Shields 1 Skipper Rating Checklist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Junk Rig Glossary (JRG) Version 20 APR 2016
The Junk Rig Glossary (JRG) Version 20 APR 2016 Welcome to the Junk Rig Glossary! The Junk Rig Glossary (JRG) is a Member Project of the Junk Rig Association, initiated by Bruce Weller who, as a then new member, found that he needed a junk 'dictionary’. The aim is to create a comprehensive and fully inclusive glossary of all terms pertaining to junk rig, its implementation and characteristics. It is intended to benefit all who are interested in junk rig, its history and on-going development. A goal of the JRG Project is to encourage a standard vocabulary to assist clarity of expression and understanding. Thus, where competing terms are in common use, one has generally been selected as standard (please see Glossary Conventions: Standard Versus Non-Standard Terms, below) This is in no way intended to impugn non-standard terms or those who favour them. Standard usage is voluntary, and such designations are wide open to review and change. Where possible, terminology established by Hasler and McLeod in Practical Junk Rig has been preferred. Where innovators have developed a planform and associated rigging, their terminology for innovative features is preferred. Otherwise, standards are educed, insofar as possible, from common usage in other publications and online discussion. Your participation in JRG content is warmly welcomed. Comments, suggestions and/or corrections may be submitted to [email protected], or via related fora. Thank you for using this resource! The Editors: Dave Zeiger Bruce Weller Lesley Verbrugge Shemaya Laurel Contents Some sections are not yet completed. ∙ Common Terms ∙ Common Junk Rigs ∙ Handy references Common Acronyms Formulae and Ratios Fabric materials Rope materials ∙ ∙ Glossary Conventions Participation and Feedback Standard vs. -
Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series
Neil Pryde Sails International 1681 Barnum Avenue Stratford, CT 06614 203-375-2626 [email protected] INTERNATIONAL DESIGN AND TECHNICAL OFFICE Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series The following points on mainsail trim apply both to the Furling and Classic mainsails we produce for Beneteau USA and the Oceanis Line of boats. In sailing the boats we can offer these general ideas and observations that will apply to the 311’s through to the newest B49. Mainsail trim falls into two categories, upwind and downwind. MAINSAIL TRIM: The following points on mainsail trim apply both to the Furling and Classic mainsail, as the concepts are the same. Mainsail trim falls into two categories, upwind and downwind. Upwind 1. Upwind in up to about 8 knots true wind the traveler can be brought to weather of centerline. This ensures that the boom will be close centerline and the leech of the sail in a powerful upwind mode. 2. The outhaul should be eased 2” / 50mm at the stopper, easing the foot of the mainsail away from the boom about 8”/200mm 3. Mainsheet tension should be tight enough to have the uppermost tell tail on the leech streaming aft about 50% of the time in the 7- 12 true wind range. For those with furling mainsails the action of furling and unfurling the sail can play havoc with keeping the telltales on the sail and you may need to replace them from time to time. Mainsail outhaul eased for light air upwind trim You will find that the upper tell tail will stall and fold over to the weather side of the sail about 50% of the time in 7-12 knots. -
Sail Trimming Guide for the Beneteau 37 September 2008
INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 37 September 2008 © Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 • Fax: 203-375-2627 Email: [email protected] Web: www.neilprydesails.com All material herein Copyright 2007-2008 Neil Pryde Sails International All Rights Reserved HEADSAIL OVERVIEW: The Beneteau 37 built in the USA and supplied with Neil Pryde Sails is equipped with a 105% non-overlapping headsail that is 337sf / 31.3m2 in area and is fitted to a Profurl C320 furling unit. The following features are built into this headsail: • The genoa sheets in front of the spreaders and shrouds for optimal sheeting angle and upwind performance • The size is optimized to sheet correctly to the factory track when fully deployed and when reefed. • Reef ‘buffer’ patches are fitted at both head and tack, which are designed to distribute the loads on the sail when reefed. • Reefing marks located on the starboard side of the tack buffer patch provide a visual mark for setting up pre-determined reefing locations. These are located 508mm/1’-8” and 1040mm / 3’-5” aft of the tack. • A telltale ‘window’ at the leading edge of the sail located about 14% of the luff length above the tack of the sail and is designed to allow the helmsperson to easily see the wind flowing around the leading edge of the sail when sailing upwind and close-hauled. The tell-tales are red and green, so that one can quickly identify the leeward and weather telltales. -
The Weather Helm Issue (Rev 20 02 2020)
Corbin 39 – the weather helm issue (rev 20 02 2020) Synopsis The subject of weather helm comes up repeatedly when discussing the Corbin 39 and not all of the folklore is justified. This note attempts to summarise the issue and to relate it to sufficient evidence, and to qualitative theory, that we can be reasonably certain of the situation. Remember - It is possible to overpower a yacht and induce weather helm, what we are trying to do is identify excessive weather helm. The key take-away is that the excessive weather helm was a genuine issue, which affected all the mk1 cutters irrespective of whether they were equipped with the taller double-spreader mast or the shorter single-spreader mast, provided that the mast was set in the intended aft mast position. Perhaps this was worse in the mk1 tallmast vs the mk1 shortmast, but we are not at all certain of that. All the mk1’s that had the forestay relocated onto a 3-foot long bowsprit were later able to alleviate this to an extent. The mk 1’s that have reduced the area of their main by shortening the mainsail boom & foot (or used in-mast furling) have reportedly completely eliminated this weather helm. All other versions including the mk1 ketches and all the mk2 cutters & ketches appear to be completely unaffected. This is the first openly published version of this analysis. Previous drafts were incomplete and drew erroneous conclusions in some areas due to an absence of reliable data. That has now been overcome as further evidence has come forwards, and so there are material differences between this version and previous drafts. -
N O P Q R S T U V W X
n o p q r s t u SNEAK PEEK! hey, harry — i thought this v might make for a good sneak peek, what with the RPG coming out in late June of this year. What do you think? We’ll put it on w www.dresdenfilesrpg.com at least! — Will Oh, sure, put it on the website, I’ll DEFINITELY x be able to check it out there. - Chapter Sixteen - - Don’t be pissy, Boss. n-evermore y Shut up, Bob. Baltimore z a nevermore/Baltimore sector. Financial services, education, tourism, Who Am I? and health services are dominating. Johns Hi. I’m Davian Campbell, a grad student b Hopkins is currently the biggest employer (not at the University of Chicago and one of the to mention a huge landowner), where it used translation: Alphas. Billy asked me to write up some- i helped to be Bethlehem Steel. Unemployment is high. thing about Baltimore for this game he’s Lots of folks are unhappy. Davian move writing. I guess he figured since I grew up Climate: They don’t get much snow in last august. there, I’d know it. I tried to tell him that c I haven’t lived there for years, and that Baltimore—two, maybe three times a year we 50 boxes of get a couple of inches. When that happens, books = a between patrolling, trying to finish my thesis, and our weekly game session, I don’t the entire town goes freaking loco. Stay off the favor or two. have time for this stuff. -
Rigid Wing Sailboats: a State of the Art Survey Manuel F
Ocean Engineering 187 (2019) 106150 Contents lists available at ScienceDirect Ocean Engineering journal homepage: www.elsevier.com/locate/oceaneng Review Rigid wing sailboats: A state of the art survey Manuel F. Silva a,b,<, Anna Friebe c, Benedita Malheiro a,b, Pedro Guedes a, Paulo Ferreira a, Matias Waller c a Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal b INESC TEC, Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal c Åland University of Applied Sciences, Neptunigatan 17, AX-22111 Mariehamn, Åland, Finland ARTICLEINFO ABSTRACT Keywords: The design, development and deployment of autonomous sustainable ocean platforms for exploration and Autonomous sailboat monitoring can provide researchers and decision makers with valuable data, trends and insights into the Wingsail largest ecosystem on Earth. Although these outcomes can be used to prevent, identify and minimise problems, Robotics as well as to drive multiple market sectors, the design and development of such platforms remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications for autonomy and sustainability. Rigid wingsails allow autonomous boats to navigate with increased autonomy due to lower power consumption and increased robustness as a result of mechanically simpler control compared to traditional sails. These platforms are currently the subject of deep interest, but several important research problems remain open. In order to foster dissemination and identify future trends, this paper presents a survey of the latest developments in the field of rigid wing sailboats, describing the main academic and commercial solutions both in terms of hardware and software. -
Ships and Sailors in Early Twentieth-Century Maritime Fiction
In the Wake of Conrad: Ships and Sailors in Early Twentieth-Century Maritime Fiction Alexandra Caroline Phillips BA (Hons) Cardiff University, MA King’s College, London A Thesis Submitted for the Degree of Doctor of Philosophy Cardiff University 30 March 2015 1 Table of Contents Abstract 3 Acknowledgements 4 Introduction - Contexts and Tradition 5 The Transition from Sail to Steam 6 The Maritime Fiction Tradition 12 The Changing Nature of the Sea Story in the Twentieth Century 19 PART ONE Chapter 1 - Re-Reading Conrad and Maritime Fiction: A Critical Review 23 The Early Critical Reception of Conrad’s Maritime Texts 24 Achievement and Decline: Re-evaluations of Conrad 28 Seaman and Author: Psychological and Biographical Approaches 30 Maritime Author / Political Novelist 37 New Readings of Conrad and the Maritime Fiction Tradition 41 Chapter 2 - Sail Versus Steam in the Novels of Joseph Conrad Introduction: Assessing Conrad in the Era of Steam 51 Seamanship and the Sailing Ship: The Nigger of the ‘Narcissus’ 54 Lord Jim, Steam Power, and the Lost Art of Seamanship 63 Chance: The Captain’s Wife and the Crisis in Sail 73 Looking back from Steam to Sail in The Shadow-Line 82 Romance: The Joseph Conrad / Ford Madox Ford Collaboration 90 2 PART TWO Chapter 3 - A Return to the Past: Maritime Adventures and Pirate Tales Introduction: The Making of Myths 101 The Seduction of Silver: Defoe, Stevenson and the Tradition of Pirate Adventures 102 Sir Arthur Conan Doyle and the Tales of Captain Sharkey 111 Pirates and Petticoats in F. Tennyson Jesse’s -
DNAS OPORDER 18/001 06 Mar 18 Subj: 2018 SAFETY at SEA
3120 DNAS OPORDER 18/001 06 Mar 18 From: Director, Naval Academy Sailing To: Distribution Subj: 2018 SAFETY AT SEA SEMINAR OPERATIONS ORDER 18/001 1. Purpose. To promulgate the Operations Order forthe 2018 Safetyat Sea Seminar (SASS), to be held 24-25 March 2018. 2. Mission. The SASS presents safety-related information to midshipmen, Sailing Department staff, volunteers, and the general public. The program includes lectures, optional hands-on practical sessions, and an on-the-water demonstration. 3. Area of Operations. Lectures will be presented in Alumni Hall on Saturday, 24 March, with the on-the-water demonstration occurring on the SevernRiver adjacent to the Sailing Center mid-day Saturday. USCG SAR helicopter will hover over the Chesapeake prior to their on-the water demonstration Saturday (weather dependent), and returnto base at end of demo. Lectures will be held in Alumni Hall and Luce Hall Sunday, 25 March, with hands-on training in Macdonough and Lejeune swimming pools. 4. Conduct of Operations. a. Schedule of Events. The SASS will be conducted per the timeline defined in Appendix A. b. On-the-Water Demonstration. The on-the-water demonstration will include man overboard (MOB) recoveries, life raftlaunching, the helo rescue demonstration and a safety flare display. Waterborneassets will include two Navy 44' Sail Training Craft (STC), one 50' USNA chartered STC, one 52' USNA chartered STC (static storm sails display) and one rigid hull inflatableboat as safety boat. The sequence of events is promulgated in Appendix B. Vessel trafficon the SevernRiver will be blocked offper USCG Marine Event Permit in conjunction with two Annapolis USCG patrol craft. -
An Autonomous Wing-Sailed Catamaran Ph.D.Thesis by Gabriel H. Elkaim the Wingsail Wingsail Description Wing Versus Sail
An Autonomous Wing-Sailed Catamaran Ph.D.Thesis by Gabriel H. Elkaim The following information has been extracted from the thesis submitted by Dr. Gabriel Elkaim to Stanford University, and for which he was awarded his Ph.D. The full thesis, which can be viewed at http://www.soe.ucsc.edu/~elkaim/Documents/GabrielElkaimThesis01.pdf (and an extract published in the AYRS’s Journal ‘Catalyst’ which can be found at http://www.soe.ucsc.edu/~elkaim/Documents/Catalyst_BoatArticle.pdf), describes the Atlantis project, whose aim was the design, development, and experimental testing of an autonomous wind- propelled marine craft. The parts printed here are the ones which may be of interest to members of the JRA These extracts are re-published from the AYRS Journal “Catalyst” by kind permission of Dr. Gabriel and of the Amateur Yacht Research Society. Please note that the figures are numbered as in the original document. The Wingsail The most visibly unique aspect of the Atlantis project is the wingsail propulsion system, as shown in Figure 5-1. The design considerations and goals are: equivalent performance to the original sail system, low actuation force, and the ability to precisely control the resulting system. A sloop rig sail can achieve a maximum lift coefficient of 0.8 if the jib and sail are perfectly trimmed. Realistically, an operating maximum lift coefficient is 0.6. The design goal of the Atlantis wing is to achieve a maximum lift coefficient of 1.8. Since this allows the wing to generate three times the force of an equivalently sized sail, the wing area is reduced to one third of the area of the original sails. -
Further Devels'nent Ofthe Tunny
FURTHERDEVELS'NENT OF THETUNNY RIG E M H GIFFORDANO C PALNER Gi f ford and P art ners Carlton House Rlngwood Road Hoodl ands SouthamPton S04 2HT UK 360 1, lNTRODUCTION The idea of using a wing sail is not new, indeed the ancient junk rig is essentially a flat plate wing sail. The two essential characteristics are that the sail is stiffened so that ft does not flap in the wind and attached to the mast in an aerodynamically balanced way. These two features give several important advantages over so called 'soft sails' and have resulted in the junk rig being very successful on traditional craft. and modern short handed-cruising yachts. Unfortunately the standard junk rig is not every efficient in an aer odynamic sense, due to the presence of the mast beside the sai 1 and the flat shapewhich results from the numerousstiffening battens. The first of these problems can be overcomeby usi ng a double ski nned sail; effectively two junk sails, one on either side of the mast. This shields the mast from the airflow and improves efficiency, but it still leaves the problem of a flat sail. To obtain the maximumdrive from a sail it must be curved or cambered!, an effect which can produce over 5 more force than from a flat shape. Whilst the per'formanceadvantages of a cambered shape are obvious, the practical way of achieving it are far more elusive. One line of approach is to build the sail from ri gid componentswith articulated joints that allow the camberto be varied Ref 1!. -
Cruising Design, Inc Mainsail Reefing System Installation/Operating Instructions
CDI Cruising Design, Inc Mainsail Reefing System Installation/Operating Instructions 44 James Street, Homer, N.Y. 13077 Tel: 607-749-4599 FAX: 607-749-4604 Website: www.sailcdi.com Updated December 2006 INDEX Index................................................................................................................2 Specifications..................................................................................................2 Warnings & Safety Checklists........................................................................3 Drawing...........................................................................................................4 Parts List..........................................................................................................5 Uncoiling the Luff...........................................................................................6 Straightening the Luff.....................................................................................7 Installation................................................................................................8 - 14 Hoisting the mainsail.....................................................................................14 Lowering the mainsail...................................................................................14 Sailing with your Mainsail Reefing System............................................15-16 Trailering instructions...................................................................................16 Maintenance & Storage............................................................................16-18 -
Beneteau Oceanis 41 Tuning Guide
INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau Oceanis 41 2015 Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 • Fax: 203-375-2627 Email: [email protected] Web: www.neilprydesails.com All material herein Copyright 2015-2016 Neil Pryde Sails International All Rights Reserved HEADSAIL OVERVIEW: The Oceanis 41 built in the USA and supplied with Neil Pryde Sails is equipped with a 105% overlapping headsail that is 425f / 39.5m2 in area and is fitted to the Facnor LS180 furling unit. The sail is built using Challenge Sailcloth 7.88dacron. The following features are built into this headsail: The genoa sheets in front of the spreaders and shrouds for optimal sheeting angle and upwind performance The size is optimized to sheet correctly to the factory track when fully deployed and when reefed. Reef ‘buffer’ patches are fitted at both head and tack, which are designed to distribute the loads on the sail when reefed. Reefing marks located on the starboard side of the tack buffer patch provide a visual mark for setting up pre-determined reefing locations. These are located 750mm/29.5” and 1500mm /59” aft of the tack. All seams double stitched in V-92 thread in a‘3-step’ stitch and in contrasting color to help identify damage thread. A telltale ‘window’ at the leading edge of the sail located about 14% of the luff length above the tack of the sail and is designed to allow the helmsperson to easily see the wind flowing around the leading edge of the sail when sailing close- hauled.