid 2-arachidonoylglycerol (2-AG) is a lipid mediator revision received 11 March 2011, involved in various physiological processes. In response to neural activity, accepted 12 March 2011 Correspondence: J. T. Laitinen, 2-AG is synthesized post-synaptically, then activates pre-synaptic cannabinoid PhD, School of Medicine, Institute CB1 receptors (CB1Rs) in a retrograde manner, resulting in transient and long- of Biomedicine/Physiology, lasting reduction of neurotransmitter release. The signalling competence of University of Eastern Finland 2-AG is tightly regulated by the balanced action between ‘on demand’ bio- (UEF), POB 1627, FI-70211 synthesis and degradation. We review recent research on monoacylglycerol Kuopio, Finland. lipase (MAGL), ABHD6 and ABHD12, three serine hydrolases that together E-mail: jarmo.laitinen@uef.fi account for approx. 99% of brain 2-AG hydrolase activity. MAGL is Re-use of this article is permitted responsible for approx. 85% of 2-AG hydrolysis and colocalizes with CB1R in in accordance with the Terms and axon terminals. It is therefore ideally positioned to terminate 2-AG-CB1R Conditions set out at http://wiley signalling regardless of the source of this endocannabinoid. Its acute phar- onlinelibrary.com/onlineopen# macological inhibition leads to 2-AG accumulation and CB1R-mediated OnlineOpen_Terms behavioural responses.
    [Show full text]
  • Targeting the Cannabinoid and Mu Opioid Receptors with Heterodimerized and Allosteric Ligands
    Targeting the cannabinoid and mu opioid receptors with heterodimerized and allosteric ligands Ph.D. Thesis Szabolcs Dvorácskó Supervisor: Dr. Csaba Tömböly Universitiy of Szeged, Faculty of Medicine Doctoral School of Theoretical Medicine Laboratory of Chemical Biology, Institute of Biochemistry Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary 2019 TABLE OF CONTENTS LIST OF PUBLICATIONS ...................................................................................................... i ABBREVIATIONS ................................................................................................................. iv ACKNOWLEDGEMENTS .................................................................................................... vi 1. Introduction .......................................................................................................................... 1 1.1. The cannabinoid system ...................................................................................................... 1 1.1.1. Cannabinoid receptors ...................................................................................................... 1 1.1.2. Lipid type endocannabinoids ........................................................................................... 2 1.1.3. Hemopressins (Pepcans), the putative peptide endocannabinoids ................................... 2 1.1.4. Phyto- and synthetic cannabinoids ................................................................................... 4 1.2. The opioid
    [Show full text]
  • Since the Discovery of the Cannabinoid Receptors and Their
    Beyond the direct activation of cannabinoid receptors: new strategies to modulate the endocannabinoid system in CNS-related diseases Andrea Chiccaa, Chiara Arenaa,b, Clementina Manerab aInstitute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH 3012 Bern, Switzerland; bDepartment of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy *To whom correspondence should be addressed. A.C.: email address: [email protected]; telephone: +41 (0) 31 6314125 Abstract Endocannabinoids (ECs) are signalling lipids which exert their actions by activation cannabinoid receptor type-1 (CB1) and type-2 (CB2). These receptors are involved in many physiological and pathological processes in the central nervous system (CNS) and in the periphery. Despite many potent and selective receptor ligands have been generated over the last two decades, this class of compounds achieved only a very limited therapeutic success, mainly because of the CB1-mediated side effects. The endocannabinoid system (ECS) offers several therapeutic opportunities beyond the direct activation of cannabinoid receptors. The modulation of EC levels in vivo represents an interesting therapeutic perspective for several CNS-related diseases. The main hydrolytic enzymes are fatty acid amide hydrolase (FAAH) for anandamide (AEA) and monoacylglycerol lipase (MAGL) and ,-hydrolase domain-6 (ABHD6) and -12 (ABHD12) for 2-arachidonoyl glycerol (2-AG). EC metabolism is also regulated by COX-2 activity which generates oxygenated-products of AEA and 2-AG, named prostamides and prostaglandin-glycerol esters, respectively. Based on the literature and patent literature this review provides an overview of the different classes of inhibitors for FAAH, MAGL, ABHDs and COX-2 used as tool compounds and for clinical development with a special focus on CNS-related diseases.
    [Show full text]
  • Endocannabinoids As Guardians of Metastasis
    Review Endocannabinoids as Guardians of Metastasis Irmgard Tegeder Institute of Clinical Pharmacology, University Hospital Frankfurt, Germany Correspondence: [email protected] Academic Editor: Xiaofeng Jia Received: 16 November 2015 ; Accepted: 01 February 2016 ; Published: 10 February 2016 Abstract: Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis. Keywords: endocannabinoids; anandamide; 2-arachidonoylglycerol; orphan G-protein coupled receptor; immune cells; angiogenesis 1. Introduction Endocannabinoids (eCBs) constitute a growing number of lipid signaling molecules, the most popular being anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They are involved in cancer pathophysiology in several ways, including tumor growth and progression [1], immune (in)tolerance, inflammation [2], nausea [3] and cancer pain [4,5]. Our recent work [6] revealed that the endocannabinoid profiles are deranged during cancer, particularly in metastatic cancer, to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer, suggesting that the monitoring of endocannabinoid profiles might be useful for assessing the individual course of the disease and, possibly, that the derangement of the profiles plays a functional role for cancer progression, potentially giving rise to supportive therapeutic interventions.
    [Show full text]