Endocannabinoids As Guardians of Metastasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(4,5) Bisphosphate-Phospholipase C Resynthesis Cycle: Pitps Bridge the ER-PM GAP
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Topological organisation of the phosphatidylinositol (4,5) bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM GAP Shamshad Cockcroft and Padinjat Raghu* Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK; *National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India Address correspondence to: Shamshad Cockcroft, University College London UK; Phone: 0044-20-7679-6259; Email: [email protected] Abstract Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane– associated diacylglycerol (DG) and the consumption of plasma membrane PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the plasma membrane, the DG formed during PLC activation is rapidly converted to phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the plasma membrane where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2. -
Role of Phospholipases in Adrenal Steroidogenesis
229 1 W B BOLLAG Phospholipases in adrenal 229:1 R29–R41 Review steroidogenesis Role of phospholipases in adrenal steroidogenesis Wendy B Bollag Correspondence should be addressed Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, USA to W B Bollag Department of Physiology, Medical College of Georgia, Augusta University (formerly Georgia Regents Email University), Augusta, GA, USA [email protected] Abstract Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some Key Words cases, their activity results in remodeling of lipids and/or allows the synthesis of other f adrenal cortex lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, f angiotensin phospholipases produce second messengers that modify the function of a cell. In this f intracellular signaling review, the enzymatic reactions, products, and effectors of three phospholipases, f phospholipids phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although f signal transduction much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, Endocrinology perhaps, in part, because this enzyme comprises a large family of related enzymes of that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the Journal Journal of Endocrinology adrenal cortex. (2016) 229, R1–R13 Introduction associated GTP-binding protein exchanges a bound GDP for a GTP. The G protein with GTP bound can then Phospholipids serve a structural function in the cell in that activate the enzyme, phospholipase C (PLC), that cleaves they form the lipid bilayer that maintains cell integrity. -
Synthesis of Lysophospholipids
Molecules 2010, 15, 1354-1377; doi:10.3390/molecules15031354 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis of Lysophospholipids Paola D’Arrigo 1,2,* and Stefano Servi 1,2 1 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy 2 Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory", Politecnico di Milano and Università degli Studi dell'Insubria, Via Mancinelli 7, 20131 Milano, Italy * Author to whom correspondence should be addressed; E-Mail: paola.d’[email protected]. Received: 17 February 2010; in revised form: 4 March 2010 / Accepted: 5 March 2010 / Published: 8 March 2010 Abstract: New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane–chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo- enzymatic procedures leading to 1- and 2-LPLs will be described. -
Antibody Response Cell Antigen Receptor Signaling And
Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response This information is current as Jiancheng Hu, Shannon K. Oda, Kristin Shotts, Erin E. of September 24, 2021. Donovan, Pamela Strauch, Lindsey M. Pujanauski, Francisco Victorino, Amin Al-Shami, Yuko Fujiwara, Gabor Tigyi, Tamas Oravecz, Roberta Pelanda and Raul M. Torres J Immunol 2014; 193:85-95; Prepublished online 2 June 2014; Downloaded from doi: 10.4049/jimmunol.1300429 http://www.jimmunol.org/content/193/1/85 Supplementary http://www.jimmunol.org/content/suppl/2014/05/31/jimmunol.130042 http://www.jimmunol.org/ Material 9.DCSupplemental References This article cites 63 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/193/1/85.full#ref-list-1 Why The JI? Submit online. by guest on September 24, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response Jiancheng Hu,*,1,2 Shannon K. -
G-Proteins in Growth and Apoptosis: Lessons from the Heart
Oncogene (2001) 20, 1626 ± 1634 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc G-proteins in growth and apoptosis: lessons from the heart John W Adams1,2 and Joan Heller Brown*,1 1University of California, San Diego, Department of Pharmacology, 9500 Gilman Drive, 0636, La Jolla, CA, California 92093- 0636, USA The acute contractile function of the heart is controlled by for proliferation of adult cardiomyocytes. In light of the eects of released nonepinephrine (NE) on cardiac these considerations, it is not immediately obvious that adrenergic receptors. NE can also act in a more chronic cardiomyocyte growth and cardiomyocyte death would fashion to induce cardiomyocyte growth, characterized by be responses critical to the normal function of the heart. cell enlargement (hypertrophy), increased protein synth- In fact, the ability of cardiomyocytes to undergo esis, alterations in gene expression and addition of hypertrophic growth, which includes an increase in cell sarcomeres. These responses enhance cardiomyocyte size, is an important adaptive response to a wide range of contractile function and thus allow the heart to conditions that require the heart to work more compensate for increased stress. The hypertrophic eects eectively. As described below, adaptive or compensa- of NE are mediated through Gq-coupled a1-adrenergic tory cardiomyocyte hypertrophy appears to be regulated receptors and are mimicked by the actions of other in large part through stimulation of G-protein coupled neurohormones (endothelin, prostaglandin F2a angiotensin receptors (GPCRs). Often, the ability of cardiomyocytes II) that also act on Gq-coupled receptors. Activation of to function at high capacity under increased workload phospholipase C by Gq is necessary for these responses, cannot be sustained and the heart transitions into a and protein kinase C and MAP kinases have also been condition in which ventricular failure develops. -
Identification of a Phosphatidic Acid-Preferring Phospholipase Al
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9574-9578, September 1994 Biochemistry Identification of a phosphatidic acid-preferring phospholipase Al from bovine brain and testis (lysophosphatidic acld/lysophosphoipase/Triton X-100 miceles/phospholpase D/diacylgycerol kinase) HENRY N. HIGGS AND JOHN A. GLOMSET* Departments of Biochemistry and Medicine and Regional Primate Research Center, Howard Hughes Medical Institute, University of Washington, SL-15, Seattle, WA 98195 Contributed by John A. Glomset, May 31, 1994 ABSTRACT Recent experiments in several laboratories drolysis by phospholipase A (PLA) activities, producing have provided evidence that phosphatidic acid functions in cell lysophosphatidic acid (LPA). A PA-specific PLA2 has been signaling. However, the mechaninsm that regulate cellular reported (16), but detailed information about this enzyme is phosphatidic acid levels remain obscure. Here we describe a lacking. Another possibility is that a PLA1 might metabolize soluble phospholipase Al from bovine testis that preferentially PA to sn-2-LPA. Several PLA1 activities have been identified hydrolyzes phosphatidic acid when assayed in Triton X-100 in mammalian tissues, including one found in rat liver plasma micelles. Moreover, the enzyme hydrolyzes phosphatidic acid membrane (17), another found in rat brain cytosol (18, 19), molecular species containing two unsaturated fatty acids in and others found in lysosomes (20, 21). None of these preference to those containing a combination of saturated and enzymes, however, displays a preference for PA as a sub- unsaturated fatty acyl groups. Under certain conditions, the strate. enzyme also displays lysophospholipase activity toward In the present study, we identify and characterize a cyto- lysophosphatidic acid. The phospholipase Al is not likely to be solic PLA1 with a strong preference for PA. -
The Expanded Endocannabinoid System/Endocannabinoidome As a Potential Target for Treating Diabetes Mellitus
Current Diabetes Reports (2019) 19:117 https://doi.org/10.1007/s11892-019-1248-9 OBESITY (KM GADDE, SECTION EDITOR) The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus Alain Veilleux1,2,3 & Vincenzo Di Marzo1,2,3,4,5 & Cristoforo Silvestri3,4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D. Keywords Endocannabinoidome . Bioactive lipids . Peripheral tissues . Glucose . Insulin Introduction: The Endocannabinoid System cannabis-derived natural product, Δ9-tetrahydrocannabinol and its Subsequent Expansion (THC), responsible for most of the psychotropic, euphoric to the “Endocannabinoidome” and appetite-stimulating actions (via CB1 receptors) and immune-modulatory effects (via CB2 receptors) of marijuana, The discovery of two G protein-coupled receptors, the canna- opened the way to the identification of the endocannabinoids binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the (eCBs). -
International Union of Pharmacology. XXXIV. Lysophospholipid Receptor Nomenclature
0031-6997/02/5402-265–269$7.00 PHARMACOLOGICAL REVIEWS Vol. 54, No. 2 Copyright © 2002 by The American Society for Pharmacology and Experimental Therapeutics 20204/989285 Pharmacol Rev 54:265–269, 2002 Printed in U.S.A International Union of Pharmacology. XXXIV. Lysophospholipid Receptor Nomenclature JEROLD CHUN, EDWARD J. GOETZL, TIMOTHY HLA, YASUYUKI IGARASHI, KEVIN R. LYNCH, WOUTER MOOLENAAR, SUSAN PYNE, AND GABOR TIGYI Merck Research Laboratories, La Jolla, California (J.C.); Department of Medicine, University of California, San Francisco, California (E.J.G.); Department of Physiology, University of Connecticut, Farmington, Connecticut (T.L.H.); Department of Biomembrane and Biofunctional Chemisty, Hokkaido University, Sapporo, Japan (Y.I.); Department of Pharmacology, University of Virginia, Charlottesville, Virginia (K.R.L.); Division of Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands (W.M.); Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland (S.P.); and Department of Physiology, University of Tennessee, Memphis, Tennessee (G.T.) This paper is available online at http://pharmrev.aspetjournals.org Abstract ............................................................................... 265 I. Introduction............................................................................ 265 II. Discovery of lysophospholipid receptors ................................................... 266 III. Receptor nomenclature ................................................................. -
Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model
Glaucoma Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model Sally Miller,1 Emma Leishman,1 Sherry Shujung Hu,2 Alhasan Elghouche,1 Laura Daily,1 Natalia Murataeva,1 Heather Bradshaw,1 and Alex Straiker1 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States 2Department of Psychology, National Cheng Kung University, Tainan, Taiwan Correspondence: Alex Straiker, De- PURPOSE. Cannabinoids, such as D9-THC, act through an endogenous signaling system in the partment of Psychological and Brain vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2- Sciences, Indiana University, Bloom- arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol ington, IN 47405, USA; lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic [email protected]. potential of harnessing eCBs to lower IOP. Submitted: February 16, 2016 Accepted: May 16, 2016 METHODS. We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal Citation: Miller S, Leishman E, Hu SS, cord of MAGL knockout (MAGLÀ/À) mice using high performance liquid chromatography/ et al. Harnessing the endocannabinoid tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of 2-arachidonoylglycerol to lower intra- ocular pressure in a murine model. MAGL in the mouse anterior chamber. Invest Ophthalmol Vis Sci. RESULTS. 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent 2016;57:3287–3296. DOI:10.1167/ manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary iovs.16-19356 epithelium. -
Systemic Administration of Oleoylethanolamide Protects from Neuroinflammation and Anhedonia Induced by LPS in Rats
International Journal of Neuropsychopharmacology Advance Access published March 3, 2015 International Journal of Neuropsychopharmacology, 2015, 1–14 doi:10.1093/ijnp/pyu111 Research Article research article Systemic Administration of Oleoylethanolamide Protects from Neuroinflammation and Anhedonia Induced by LPS in Rats Aline Sayd, MSc; María Antón, MSc; Francisco Alén, PhD; Javier Rubén Caso, Downloaded from PhD; Javier Pavón, PhD; Juan Carlos Leza, MD, PhD; Fernando Rodríguez de Fonseca, MD, PhD; Borja García-Bueno, PhD; Laura Orio PhD Department of Psychobiology, Faculty of Psychology, Complutense University, Complutense University of Madrid http://ijnp.oxfordjournals.org/ (UCM), Madrid, Spain (Ms Antón, and Drs Alén, Rodríguez de Fonseca and Orio); Department of Pharmacology, Faculty of Medicine, UCM, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)), Madrid, Spain (Ms Sayd, and Drs Leza and García-Bueno); Department of Psychiatry, Faculty of Medicine, UCM, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Dr Caso); UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga-Universidad de Málaga, and Red de Trastornos Adictivos, Málaga, Spain (Drs Pavón and Rodríguez de Fonseca). A.S., M.A., B.G.-B., and L.O. contributed equally to this work. by guest on April 29, 2016 Correspondence: Laura Orio, PhD, Department of Psychobiology, Faculty of Psychology, Complutense University of Madrid, Campus de Somosaguas s/n, 28223 Pozuelo de Alarcón, Madrid (email: [email protected].); and Borja García-Bueno, PhD, Department of Pharmacology, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, 28480 Madrid, Spain ([email protected]). Abstract Background: The acylethanolamides oleoylethanolamide and palmitoylethanolamide are endogenous lipid mediators with proposed neuroprotectant properties in central nervous system (CNS) pathologies. -
Control of Analgesic and Anti-Inflammatory Pathways by Fatty Acid Amide Hydrolase Long, James Harry
Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase Long, James Harry The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/3124 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase James Harry Long Thesis submitted for the degree of Doctor of Philosophy to the University of London Translational Medicine and Therapeutics William Harvey Research Institute Charterhouse Square, London, EC1M 6BQ Table of contents Table of Contents Declaration VIII Acknowledgements IX Abstract X Abbreviations XI Chapter 1 – Introduction 1 1.1. Pain and analgesia 2 1.1.1. Nociception 2 1.1.2. Inflammatory pain 5 1.1.3. Neuropathic pain 10 1.1.4. Analgesia 10 1.1.5. COX inhibitors 11 1.1.6. Opioid receptor agonists 12 1.1.7. Glucocorticoids 13 1.1.8. Anaesthetics 13 1.1.9. Antidepressants 14 1.1.10. Anticonvulsants 14 1.1.11. Muscle relaxants 15 1.1.12. An alternative analgesic pathway 15 1.2. Endocannabinoid system 16 1.2.1. Cannabinoid receptors 16 1.2.2. Endocannabinoids 18 1.2.3. Endocannabinoid biosynthesis 21 1.2.4. Endocannabinoid metabolism 21 1.2.5. -
Chemical Probes to Potently and Selectively Inhibit Endocannabinoid
Chemical probes to potently and selectively inhibit PNAS PLUS endocannabinoid cellular reuptake Andrea Chiccaa,1, Simon Nicolussia,1, Ruben Bartholomäusb, Martina Blunderc,d, Alejandro Aparisi Reye, Vanessa Petruccia, Ines del Carmen Reynoso-Morenoa,f, Juan Manuel Viveros-Paredesf, Marianela Dalghi Gensa, Beat Lutze, Helgi B. Schiöthc, Michael Soeberdtg, Christoph Abelsg, Roch-Philippe Charlesa, Karl-Heinz Altmannb, and Jürg Gertscha,2 aInstitute of Biochemistry and Molecular Medicine, National Centre of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; bDepartment of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland; cDepartment of Neuroscience, Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden; dBrain Institute, Universidade Federal do Rio Grande do Norte, Natal 59056- 450, Brazil; eInstitute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, D-55099 Mainz, Germany; fCentro Universitario de Ciencias Exactas e Ingenierías, University of Guadalajara, 44430 Guadalajara, Mexico; and gDr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany Edited by Benjamin F. Cravatt, The Scripps Research Institute, La Jolla, CA, and approved May 10, 2017 (received for review March 14, 2017) The extracellular effects of the endocannabinoids anandamide and ECs over arachidonate and other N-acylethanolamines (NAEs) 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after (15–19). However, although suitable inhibitors are available for crossing cellular membranes by facilitated diffusion. The lack of potent most targets within the ECS (20), the existing AEA uptake in- and selective inhibitors for endocannabinoid transport has prevented hibitors lack potency and show poor selectivity over the other the molecular characterization of this process, thus hindering its components of the ECS, in particular FAAH (21, 22).