Reproductive Cycle and Strategy of Anodonta Anatina

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Cycle and Strategy of Anodonta Anatina View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital do IPB RESEARCH ARTICLE Reproductive Cycle and Strategy of Anodonta anatina (L., 1758): Notes on Hermaphroditism MARIANA HINZMANN1,2, MANUEL LOPES‐LIMA1,2*, AMILCAR TEIXEIRA3, SIMONE VARANDAS4, RONALDO SOUSA2,5, ANABELA LOPES1,2, ELSA FROUFE2, 1,2 AND JORGE MACHADO 1ICBAS‐UP—Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal 2CIMAR‐LA/CIIMAR—Centre of Marine and Environmental Research, University of Porto, Porto, Portugal 3CIMO‐ESA‐IPB—Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Bragança, Portugal 4CITAB‐UTAD—Centre for Research and Technology of Agro‐Environment and Biological Sciences, University of Trás‐os‐Montes and Alto Douro, Vila Real, Portugal 5CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal ABSTRACT Freshwater mussels have decreased dramatically in Iberia over the last decades. These animals are responsible for important ecosystem services such as recycling nutrients and improving water clarity. Under this view a better knowledge on the biological features of these animals is extremely important for future conservation and management actions. In this study the reproductive and gametogenic cycle of Anodonta anatina were studied during 2 years in one population as well as the sex ratio and hermaphroditism in six distinct populations, using standard histology. Gametogenesis was continuous in both sexes and germinal epithelium in early stages of development. Gametes were present throughout the reproductive cycle. Oogenesis and spermatogenesis occurred mainly between January and May. Larvae brooding occurred between September and March and main glochidia discharge occurred over a short period (2–3 weeks) in March. For the sex‐ratio and hermaphroditism assessments a variable number of individuals were collected from several populations from lakes and rivers. Previous studies described A. anatina as mainly dioecious with only a few populations presenting occasional hermaphroditism. However, the present study indicates that A. anatina sexual behavior is influenced by environmental conditions, being mainly dioecious in rivers with increased hermaphroditism in standing waters. Although self‐ fertilization was not confirmed, additional studies with molecular characterization of larvae using fast evolving markers should be used in future studies to enlighten this process. Overall, this study indicates that for more efficient conservation actions and management plans, freshwater mussel reproductive biology should be studied at the population level mainly in the subfamily Anodontinae. J. Exp. Zool. 9999A: 1–13, 2013. © 2013 Wiley Periodicals, Inc. How to cite this article: Hinzmann M, Lopes‐Lima M, Teixeira A, Varandas S, Sousa R, Lopes A, Anodonta anatina J. Exp. Zool. Froufe E, Machado J. 2013. Reproductive cycle and strategy of (L., 1758): 9999A:1–13, 2013 Notes on hermaphroditism. J. Exp. Zool. 9999:1–13. © 2013 WILEY PERIODICALS, INC. 2 HINZMANN ET AL. Freshwater mussels (Bivalvia, Unionoida) are among the most several parts of the continent and is listed as threatened and critically threatened faunal groups globally (Neves et al., '97; protected in Germany (Zettler et al., 2006). In Iberia, all species of Lydeard et al., 2004; Simberloff, 2012). The consequences of this native unionoid mussels are decreasing both in number of catastrophic decline go far beyond the loss of species per se since populations and individuals (Araujo et al., 2009). These animals freshwater mussels are responsible for critical trophic and non‐ are extremely important ecologically serving important ecosystem trophic functions (Vaughn, 2010; Allen and Vaughn, 2011). In functions (e.g., biomass transfer from the water column to the most European species very few studies have been done, either on benthos, reduction of water turbidity, control of the concentration the distribution and population structure but also on the study of and composition of suspended particles, nutrient cycling and their basic life cycle traits. This situation may be related with provision of habitat for other organisms; Vaughn, 2010; Sousa the complex and distinct life‐history patterns of each species. et al., 2011, 2012). All of these facts turn the research on the Recently, biologists have made the first attempts to organize biological traits (mainly the reproductive characters) of these the life‐history strategies of freshwater mussels into conceptual mussel species crucial for future conservation actions and frameworks (Bauer and Wächtler, 2000; Dillon, 2000). However, management. Additionally, recent findings suggest that even the development of these frameworks is hampered by a lack of host generalists such as Anodontinae mussels may be increasingly life‐history information for most species, particularly for traits limited in their reproductive cycles by the host availability (Douda such as age at maturity, growth rate, longevity and fecundity et al., 2013). Hence, precise data on the timing of glochidia (Strayer et al., 2004). This information is vital for the generation of production and the capability of hermaphroditism may be highly testable hypotheses about the evolutionary, ecological, and important for assessing the risk of host limitation in the field. management consequences of life‐history variation. So, it is of Under this view, to increase the knowledge on the reproductive primordial importance to increase fundamental knowledge on biological traits of A. anatina, the aim of this study was to describe basic biology and habitat requirements of each species so that in detail the histology of the sexual (spermatogenesis plus managers can more effectively conserve and manage the mussel oogenesis) development of A. anatina. In addition, we verified the fauna. sex ratio and hermaphroditism from distinct habitats such as The reproductive biology of unionoids is distinctive: fertiliza- rivers, lagoons or impoundments to allow a more detailed tion is internal and the fertilized eggs form larvae (glochidia) evaluation on the sexual strategy of this species. that are brooded in the gills of females until they are released in to the water column. To complete their development into juvenile mussels, they need to parasitize certain host fishes until METHODS complete metamorphosis into young adult mussels (Kat, '84). Sampling Recent studies within the subfamily Anodontinae have been For the seasonal sexual development, from March 2009 to carried on the reproduction development on related species March 2011 six A. anatina were collected monthly in Tâmega (Sereflisan et al., 2009; Lima et al., 2012) to fill that gap of River near Ribeira de Pena, Portugal (N 41°3203000; W 7°4701500; knowledge. Fig. 1); all of these animals were also checked to determine the sex The present study is focused on Anodonta anatina, a freshwater ratio. The mussels were transported to the laboratory on ice in a mussel that is still widespread in Europe. Current distribution cooler box and processed within 24 hr. In the laboratory, bivalves encompasses the Iberian Peninsula in the Southwest, the were anesthetized in 2‐phenoxyethanol solution 0.4% (v/v) for Scandinavia in the North and Russia in the East (Graf, 2007). about 30 min and dissected for histology. To minimize eventual Although widespread, this species already disappeared from negative impacts, the number of animals sacrificed was reduced and the seasonal study was made in the larger population of A. anatina in Portugal. Grant sponsor: Portuguese Foundation for Science and Technology (FCT). Histological Procedure grant numbers: PTDC/AAC‐AMB/117688/2010 CONBI, PTDC/MAR/098066/ Samples of gonad and gill tissue were excised from each animal 2010 SYNERG. and preserved in Bouin's solution (Panreac, Barcelona, Spain). Ã ‐ Correspondence to: Manuel Lopes Lima, Abel Salazar Biomedical After being preserved in Bouin's solution for a week, transverse Sciences Institute, Applied Physiology Laboratory, Aquatic Production Department, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, sections of the gonads were dehydrated in graded ethanol, 4050‐313 Porto, Portugal. embedded in paraffin, sectioned at 5–8 mm and stained with E‐mail: [email protected] hematoxylin and eosin for histological examination. Received 15 June 2012; Revised 10 April 2013; Accepted 16 April 2013 The sex was determined visually by the presence of male and DOI: 10.1002/jez.1801 female gonad tissue. The maturation level of the gonads was Published online XX Month Year in Wiley Online Library fi (wileyonlinelibrary.com). established using the classi cation stage table of the gamete development index (GDI) adapted from Barber ('96). Gills were J. Exp. Zool. SEXUAL STRATEGY AND CYCLE OF Anodonta anatina 3 river and lagoon/reservoir populations were analyzed by one‐way ANOVA followed by a Duncan multiple range test. Both tests were carried using JMP statistical package (SAS Institute, Cary, NC, USA). Genetic Analysis To avoid taxonomic uncertainties due to the usual misidentifica- tion between A. cygnea and A. anatina, identities were confirmed by genetic analysis. For this, foot tissue samples were collected and placed directly into 96% ethanol. The whole genomic DNA was extracted from small tissue samples pieces (2 mm3) using a standard high‐salt protocol (Sambrook et al., '89). A fragment of approximately 700 bp of
Recommended publications
  • December 2015
    Ellipsaria Vol. 17 - No. 4 December 2015 Newsletter of the Freshwater Mollusk Conservation Society Volume 17 – Number 4 December 2015 Cover Story . 1 Society News . 5 Regional Meetings . 9 Upcoming Meetings . 14 Contributed Articles . 15 Obituary . 28 Lyubov Burlakova, Knut Mehler, Alexander Karatayev, and Manuel Lopes-Lima FMCS Officers . 33 On October 4-8, 2015, the Great Lakes Center of Buffalo State College hosted the Second International Meeting on Biology and Conservation of Freshwater Committee Chairs Bivalves. This meeting brought together over 80 scientists from 19 countries on four continents (Europe, and Co-chairs . 34 North America, South America, and Australia). Representation from the United States was rather low, Parting Shot . 35 but that was expected, as several other meetings on freshwater molluscs were held in the USA earlier in the year. Ellipsaria Vol. 17 - No. 4 December 2015 The First International Meeting on Biology and Conservation of Freshwater Bivalves was held in Bragança, Portugal, in 2012. That meeting was organized by Manuel Lopes-Lima and his colleagues from several academic institutions in Portugal. In addition to being a research scientist with the University of Porto, Portugal, Manuel is the IUCN Coordinator of the Red List Authority on Freshwater Bivalves. The goal of the first meeting was to create a network of international experts in biology and conservation of freshwater bivalves to develop collaborative projects and global directives for their protection and conservation. The Bragança meeting was very productive in uniting freshwater mussel biologists from European countries with their colleagues in North and South America. The meeting format did not include concurrent sessions, which allowed everyone to attend to every talk and all of the plenary talks by leading scientists.
    [Show full text]
  • PETITION to LIST the Western Ridged Mussel
    PETITION TO LIST The Western Ridged Mussel Gonidea angulata (Lea, 1838) AS AN ENDANGERED SPECIES UNDER THE U.S. ENDANGERED SPECIES ACT Photo credit: Xerces Society/Emilie Blevins Submitted by The Xerces Society for Invertebrate Conservation Prepared by Emilie Blevins, Sarina Jepsen, and Sharon Selvaggio August 18, 2020 The Honorable David Bernhardt Secretary, U.S. Department of Interior 1849 C Street, NW Washington, DC 20240 Dear Mr. Bernhardt: The Xerces Society for Invertebrate Conservation hereby formally petitions to list the western ridged mussel (Gonidea angulata) as an endangered species under the Endangered Species Act, 16 U.S.C. § 1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14(a), which grants interested parties the right to petition for issue of a rule from the Secretary of the Interior. Freshwater mussels perform critical functions in U.S. freshwater ecosystems that contribute to clean water, healthy fisheries, aquatic food webs and biodiversity, and functioning ecosystems. The richness of aquatic life promoted and supported by freshwater mussel beds is analogous to coral reefs, with mussels serving as both structure and habitat for other species, providing and concentrating food, cleaning and clearing water, and enhancing riverbed habitat. The western ridged mussel, a native freshwater mussel species in western North America, once ranged from San Diego County in California to southern British Columbia and east to Idaho. In recent years the species has been lost from 43% of its historic range, and the southern terminus of the species’ distribution has contracted northward approximately 475 miles. Live western ridged mussels were not detected at 46% of the 87 sites where it historically occurred and that have been recently revisited.
    [Show full text]
  • Freshwater Mussels Pacific Northwest
    Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations,
    [Show full text]
  • Identifying Freshwater Mussels (Unionoida)
    Identifying freshwater mussels (Unionoida) and parasitic glochidia larvae from host fish gills: a molecular key to the North and Central European species Alexandra Zieritz1, Bernhard Gum1, Ralph Kuehn2 &JuergenGeist1 1Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universitat¨ Munchen,¨ Muhlenweg¨ 22, 85354 Freising, Germany 2Molecular Zoology Unit, Chair of Zoology, Department of Animal Science, Technische Universitat¨ Munchen,¨ Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany Keywords Abstract Host–parasite interactions, morphological variability, PCR-RFLP, species identification, Freshwater mussels (order Unionoida) represent one of the most severely endan- Unionidae, wildlife management. gered groups of animals due to habitat destruction, introduction of nonnative species, and loss of host fishes, which their larvae (glochidia) are obligate parasites Correspondence on. Conservation efforts such as habitat restoration or restocking of host popu- Juergen Geist, Aquatic Systems Biology Unit, lations are currently hampered by difficulties in unionoid species identification Department of Ecology and Ecosystem by morphological means. Here we present the first complete molecular identifi- Management, Technische Universitat¨ Munchen,¨ Muhlenweg¨ 22, 85354 Freising, cation key for all seven indigenous North and Central European unionoid species Germany. Tel: +49 (0)8161 713767; and the nonnative Sinanodonta woodiana, facilitating quick, low-cost, and reliable Fax: +49 (0)8161 713477; identification of adult and larval specimens. Application of this restriction frag- E-mail: [email protected] ment length polymorphisms (RFLP) key resulted in 100% accurate assignment of 90 adult specimens from across the region by digestion of partial ITS-1 (where ITS Received: 2 December 2011; Revised: 26 is internal transcribed spacer) polymerase chain reaction (PCR) products in two to January 2012; Accepted: 6 February 2012 four single digestions with five restriction endonucleases.
    [Show full text]
  • Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT
    Version 1.5 Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT Report To: Wasatch Front Water Quality Council Salt Lake City, UT By: David C. Richards, Ph.D. OreoHelix Consulting Vineyard, UT 84058 email: [email protected] phone: 406.580.7816 May 26, 2017 Native Unionoida Surveys and Metapopulation Dynamics Jordan River-Utah Lake Drainage 1 One of the few remaining live adult Anodonta found lying on the surface of what was mostly comprised of thousands of invasive Asian clams, Corbicula, in Currant Creek, a former tributary to Utah Lake, August 2016. Summary North America supports the richest diversity of freshwater mollusks on the planet. Although the western USA is relatively mollusk depauperate, the one exception is the historically rich molluskan fauna of the Bonneville Basin area, including waters that enter terminal Great Salt Lake and in particular those waters in the Jordan River-Utah Lake drainage. These mollusk taxa serve vital ecosystem functions and are truly a Utah natural heritage. Unfortunately, freshwater mollusks are also the most imperiled animal groups in the world, including those found in UT. The distribution, status, and ecologies of Utah’s freshwater mussels are poorly known, despite this unique and irreplaceable natural heritage and their protection under the Clean Water Act. Very few mussel specific surveys have been conducted in UT which requires specialized training, survey methods, and identification. We conducted the most extensive and intensive survey of native mussels in the Jordan River-Utah Lake drainage to date from 2014 to 2016 using a combination of reconnaissance and qualitative mussel survey methods.
    [Show full text]
  • Xerces Society's
    Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters.
    [Show full text]
  • The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina
    SRQ-NERp·3 The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina by Joseph C. Britton and Samuel L. H. Fuller A Publication of the Savannah River Plant National Environmental Research Park Program United States Department of Energy ...---------NOTICE ---------, This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Depart­ mentof Energy.nor any of theircontractors, subcontractors,or theiremploy­ ees, makes any warranty. express or implied or assumes any legalliabilityor responsibilityfor the accuracy, completenessor usefulnessofanyinformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. A PUBLICATION OF DOE'S SAVANNAH RIVER PLANT NATIONAL ENVIRONMENT RESEARCH PARK Copies may be obtained from NOVEMBER 1980 Savannah River Ecology Laboratory SRO-NERP-3 THE FRESHWATER BIVALVE MOLLUSCA (UNIONIDAE, SPHAERIIDAE, CORBICULIDAEj OF THE SAVANNAH RIVER PLANT, SOUTH CAROLINA by JOSEPH C. BRITTON Department of Biology Texas Christian University Fort Worth, Texas 76129 and SAMUEL L. H. FULLER Academy of Natural Sciences at Philadelphia Philadelphia, Pennsylvania Prepared Under the Auspices of The Savannah River Ecology Laboratory and Edited by Michael H. Smith and I. Lehr Brisbin, Jr. 1979 TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA " 1 LIST OF BIVALVE MOLLUSKS AT THE SAVANNAH RIVER PLANT............................................ 1 ECOLOGICAL
    [Show full text]
  • Towards a Global Phylogeny of Freshwater Mussels
    Molecular Phylogenetics and Evolution 130 (2019) 45–59 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a global phylogeny of freshwater mussels (Bivalvia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and T diversification patterns Xiao-Chen Huanga,b,1, Jin-Hui Sua,1, Jie-Xiu Ouyangc, Shan Ouyanga, Chun-Hua Zhoua, ⁎ Xiao-Ping Wua, a School of Life Sciences, Nanchang University, Nanchang 330031, China b Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany c Medical Laboratory Education Center, Nanchang University, Nanchang 330031, China ARTICLE INFO ABSTRACT Keywords: The Yangtze River Basin in China is one of the global hotspots of freshwater mussel (order Unionida) diversity DNA barcoding with 68 nominal species. Few studies have tested the validity of these nominal species. Some taxa from the Unionidae Yangtze unionid fauna have not been adequately examined using molecular data and well-positioned phylo- Yangtze River genetically with respect to the global Unionida. We evaluated species boundaries of Chinese freshwater mussels, DUI and disentangled their phylogenetic relationships within the context of the global freshwater mussels based on BAMM the multi-locus data and complete mitochondrial genomes. Moreover, we produced the time-calibrated phylo- Host-attraction geny of Unionida and explored patterns of diversification. COI barcode data suggested the existence of 41 phylogenetic distinct species from our sampled 40 nominal taxa inhabiting the middle and lower reaches of the Yangtze River. Maximum likelihood and Bayesian inference analyses on three loci (COI, 16S, and 28S) and complete mitochondrial genomes showed that the subfamily Unioninae sensu stricto was paraphyletic, and the subfamily Anodontinae should be subsumed under Unioninae.
    [Show full text]
  • Manual to the Freshwater Mussels of MD
    MMAANNUUAALL OOFF TTHHEE FFRREESSHHWWAATTEERR BBIIVVAALLVVEESS OOFF MMAARRYYLLAANNDD CHESAPEAKE BAY AND WATERSHED PROGRAMS MONITORING AND NON-TIDAL ASSESSMENT CBWP-MANTA- EA-96-03 MANUAL OF THE FRESHWATER BIVALVES OF MARYLAND Prepared By: Arthur Bogan1 and Matthew Ashton2 1North Carolina Museum of Natural Science 11 West Jones Street Raleigh, NC 27601 2 Maryland Department of Natural Resources 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 Prepared For: Maryland Department of Natural Resources Resource Assessment Service Monitoring and Non-Tidal Assessment Division Aquatic Inventory and Monitoring Program 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 February 2016 Table of Contents I. List of maps .................................................................................................................................... 1 Il. List of figures ................................................................................................................................. 1 III. Introduction ...................................................................................................................................... 3 IV. Acknowledgments ............................................................................................................................ 4 V. Figure of bivalve shell landmarks (fig. 1) .......................................................................................... 5 VI. Glossary of bivalve terms ................................................................................................................
    [Show full text]
  • Species Assessment for Paper Pondshell
    Species Status Assessment Class: Bivalvia Family: Unionidae Scientific Name: Utterbackia imbecillis Common Name: Paper pondshell Species synopsis: Utterbackia imbecillis belongs to the subfamily Unioninae, diagnosed by the presence of subtriangular glochidia with large, medial hooks, and the tribe Anodontini, which includes 16 extant and one likely extirpated New York species of the genera Alasmidonta, Anodonta, Anodontoides, Lasmigona, Pyganodon, Simpsonaias, Strophitus, and Utterbackia (Haag, 2012; Graf and Cummings, 2011). U. imbecillis is the only member of the Utterbackia genus. The species name imbecillis comes from the Latin word meaning feeble or weak; most likely describing the thin, fragile shell of U. imbecillis (Watters et al., 2009). U. imbecillis generally prefers muddy/silty habitats with relatively slow moving water (NatureServe 2013; Watters et al., 2009). In New York this species is currently found in four streams in the Oswego and Mid-Ontario basins, and in the Erie Canal from Orleans county to Wayne county (Mahar & Landry, 2013). Historically, U. imbecillis was also found in the Alleghany, Mohawk, and upper Hudson basins (Strayer & Jirka, 1997). The New York state rank for U. imbecillis should be updated from Historic to a rank reflecting its rarity and continued presence in the state. In North America, approximately 2/3 to ¾ of native mussel species are extinct, listed as endangered or threatened, or are in need of conservation status (Williams et al. 1993; Stein et al.2000). While population trends in New York are unknown, based on sparse historical information, it is assumed that they too are declining due to a myriad of environmental stressors. 1 I.
    [Show full text]
  • Distribution of Anodonta (Sinanodonta) Woodiana (Rea, 1834) in Inland Waters of Serbia
    Aquatic Invasions (2006) Volume 1, Issue 3: 154-160 DOI 10.3391/ai.2006.1.3.10 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article Distribution of Anodonta (Sinanodonta) woodiana (Rea, 1834) in inland waters of Serbia Momir Paunovic1*, Bela Csányi2, Vladica Simic3, Bojana Stojanovic1 and Predrag Cakic1 1Institute for Biological Research, 142 despota Stefana Blvd, 11060 Belgrade, Serbia, E-mail: [email protected] 2Environmental Protection and Water Management Research Institute (VITUKI Kht), Budapest, Hungary 3Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia *Corresponding author Received 17 July 2006; accepted in revised form 9 August 2006 Abstract Aquatic biotopes are, due to their unique features, among the most disposed ecosystems to bioinvasions. Serbian waters are not an exception, with a increasing colonization by allochthonous organisms observed there during the last few decades. Non- indigenous aquatic species were found among plants, vertebrates and invertebrates. One of the most invasive aquatic macroinvertebrate species found in the region is the Chinese pond mussel Anodonta (Sinanodonta) woodiana (Rea, 1834). The species is dispersed along lowland rivers, associated wetlands and manmade canals. Heavily modified and artificial aquatic habitats, with high silting rates, were found to be especially suitable for population by A. woodiana. A mass occurrence of Chinese mussel was observed among these habitats, particularly where bottom substrata were characterised by the domination of silt-clay. Key words: Anodonta (Sinanodonta) woodiana, biological invasions, Chinese pond mussel, non-indigenous species, Serbia Introduction Dominican Republic and Costa Rica (Watters 1997).
    [Show full text]
  • The Strange Case of the Tetragenous Anodonta Anatina
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Biblioteca Digital do IPB RAPID COMMUNICATION The Strange Case of the Tetragenous Anodonta anatina MANUEL LOPES-LIMA1,2*, MARIANA HINZMANN1,3, AMILCAR TEIXEIRA4, SIMONE VARANDAS5, JORGE MACHADO1,3, RONALDO SOUSA6, 1 AND ELSA FROUFE 1CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal 2IUCN/SSC—Mollusc Specialist Group, Cambridge, United Kingdom 3ICBAS/UP—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal 4CIMO-ESA-IPB—Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolonia, Bragança, Portugal 5CITAB-UTAD—Centre for Research and Technology of Agro-Environment and Biological Sciences, University of Tras-os-Montes and Alto Douro, Vila Real, Portugal 6CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal ABSTRACT Unionoid freshwater mussels have a unique life cycle with a form of parental care where the larvae are developed and kept inside the gills until release, followed by an obligate parasitic stage on fish. The size and location of the marsupium have been used as important phylogenetic characters in unionoids and in Anodontini its location was described exclusively on the outer demibranchs. Two recent surveys in a lake in the North of Portugal revealed large anodontine mussels morphological identical to Anodonta anatina but with glochidia in both demibranchs and with an unusual large size. In order to establish the identity of these mussels, a barcoding approach was used and an anatomical description of the gills and glochidia was performed.
    [Show full text]