The Strange Case of the Tetragenous Anodonta Anatina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
December 2015
Ellipsaria Vol. 17 - No. 4 December 2015 Newsletter of the Freshwater Mollusk Conservation Society Volume 17 – Number 4 December 2015 Cover Story . 1 Society News . 5 Regional Meetings . 9 Upcoming Meetings . 14 Contributed Articles . 15 Obituary . 28 Lyubov Burlakova, Knut Mehler, Alexander Karatayev, and Manuel Lopes-Lima FMCS Officers . 33 On October 4-8, 2015, the Great Lakes Center of Buffalo State College hosted the Second International Meeting on Biology and Conservation of Freshwater Committee Chairs Bivalves. This meeting brought together over 80 scientists from 19 countries on four continents (Europe, and Co-chairs . 34 North America, South America, and Australia). Representation from the United States was rather low, Parting Shot . 35 but that was expected, as several other meetings on freshwater molluscs were held in the USA earlier in the year. Ellipsaria Vol. 17 - No. 4 December 2015 The First International Meeting on Biology and Conservation of Freshwater Bivalves was held in Bragança, Portugal, in 2012. That meeting was organized by Manuel Lopes-Lima and his colleagues from several academic institutions in Portugal. In addition to being a research scientist with the University of Porto, Portugal, Manuel is the IUCN Coordinator of the Red List Authority on Freshwater Bivalves. The goal of the first meeting was to create a network of international experts in biology and conservation of freshwater bivalves to develop collaborative projects and global directives for their protection and conservation. The Bragança meeting was very productive in uniting freshwater mussel biologists from European countries with their colleagues in North and South America. The meeting format did not include concurrent sessions, which allowed everyone to attend to every talk and all of the plenary talks by leading scientists. -
The Monitoring Handbook of Large Freshwater Mussels
The thick shelled river mussel (Unio crassus) brings LIFE+ back to rivers [UC4LIFE] Målarmusslans återkomst… ACTION A1 DELIVERABLE: “The Monitoring Handbook” The monitoring handbook of large freshwater mussels Jakob Bergengren1, Ted von Proschwitz2, Stefan Lundberg3, Håkan Söderberg4, Oskar Norrgrann4, Martin Österling5 and Ivan Olsson6 County Administrative Board of 1Jönköping 4Västernorrland and 6Skåne, The Natural History Museum in 2Gothenburg and 3Stockholm, and 5Karlstad university and County Administrative Board of Scania6 Action A.1 Deliverable” The monitoring Handbook” Abstract This handbook will be used as part the Life-project “The thick shelled river mussel (Unio crassus) brings LIFE+ back to rivers” [UC4LIFE] monitoring programme to ensure adequate and consistent sampling strategies and techniques amongst the sampling crew. Naturally, the handbook describes sampling strategies and techniques, not only designated for the LIFE- project, but constitute the basis for mussel sampling generally according to standard protocol. Thus, this handbook is based on results from former studies and experiences by the authors and the results have been published previously in different formats. The handbook demonstrate suitable sampling techniques which will be used to survey variables which include mussel population size, density and individual age/size before and after restoration measures (Actions C.1 and C.3 in this project) at the twelve project sites that are planned for in this project. Also, this handbook is relevant for additional project-actions, such as the planning work (Action A.3), Host-fish mapping (Action C.1), Re-introduction and allocation (Action C.3), including all information activities (Actions D.1 - D.7). 1 Action A.1 Deliverable” The monitoring Handbook” Background and objectives Nine species of mussels from the group ”large freshwater mussels” are currently found in Swedish waters. -
PETITION to LIST the Western Ridged Mussel
PETITION TO LIST The Western Ridged Mussel Gonidea angulata (Lea, 1838) AS AN ENDANGERED SPECIES UNDER THE U.S. ENDANGERED SPECIES ACT Photo credit: Xerces Society/Emilie Blevins Submitted by The Xerces Society for Invertebrate Conservation Prepared by Emilie Blevins, Sarina Jepsen, and Sharon Selvaggio August 18, 2020 The Honorable David Bernhardt Secretary, U.S. Department of Interior 1849 C Street, NW Washington, DC 20240 Dear Mr. Bernhardt: The Xerces Society for Invertebrate Conservation hereby formally petitions to list the western ridged mussel (Gonidea angulata) as an endangered species under the Endangered Species Act, 16 U.S.C. § 1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14(a), which grants interested parties the right to petition for issue of a rule from the Secretary of the Interior. Freshwater mussels perform critical functions in U.S. freshwater ecosystems that contribute to clean water, healthy fisheries, aquatic food webs and biodiversity, and functioning ecosystems. The richness of aquatic life promoted and supported by freshwater mussel beds is analogous to coral reefs, with mussels serving as both structure and habitat for other species, providing and concentrating food, cleaning and clearing water, and enhancing riverbed habitat. The western ridged mussel, a native freshwater mussel species in western North America, once ranged from San Diego County in California to southern British Columbia and east to Idaho. In recent years the species has been lost from 43% of its historic range, and the southern terminus of the species’ distribution has contracted northward approximately 475 miles. Live western ridged mussels were not detected at 46% of the 87 sites where it historically occurred and that have been recently revisited. -
Freshwater Mussels Pacific Northwest
Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations, -
Behavioural and Metabolic Responses of Unionida Mussels to Stress
Received: 9 December 2019 Revised: 13 April 2021 Accepted: 8 July 2021 DOI: 10.1002/aqc.3689 RESEARCH ARTICLE Behavioural and metabolic responses of Unionida mussels to stress Edward A. M. Curley1 | Rhian Thomas1 | Colin E. Adams2 | Alastair Stephen3 1School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK Abstract 2Scottish Centre for Ecology & the Natural 1. The aim of this study was to assess the extent to which the behavioural traits of Environment, IBAHCM, University of Glasgow, freshwater mussels provide suitable indicators of stress in individuals, towards the Rowardennan, UK 3Scottish and Southern Energy, Perth, advancement of non-invasive, remote monitoring techniques to examine Perthshire, UK population condition. Correspondence 2. Variation in the expression of particular behavioural metrics was examined in Edward A. M. Curley, School of Geographical accordance with measurements of oxygen consumption, across environmental and Earth Sciences, University of Glasgow, Glasgow, UK, G12 8QQ. stressors (aerial exposure and high concentrations of total suspended solids), and Email: [email protected] between two freshwater mussel species (Margaritifera margaritifera and Anodonta Funding information anatina) Natural Environment Research Council; 3. Aerobic metabolic rate was quantified using intermittent respirometry, and Scottish Alliance for Geoscience, Environment and Society behaviour was observed using time-lapse footage. Comparisons of metabolic response and the occurrence of behavioural traits, across the two stressors, focused on differences between the 24 h pre-exposure period (pre-exposure), the first 3 h of post-exposure (immediate post-exposure), and the time following the initial 3 h of post-exposure until the end of the experimental run (extended post- exposure). -
Identifying Freshwater Mussels (Unionoida)
Identifying freshwater mussels (Unionoida) and parasitic glochidia larvae from host fish gills: a molecular key to the North and Central European species Alexandra Zieritz1, Bernhard Gum1, Ralph Kuehn2 &JuergenGeist1 1Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universitat¨ Munchen,¨ Muhlenweg¨ 22, 85354 Freising, Germany 2Molecular Zoology Unit, Chair of Zoology, Department of Animal Science, Technische Universitat¨ Munchen,¨ Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany Keywords Abstract Host–parasite interactions, morphological variability, PCR-RFLP, species identification, Freshwater mussels (order Unionoida) represent one of the most severely endan- Unionidae, wildlife management. gered groups of animals due to habitat destruction, introduction of nonnative species, and loss of host fishes, which their larvae (glochidia) are obligate parasites Correspondence on. Conservation efforts such as habitat restoration or restocking of host popu- Juergen Geist, Aquatic Systems Biology Unit, lations are currently hampered by difficulties in unionoid species identification Department of Ecology and Ecosystem by morphological means. Here we present the first complete molecular identifi- Management, Technische Universitat¨ Munchen,¨ Muhlenweg¨ 22, 85354 Freising, cation key for all seven indigenous North and Central European unionoid species Germany. Tel: +49 (0)8161 713767; and the nonnative Sinanodonta woodiana, facilitating quick, low-cost, and reliable Fax: +49 (0)8161 713477; identification of adult and larval specimens. Application of this restriction frag- E-mail: [email protected] ment length polymorphisms (RFLP) key resulted in 100% accurate assignment of 90 adult specimens from across the region by digestion of partial ITS-1 (where ITS Received: 2 December 2011; Revised: 26 is internal transcribed spacer) polymerase chain reaction (PCR) products in two to January 2012; Accepted: 6 February 2012 four single digestions with five restriction endonucleases. -
Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT
Version 1.5 Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT Report To: Wasatch Front Water Quality Council Salt Lake City, UT By: David C. Richards, Ph.D. OreoHelix Consulting Vineyard, UT 84058 email: [email protected] phone: 406.580.7816 May 26, 2017 Native Unionoida Surveys and Metapopulation Dynamics Jordan River-Utah Lake Drainage 1 One of the few remaining live adult Anodonta found lying on the surface of what was mostly comprised of thousands of invasive Asian clams, Corbicula, in Currant Creek, a former tributary to Utah Lake, August 2016. Summary North America supports the richest diversity of freshwater mollusks on the planet. Although the western USA is relatively mollusk depauperate, the one exception is the historically rich molluskan fauna of the Bonneville Basin area, including waters that enter terminal Great Salt Lake and in particular those waters in the Jordan River-Utah Lake drainage. These mollusk taxa serve vital ecosystem functions and are truly a Utah natural heritage. Unfortunately, freshwater mollusks are also the most imperiled animal groups in the world, including those found in UT. The distribution, status, and ecologies of Utah’s freshwater mussels are poorly known, despite this unique and irreplaceable natural heritage and their protection under the Clean Water Act. Very few mussel specific surveys have been conducted in UT which requires specialized training, survey methods, and identification. We conducted the most extensive and intensive survey of native mussels in the Jordan River-Utah Lake drainage to date from 2014 to 2016 using a combination of reconnaissance and qualitative mussel survey methods. -
Xerces Society's
Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters. -
The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina
SRQ-NERp·3 The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina by Joseph C. Britton and Samuel L. H. Fuller A Publication of the Savannah River Plant National Environmental Research Park Program United States Department of Energy ...---------NOTICE ---------, This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Depart mentof Energy.nor any of theircontractors, subcontractors,or theiremploy ees, makes any warranty. express or implied or assumes any legalliabilityor responsibilityfor the accuracy, completenessor usefulnessofanyinformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. A PUBLICATION OF DOE'S SAVANNAH RIVER PLANT NATIONAL ENVIRONMENT RESEARCH PARK Copies may be obtained from NOVEMBER 1980 Savannah River Ecology Laboratory SRO-NERP-3 THE FRESHWATER BIVALVE MOLLUSCA (UNIONIDAE, SPHAERIIDAE, CORBICULIDAEj OF THE SAVANNAH RIVER PLANT, SOUTH CAROLINA by JOSEPH C. BRITTON Department of Biology Texas Christian University Fort Worth, Texas 76129 and SAMUEL L. H. FULLER Academy of Natural Sciences at Philadelphia Philadelphia, Pennsylvania Prepared Under the Auspices of The Savannah River Ecology Laboratory and Edited by Michael H. Smith and I. Lehr Brisbin, Jr. 1979 TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA " 1 LIST OF BIVALVE MOLLUSKS AT THE SAVANNAH RIVER PLANT............................................ 1 ECOLOGICAL -
Manual to the Freshwater Mussels of MD
MMAANNUUAALL OOFF TTHHEE FFRREESSHHWWAATTEERR BBIIVVAALLVVEESS OOFF MMAARRYYLLAANNDD CHESAPEAKE BAY AND WATERSHED PROGRAMS MONITORING AND NON-TIDAL ASSESSMENT CBWP-MANTA- EA-96-03 MANUAL OF THE FRESHWATER BIVALVES OF MARYLAND Prepared By: Arthur Bogan1 and Matthew Ashton2 1North Carolina Museum of Natural Science 11 West Jones Street Raleigh, NC 27601 2 Maryland Department of Natural Resources 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 Prepared For: Maryland Department of Natural Resources Resource Assessment Service Monitoring and Non-Tidal Assessment Division Aquatic Inventory and Monitoring Program 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 February 2016 Table of Contents I. List of maps .................................................................................................................................... 1 Il. List of figures ................................................................................................................................. 1 III. Introduction ...................................................................................................................................... 3 IV. Acknowledgments ............................................................................................................................ 4 V. Figure of bivalve shell landmarks (fig. 1) .......................................................................................... 5 VI. Glossary of bivalve terms ................................................................................................................ -
Species Assessment for Paper Pondshell
Species Status Assessment Class: Bivalvia Family: Unionidae Scientific Name: Utterbackia imbecillis Common Name: Paper pondshell Species synopsis: Utterbackia imbecillis belongs to the subfamily Unioninae, diagnosed by the presence of subtriangular glochidia with large, medial hooks, and the tribe Anodontini, which includes 16 extant and one likely extirpated New York species of the genera Alasmidonta, Anodonta, Anodontoides, Lasmigona, Pyganodon, Simpsonaias, Strophitus, and Utterbackia (Haag, 2012; Graf and Cummings, 2011). U. imbecillis is the only member of the Utterbackia genus. The species name imbecillis comes from the Latin word meaning feeble or weak; most likely describing the thin, fragile shell of U. imbecillis (Watters et al., 2009). U. imbecillis generally prefers muddy/silty habitats with relatively slow moving water (NatureServe 2013; Watters et al., 2009). In New York this species is currently found in four streams in the Oswego and Mid-Ontario basins, and in the Erie Canal from Orleans county to Wayne county (Mahar & Landry, 2013). Historically, U. imbecillis was also found in the Alleghany, Mohawk, and upper Hudson basins (Strayer & Jirka, 1997). The New York state rank for U. imbecillis should be updated from Historic to a rank reflecting its rarity and continued presence in the state. In North America, approximately 2/3 to ¾ of native mussel species are extinct, listed as endangered or threatened, or are in need of conservation status (Williams et al. 1993; Stein et al.2000). While population trends in New York are unknown, based on sparse historical information, it is assumed that they too are declining due to a myriad of environmental stressors. 1 I. -
Distribution of Anodonta (Sinanodonta) Woodiana (Rea, 1834) in Inland Waters of Serbia
Aquatic Invasions (2006) Volume 1, Issue 3: 154-160 DOI 10.3391/ai.2006.1.3.10 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article Distribution of Anodonta (Sinanodonta) woodiana (Rea, 1834) in inland waters of Serbia Momir Paunovic1*, Bela Csányi2, Vladica Simic3, Bojana Stojanovic1 and Predrag Cakic1 1Institute for Biological Research, 142 despota Stefana Blvd, 11060 Belgrade, Serbia, E-mail: [email protected] 2Environmental Protection and Water Management Research Institute (VITUKI Kht), Budapest, Hungary 3Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia *Corresponding author Received 17 July 2006; accepted in revised form 9 August 2006 Abstract Aquatic biotopes are, due to their unique features, among the most disposed ecosystems to bioinvasions. Serbian waters are not an exception, with a increasing colonization by allochthonous organisms observed there during the last few decades. Non- indigenous aquatic species were found among plants, vertebrates and invertebrates. One of the most invasive aquatic macroinvertebrate species found in the region is the Chinese pond mussel Anodonta (Sinanodonta) woodiana (Rea, 1834). The species is dispersed along lowland rivers, associated wetlands and manmade canals. Heavily modified and artificial aquatic habitats, with high silting rates, were found to be especially suitable for population by A. woodiana. A mass occurrence of Chinese mussel was observed among these habitats, particularly where bottom substrata were characterised by the domination of silt-clay. Key words: Anodonta (Sinanodonta) woodiana, biological invasions, Chinese pond mussel, non-indigenous species, Serbia Introduction Dominican Republic and Costa Rica (Watters 1997).