New Data on the Paleocene Monotreme Monotrematum Sudamericanum, and the Convergent Evolution of Triangulate Molars

Total Page:16

File Type:pdf, Size:1020Kb

New Data on the Paleocene Monotreme Monotrematum Sudamericanum, and the Convergent Evolution of Triangulate Molars New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars Rosendo Pascual, Francisco J. Goin, Lucía Balarino, and Daniel E. Udrizar Sauthier Acta Palaeontologica Polonica 47 (3), 2002: 487-492 We describe an additional fragmentary upper molar and the first lower molar known of Monotrematum sudamericanum, the oldest Cenozoic (Paleocene) monotreme. Comparisons suggest that the monotreme evolution passed through a stage in which their molars were "pseudo-triangulate", without a true trigonid, and that the monotreme pseudo-triangulate pattern did not arise through rotation of the primary molar cusps. Monotreme lower molars lack a talonid, and consequently there is no basin with facets produced by the wearing action of a "protocone"; a cristid obliqua connecting the "talonid" to the "trigonid" is also absent. We hypothesize that acquisition of the molar pattern seen in Steropodon galmani (Early Cretaceous, Albian) followed a process similar to that already postulated for docodonts (Docodon in Laurasia, Reigitherium in the South American sector of Gondwana) and, probably, in the gondwanathere Ferugliotherium. Key words: Monotremata, Monotrematum, pseudo−triangulate molars, molar structure, Gondwana, Patagonia, Paleocene Rosendo Pascual [[email protected]], Francisco Goin [[email protected]], Lucía Balarino, and Daniel Udrizar Sauthier, Departamento Paleontología Vertebrados, Museo de la Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see creativecommons.org), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Full text (158.5 kB) Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Versión Disponible En PDF
    nicolás r chimento, Federico L agnolin y Fernando e novas Museo Argentino de Ciencias Naturales Bernardino Rivadavia Necrolestes un mamífero patagónico que sobrevivió a la extinción de los dinosaurios Un descubrimiento patagónico desembocadura del río Santa Cruz, descubrieron esque- letos fósiles prácticamente completos del Necrolestes. El es- En 1891, Florentino Ameghino (1854-1911) dio a tudio de esos esqueletos llevó a pensar que se trataba de conocer unos restos fósiles encontrados por su hermano un mamífero muy arcaico en la historia de la evolución, Carlos (1865-1936) en las barrancas de Monte Obser- más que un ancestro de los topos, como había supuesto vación, en la provincia de Santa Cruz, en yacimientos Ameghino. Por determinados rasgos se pensó que podía de unos 17 millones de años de antigüedad. Determinó haber sido un marsupial, es decir, un pariente lejano de las que pertenecían a un pequeño –escasos 10cm de largo, comadrejas, los canguros y los coalas actuales. del hocico a la cola– y desconocido mamífero extin- Ciertos investigadores aceptaron esta última hipótesis guido. Estudió los diminutos huesos y consideró que de parentesco, pero otros se mostraron escépticos acerca el animal habría sido un pariente lejano de los topos de ella y se inclinaron por considerar inciertas las rela- africanos vivientes. Le dio el nombre científicoN ecrolestes ciones genealógicas del diminuto mamífero. Así, su po- patagonensis, es decir, ladrón de tumbas de la Patagonia, en sición en el árbol evolutivo de los mamíferos fue objeto alusión a sus hábitos excavadores. El hallazgo, publica- de debate durante gran parte del siglo XX. Para algunos, do por Ameghino en el número de la Revista Argentina de era pariente lejano de las mulitas; otros seguían pensan- Historia Natural citado entre las lecturas sugeridas, atrajo do que podía estar relacionado con los topos, y para un la atención del ámbito científico, ya que hasta ese mo- tercer grupo, sus vínculos eran con los marsupiales aus- mento en Sudamérica no se habían encontrado restos tralianos.
    [Show full text]
  • The Oldest Platypus and Its Bearing on Divergence Timing of the Platypus and Echidna Clades
    The oldest platypus and its bearing on divergence timing of the platypus and echidna clades Timothy Rowe*†, Thomas H. Rich‡§, Patricia Vickers-Rich§, Mark Springer¶, and Michael O. Woodburneʈ *Jackson School of Geosciences, University of Texas, C1100, Austin, TX 78712; ‡Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; §School of Geosciences, PO Box 28E, Monash University, Victoria 3800, Australia; ¶Department of Biology, University of California, Riverside, CA 92521; and ʈDepartment of Geology, Museum of Northern Arizona, Flagstaff, AZ 86001 Edited by David B. Wake, University of California, Berkeley, CA, and approved October 31, 2007 (received for review July 7, 2007) Monotremes have left a poor fossil record, and paleontology has broadly affect our understanding of early mammalian history, been virtually mute during two decades of discussion about with special implications for molecular clock estimates of basal molecular clock estimates of the timing of divergence between the divergence times. platypus and echidna clades. We describe evidence from high- Monotremata today comprises five species that form two resolution x-ray computed tomography indicating that Teinolo- distinct clades (16). The echidna clade includes one short-beaked phos, an Early Cretaceous fossil from Australia’s Flat Rocks locality species (Tachyglossus aculeatus; Australia and surrounding is- (121–112.5 Ma), lies within the crown clade Monotremata, as a lands) and three long-beaked species (Zaglossus bruijni, Z. basal platypus. Strict molecular clock estimates of the divergence bartoni, and Z. attenboroughi, all from New Guinea). The between platypus and echidnas range from 17 to 80 Ma, but platypus clade includes only Ornithorhynchus anatinus (Austra- Teinolophos suggests that the two monotreme clades were al- lia, Tasmania).
    [Show full text]
  • Brief Report Vol
    Brief report Vol. 46, No. 1, pp. 113-1 18, Warszawa 2001 Monotreme nature of the Australian Early Cretaceous mammal Teinolophos THOMAS H. RICH, PATRICIA VICKERS-RICH, PETER TRUSLER, TIMOTHY F. FLANNERY, RICHARD CIFELLI, ANDREW CONSTANTINE, LESLEY KOOL, and NICHOLAS VAN KLAVEREN The morphology of the single preserved molar of the holotype of the Australian Early Creta- ceous (Aptian) mammal Teinolophos trusleri shows that it is a monotreme and probably a steropodontid, rather than a 'eupantothere' as originally proposed. The structure of the rear of the jaw of T. trusleri supports the molecular evidence that previously formed the sole basis for recognising the Steropodontidae as a distinct family. When the holotype of Teinolophos trusleri was first described from the Early Cretaceous (Aptian) Strzelecki Group of southern Victoria, Australia (Rich et al. 1999), it was regarded as a member of the Order Eupantotheria Kermack & Mussett, 1958 (= Legion Cladotheria McKenna, 1975 - Infralegion Tribosphenida McKenna, 1975) of uncertain family. This interpretation was based in large part on the inferred structure of the penultimate lower molar, the only tooth preserved on the se- verely crushed holotype. The crown of that tooth was largely obscured by a hard matrix. As a conse- quence of that, a critical misidentification of the cusp in the posterolingual region of the tooth as the metaconid rather than the hypoconulid was made. It was this erroneous interpretation and the conse- quent corollaries that the trigonid was anteroposteriorlyexpanded and the talonid unbasined that led Rich et al. (1999) to intepret the specimen as a 'eupantothere'. In September 1999, Mr. Charles Schaff of Harvard University successfully cleared the obscuring matrix from crown of the tooth (Fig.
    [Show full text]
  • Molecules, Morphology, and Ecology Indicate a Recent, Amphibious Ancestry for Echidnas
    Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas Matthew J. Phillipsa,1, Thomas H. Bennetta, and Michael S. Y. Leeb,c aCentre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia; bSchool of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia; and cEarth Sciences Section, South Australian Museum, Adelaide, SA 5000, Australia Edited by David B. Wake, University of California, Berkeley, CA, and approved August 14, 2009 (received for review April 28, 2009) The semiaquatic platypus and terrestrial echidnas (spiny anteaters) Fossil echidnas do not appear until the mid-Miocene (Ϸ13 are the only living egg-laying mammals (monotremes). The fossil Ma) (13), despite excellent late Oligocene–Early Miocene mam- record has provided few clues as to their origins and the evolution mal fossil records in both northern and southern Australia. This of their ecological specializations; however, recent reassignment absence has tentatively been attributed in part to echidnas of the Early Cretaceous Teinolophos and Steropodon to the platy- lacking teeth (14), which are the most common fossil remains pus lineage implies that platypuses and echidnas diverged >112.5 from mammals. Alternatively, if the molecular dating studies million years ago, reinforcing the notion of monotremes as living that estimate the divergence of echidnas from platypuses at fossils. This placement is based primarily on characters related to 17–35 Ma (15–22) are correct, then characters that clearly ally a single feature, the enlarged mandibular canal, which supplies fossil taxa with echidnas would not be expected to have evolved blood vessels and dense electrosensory receptors to the platypus until even more recently.
    [Show full text]
  • Monotremes Bibliography
    Calaby’s Monotreme Literature Abensperg-Traun, M.A. (1988). Food preference of the echidna, Tachyglossus aculeatus (Monotremata: Tachyglossidae), in the wheatbelt of Western Australia. Australian Mammalogy 11: 117–123. Monotremes Abensperg-Traun, M. (1989). Some observations on the duration of lactation and movements of a Tachyglossus aculeatus acanthion (Monotremata: Tachyglossidae) from Western Australia. Australian Mammalogy 12: 33–34. Monotremes Abensperg-Traun, M. (1991). A study of home range, movements and shelter use in adult and juvenile echidnas, Tachyglossus aculeatus (Monotremata: Tachyglossidae), in Western Australian wheatbelt reserves. Australian Mammalogy 14: 13–21. Monotremes Abensperg-Traun, M. (1991). Survival strategies of the echidna Tachyglossus aculeatus (Monotremata: Tachyglossidae). Biological Conservation 58: 317–328. Monotremes Abensperg-Traun, M. (1994). Blindness and survival in free-ranging echidnas, Tachyglossus aculeatus. Australian Mammalogy 17: 11 7– 119. Monotremes Abensperg-Traun, M. and De Boer, E.S. (1992). The foraging ecology of a termite- and ant-eating specialist, the echidna Tachyglossus aculeatus (Monotremata: Tachyglossidae). Journal of Zoology, London 226: 243–257. Monotremes Abensperg-Traun, M., Dickman, C.R. and De Boer, E.S. (1991). Patch use and prey defence in a mammalian myrmecophage, the echidna (Tachyglossus aculeatus) (Monotremata: Tachyglossidae): a test of foraging efficiency in captive and free-ranging animals. Journal of Zoology, London 225: 481–493. Monotremes Adamson, S. and Campbell, G. (1988). The distribution of 5–hydroxytryptamine in the gastrointestinal tract of reptiles, birds and a prototherian mammal. An immunohistochemical study. Cell and Tissue Research 251: 633–639. Monotremes Aitken, P.F. (1969). The mammals of the Flinders Ranges. Pp. 255–356 in Corbett, D.W.P.
    [Show full text]
  • The Miocene Mammal Necrolestes Demonstrates the Survival of a Mesozoic Nontherian Lineage Into the Late Cenozoic of South America
    The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America Guillermo W. Rougiera,b,1, John R. Wibleb, Robin M. D. Beckc, and Sebastian Apesteguíad,e aDepartment of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202; bSection of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA 15206; cSchool of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia; dCEBBAD–Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, 1405 Buenos Aires, Argentina; and eConsejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1033AAJ Buenos Aires, Argentina Edited by Richard L. Cifelli, University of Oklahoma, Norman, OK, and accepted by the Editorial Board October 18, 2012 (received for review July 27, 2012) The early Miocene mammal Necrolestes patagonensis from Pata- not referable to either Metatheria or Eutheria, but did not discuss gonia, Argentina, was described in 1891 as the only known extinct the evidence for this interpretation, nor did they identify the placental “insectivore” from South America (SA). Since then, and specific therian lineages they considered to be potential relatives despite the discovery of additional well-preserved material, the of Necrolestes. Starting in 2007, we oversaw additional prepara- systematic status of Necrolestes has remained in flux, with earlier tion of Necrolestes specimens that comprise the best-preserved studies leaning toward placental affinities and more recent ones material currently available, including skulls, jaws, and some iso- endorsing either therian or specifically metatherian relationships. We lated postcranial bones; as a result, many phylogenetically signif- have further prepared the best-preserved specimens of Necrolestes icant features have been revealed for the first time.
    [Show full text]
  • New Data on the Paleocene Monotreme Monotrematum Sudamericanum, and the Convergent Evolution of Triangulate Molars
    New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars ROSENDO PASCUAL, FRANCISCO J. GOIN, LUCÍA BALARINO, and DANIEL E. UDRIZAR SAUTHIER Pascual, R., Goin, F.J., Balarino, L., and Udrizar Sauthier, D.E. 2002. New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars. Acta Palaeontologica Polonica 47 (3): 487–492. We describe an additional fragmentary upper molar and the first lower molar known of Monotrematum sudamericanum, the oldest Cenozoic (Paleocene) monotreme. Comparisons suggest that the monotreme evolution passed through a stage in which their molars were “pseudo−triangulate”, without a true trigonid, and that the monotreme pseudo−triangulate pat− tern did not arise through rotation of the primary molar cusps. Monotreme lower molars lack a talonid, and consequently there is no basin with facets produced by the wearing action of a “protocone”; a cristid obliqua connecting the “talonid“ to the “trigonid” is also absent. We hypothesize that acquisition of the molar pattern seen in Steropodon galmani (Early Cre− taceous, Albian) followed a process similar to that already postulated for docodonts (Docodon in Laurasia, Reigitherium in the South American sector of Gondwana) and, probably, in the gondwanathere Ferugliotherium. Key words: Monotremata, Monotrematum, pseudo−triangulate molars, molar structure, Gondwana, Patagonia, Paleocene. Rosendo Pascual [[email protected]], Francisco Goin [[email protected]], Lucía Balarino, and Daniel Udrizar Sauthier, Departamento Paleontología Vertebrados, Museo de la Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. Introduction Systematic paleontology The relationships of Monotremata have been widely debated Monotremata Bonaparte, 1837 in recent years, with little apparent consensus (e.g., Kühne Ornithorhynchidae Gray, 1825 1977; Kielan−Jaworowska et al.
    [Show full text]
  • In Quest for a Phylogeny of Mesozoic Mammals
    In quest for a phylogeny of Mesozoic mammals ZHE−XI LUO, ZOFIA KIELAN−JAWOROWSKA, and RICHARD L. CIFELLI Luo, Z.−X., Kielan−Jaworowska, Z., and Cifelli, R.L. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47 (1): 1–78. We propose a phylogeny of all major groups of Mesozoic mammals based on phylogenetic analyses of 46 taxa and 275 osteological and dental characters, using parsimony methods (Swofford 2000). Mammalia sensu lato (Mammaliaformes of some authors) are monophyletic. Within mammals, Sinoconodon is the most primitive taxon. Sinoconodon, morganu− codontids, docodonts, and Hadrocodium lie outside the mammalian crown group (crown therians + Monotremata) and are, successively, more closely related to the crown group. Within the mammalian crown group, we recognize a funda− mental division into australosphenidan (Gondwana) and boreosphenidan (Laurasia) clades, possibly with vicariant geo− graphic distributions during the Jurassic and Early Cretaceous. We provide additional derived characters supporting these two ancient clades, and we present two evolutionary hypotheses as to how the molars of early monotremes could have evolved. We consider two alternative placements of allotherians (haramiyids + multituberculates). The first, supported by strict consensus of most parsimonious trees, suggests that multituberculates (but not other alllotherians) are closely re− lated to a clade including spalacotheriids + crown therians (Trechnotheria as redefined herein). Alternatively, allotherians can be placed outside the mammalian crown group by a constrained search that reflects the traditional emphasis on the uniqueness of the multituberculate dentition. Given our dataset, these alternative topologies differ in tree−length by only ~0.6% of the total tree length; statistical tests show that these positions do not differ significantly from one another.
    [Show full text]
  • Evolution of Australian Biota Study Day 2013
    Evolution of Australian Biota Study Day 2013 Taronga Zoomobile session Student Activities Yr 11 Evolution of Australian Biota Workshop Students notes Welcome to the Australian Biota Workshop!! Today’s lesson is jam packed with information about some of Australia’s most amazing animals. We will cover lots of the Basic Vocabulary/Concepts: Australian Biota syllabus points plus lots of other information 1) Nocturnal, Diurnal, Crepuscular you will need to have a good understanding of biology. 2) Behavioral, Structural and physiological adaptations 3) Ectothermic, endothermic Someofthemainpointstohaveinmindare: 4) Arid, temperate environments 5) Camouflage A) Humans only live a short amount of time ‐ lots of the 6) Arboreal processes we are studying (ie evolution) take place over much larger timeframes 7) Vertebrate animals ‐ Fish, Amphibians, Reptiles, Birds and Mammals (Monotremes, Marsupials, Placental) B) The world is a changing place ‐ the continents move, the climate changes, the plants and animals respond to these changes continuously ‐ its not a one directional change! And lots more… C) Fitness ‐ the priorities of an animal are often different to those of a human. In biology, we consider the ability of an animal to produce successful offspring as the ultimate achievement. This is known as fitness. Syllabus ref. 8.5.1, Evidence for the rearrangement of crustal plates and THE STORY SO FAR...65 MYA the continental drift indicates that Australia was once part an ancient super extinction of the dinosaurs made way for the continent. ‘Age
    [Show full text]
  • Monotremes (Prototheria)
    Monotremes (Prototheria) Mark S. Springer a,* and Carey W. Krajewskib and to each monotreme family. Primitive features include aDepartment of Biology, University of California, Riverside, CA a cloaca and the retention of certain bones in the skull 92521, USA; bDepartment of Zoology, Southern Illinois University, and shoulder girdle. Monotremes also lay shell-covered Carbondale, IL 92901, USA eggs that are hatched outside of the body of the mother. *To whom correspondence should be addressed (mark.springer@ Here, we review relationships and divergence times of ucr.edu) the monotremes. Ornithorhynchidae contains one living spe- Abstract cies (Ornithorhynchus anatinus) that is restricted to Australia. 7 e platypus is semiaquatic. Adult platypuses Monotremes are the sole living representatives of Proto- have hornlike plates that replace functional teeth and theria and include the duckbilled platypus and four spe- an electroreceptive bill. 7 e electroreceptive bill is sup- cies of echidnas. Monotremes are restricted to Australia ported by a hypertrophied mandibular branch of the and New Guinea and exhibit a mosaic of primitive features trigeminal nerve that courses through an enlarged man- that are similar to reptiles. Molecular time estimates for dibular canal. Tachyglossidae includes two extant gen- the platypus–echidna split, based on diverse methods and era (Tachyglossus, Zaglossus). Echidnas, also known as data, average 49 million years ago (Ma), but have a wide spiny anteaters, are edentate insectivores that are vari- range (89–17 Ma). All of these estimates are younger than ably covered with spines. 7 at ornithorhynchids and the oldest putative platypus fossil (121–112.5 Ma). Better tachyglossids are each other’s closest relatives among constraints on the platypus–echidna divergence time will extant mammals is supported by both morphological require improved sampling of the fossil record and of the and molecular data (7–10).
    [Show full text]
  • Electroreception in Monotremes
    The Journal of Experimental Biology 202, 1447–1454 (1999) 1447 Printed in Great Britain © The Company of Biologists Limited 1999 JEB2097 ELECTRORECEPTION IN MONOTREMES JOHN D. PETTIGREW* Vision, Touch and Hearing Research Centre, Ritchie Laboratories, Research Road, The University of Queensland, Brisbane 4072, Australia *e-mail: [email protected] Accepted 3 March; published on WWW 21 April 1999 Summary I will briefly review the history of the bill sense of the and an account of the central processing of platypus, a sophisticated combination of electroreception mechanoreceptive and electroreceptive input in the and mechanoreception that coordinates information about somatosensory neocortex of the platypus, where aquatic prey provided from the bill skin mechanoreceptors sophisticated calculations seem to enable a complete three- and electroreceptors, and provide an evolutionary account dimensional fix on prey, is given. of electroreception in the three extant species of monotreme (and what can be inferred of their ancestors). Electroreception in monotremes is compared and Key words: electroreception, monotreme, platypus, contrasted with the extensive body of work on electric fish, mechanoreception, evolution. Introduction The monotremes, or egg-laying mammals, have been a established threshold field strengths for detection of subject of special fascination ever since their first description approximately 300 µVcm−1, by using both behaviour and was greeted by Western scientists with great scepticism field potential recordings from the somatosensory cortex. (Home, 1802). Many thought that the platypus was a clever Platypus brains from the same study labelled with 2- hoax perpetrated by careful attachment of a duck-bill and deoxyglucose showed a specific, stripe-like pattern of webbed feet to the skin of a mammal (Griffiths, 1998).
    [Show full text]
  • Why Are There Fewer Marsupials Than Placentals? on the Relevance of Geography and Physiology to Evolutionary Patterns of Mammalian Diversity and Disparity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library J Mammal Evol (2013) 20:279–290 DOI 10.1007/s10914-012-9220-3 REVIEW Why are There Fewer Marsupials than Placentals? On the Relevance of Geography and Physiology to Evolutionary Patterns of Mammalian Diversity and Disparity Marcelo R. Sánchez-Villagra Published online: 22 December 2012 # Springer Science+Business Media New York 2012 Abstract Placental mammals occupy a larger morphospace considered that selection can act at any point during and are taxonomically more diverse than marsupials by an ontogenesis, and also that the degrees of freedom in order of magnitude, as shown by quantitative and phyloge- evolutionary changes to development are very high. netic studies of several character complexes and clades. Many Mitgutsch et al. (2009: 255) have suggested that life history acts as a constraint on the evolution of marsupial morphology. However, the frequent …universal (and local) constraints need not to be circumvention of constraints suggests that the pattern of mor- inevitable. They may be accidents of evolutionary phospace occupation in marsupials is more a reflection of lack history… of ecological opportunity than one of biases in the production A. Wagner (2011: 158) of variants during development. Features of marsupial phys- iology are a potential source of biases in the evolution of the In a world of chance, is there a better and worse? group; these could be coupled with past macroevolutionary Foe, by J. M. Coetzee (1986: 30) patterns that followed conditions imposed by global tempera- ture changes.
    [Show full text]