Design of a Free-Rotating Wing Sail for an Autonomous Sailboat

Total Page:16

File Type:pdf, Size:1020Kb

Design of a Free-Rotating Wing Sail for an Autonomous Sailboat DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Design of a free-rotating wing sail for an autonomous sailboat CLAES TRETOW KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES ! ! ! ! Design of a free-rotating wing sail for an autonomous sailboat Claes Tretow ! ! ! ! ! ! ! ! ! ! Degree Project in Naval Architecture (30 credits) Degree Programme in Naval Architecture (120 credits) Degree Programme in Vehicle Engineering (300 credits) The Royal Institute of Technology 2017 Supervisors: Jakob Kuttenkeuler, Mikael Razola Examiner: Jakob Kuttenkeuler ! ! 2 Abstract There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and colleting oceanographic data. This thesis is performed in collaboration with a research group at The Royal Institute of Technology that currently develops an autonomous sailboat to be used as a sensor carrying platform for autonomous data acquisition in the Baltic Sea. This type of vehicle has potentials to be a helpful and cheaper alternative to a commercial research vessel. The thesis presents the design, construction and experimental testing of a rigid free-rotating wing sail for this autonomous sailboat. The goal is to design a rig that can sustain under all occurring weather conditions in the Baltic sea while ensuring sailing performance, robustness, reliability and low power consumption, which are key aspects driving the design. The rig is designed through the utilization of analysis and design methods involving a Vortex Lattice Method combined with a Velocity Prediction Program in order to achieve best possible aerodynamic performance with respect to the application requirements. The rig is manufactured as a sandwich structure with a light core material, reinforced with fiberglass and laminated using advanced resin technology. The main challenges in the development process are structural arrangement, rigidity and weight as well as integration of subsystems and achieving overall robustness. Initial experimental testing, sailing under radio control, has been performed showing promising results. The vehicle was operated under moderate weather conditions, 8 – 10 m/s NE winds, at Baggensfjärden, Sweden, where expected behaviour, wing structure rigidity, boat speed and manoeuvrability was successfully demonstrated. Future challenges are now to further develop navigational control and guidance strategy, pushing the technology front forward in autonomous sailing. ! ! 3 ! ! 4 Acknowledgement Big thanks to all people involved in this project: Jakob Kuttenkeuler, Mikael Razola, Ulysse Dhomé, Filip Wängelin, Thomas Abzikhir and Julian Fraize. I also want to thank the KTH Maritime Robotics Laboratory, KTH Lightweight Structure Laboratory and KTH Centre for Naval Architecture for using your facilities and supporting me in the design process.!! ! 5 Table of Contents ABSTRACT .............................................................................................................................. 3 ACKNOWLEDGEMENT ....................................................................................................... 5 1. INTRODUCTION ............................................................................................................. 10 1.1 MARIBOT VANE: SAILBOAT FOR AUTONOMOUS OFFSHORE ENVIRONMENTAL MONITORING .............................................................................................................................................. 10 2. ANALYSIS AND DESIGN ........................................................................................... 12 2.1 INTRODUCTION TO SAILBOAT MECHANICS ....................................................................... 12 2.2 RIG REQUIREMENTS ........................................................................................................ 14 2.3 ANALYSIS METHOD ......................................................................................................... 16 2.4 VORTEX LATTICE METHOD ............................................................................................. 16 2.5 PARAMETRIZATION ......................................................................................................... 17 2.6 CONCLUSIONS ................................................................................................................. 25 2.7 RIG PLAN FORM ............................................................................................................... 26 2.8 HULL MODEL ................................................................................................................... 27 2.9 VELOCITY PREDICTION PROGRAM .................................................................................. 27 2.10 RIG SIZE AND PERFORMANCE DIAGRAM ........................................................................ 29 2.11 FLAP DESIGN ................................................................................................................. 30 2.12 WING PROFILE ............................................................................................................... 31 3. STRUCTURAL DESIGN CONSIDERATIONS ........................................................ 32 3.1 STRUCTURAL DESIGN REQUIREMENT SPECIFICATION ...................................................... 32 3.2 INTERNAL STRUCTURE .................................................................................................... 34 3.3 RIG SUPPORT STRUCTURE ................................................................................................ 35 3.4 ADJUSTMENT CAPABILITIES ............................................................................................ 36 4. MANUFACTURING ..................................................................................................... 37 4.1 CORE ASSEMBLY ............................................................................................................. 37 4.2 LAMINATION ................................................................................................................... 38 4.3 FLAP ACTUATION AND EXPERIMENTAL SET UP ................................................................ 40 4.4 RIG DATA ........................................................................................................................ 41 5. EXPERIMENTAL TESTING ...................................................................................... 42 5.1 RADIO CONTROLLED TEST SYSTEM .................................................................................. 42 6. DISCUSSION AND CONCLUSIONS ......................................................................... 44 REFERENCES ....................................................................................................................... 46 APPENDIX A: ANALYSIS METHOD ............................................................................... 47 APPENDIX B: RIG PARAMETER DEFINITIONS ......................................................... 48 APPENDIX C: HULL ........................................................................................................... 50 APPENDIX C.1 HULL WEIGHT AND CENTRE OF GRAVITY DETERMINATION ............................ 50 APPENDIX C.2 HULL PARTICULARS ....................................................................................... 51 APPENDIX C.3 HULL DIGITALIZATION .................................................................................. 52 APPENDIX C.4 BASED ON THE LINES DRAWING BELOW, A CAD-MODEL IS ESTABLISHED. .... 53 APPENDIX C.5 HULL LINES DRAWING ................................................................................... 54 APPENDIX D: MANUFACTURING .................................................................................. 55 APPENDIX D.1 WING PRINTOUT ............................................................................................ 55 APPENDIX D.2 DIVINYCELL ASSEMBLY PLAN ....................................................................... 56 ! 6 APPENDIX D.3 ADDITIONAL PICTURES FROM THE MANUFACTURING PROCESS ...................... 57 APPENDIX E: DATASHEETS ........................................................................................... 59 APPENDIX E.1 CORE MATERIAL DATASHEET ......................................................................... 59 APPENDIX E.2 RESIN TECHNOLOGY DATASHEET ................................................................... 60 APPENDIX E.3 SAERTEX FIBERGLASS TECHNICAL DATASHEET .............................................. 61 APPENDIX E.4 ACTUONIX MINI LINEAR ACTUATOR DATASHEET ........................................... 62 List of Figures Figure 1 : Maribot Vane general specifications ....................................................................... 11 Figure 2: Sailboat mechanics for an unhealed boat ................................................................. 12 Figure 3: A principal sketch of the forces acting on a slice in the XY-plane of the free-rotating wing, in Figure 2, mounted on an unhealed boat. The figure is a simplification of the reality, showing a 2D-perspective. ................................................................................... 13 Figure 4: Sketch of the lift forces acting on the rig. The picture is from the first experimental testing of Maribot Vane. .................................................................................................. 14 Figure 5: Rig model
Recommended publications
  • March 2013 2013
    MainSheet The Newsletter of Thames YachT club m arch march 2013 2013 MT h e N eain w s l e tt er ofS Thamesheet Yach T c l u b From the Commodore From the Vice Commodore Is IT sPrING YeT???? I am sure this is well, it’s finally time to put this winter the question on everyone’s mind it has and all the snow we had behind us and been a long winter. The officers, executive begin to plan for a great 2013 TYc committee and members are working hard to season. we will kick off this year with get the club ready for your use this summer. our traditional so it is time to read your emails and the main St. Patrick’s Day pot-luck party sheet so that you are aware when volunteers on Saturday, March 16th, at 6:30 are needed. ($12.00 per person). Please bring your favorite dish to I want to thank the people from the south field that took an share (s-Z entrée, a-h dessert, I-r appetizers) and rsvp to interest in the reorganization plan and came to the meeting to get [email protected]. your questions answered. This is a project that is long over due so Mark your calendar with these 2013 tYC activities! that our mooring field can be ready for new members so thanks March 16 St. Patrick’s Day Pot Luck 6:30 Pot Luck to the committee. April 12 General Membership Meeting 6:00 Pot Luck house has a big job that will be starting at the end of march so Dinner/7:00 Meeting they will be looking for volunteer so be on the lookout for the May 4 Spring Clean Up Day 8:00 a.m.
    [Show full text]
  • ASTERIAS: AUTOMONOUS SAILBOAT for TITAN EXPLORATION and RECONNAISSANCE of LIGEIA SEA William J
    Lunar and Planetary Science XLVIII (2017) 1779.pdf ASTERIAS: AUTOMONOUS SAILBOAT FOR TITAN EXPLORATION AND RECONNAISSANCE OF LIGEIA SEA William J. O’Hara IV1, 1NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 Introduction: Sailing the oceans of Earth has thane versus the same displacement on Earth requiring served as a means of exploration and transportation for 16 ft3 of water. This means the ASV will float much over 2000 years. Our fascination with sailing contin- higher on Titan than it would on Earth, a fact that will ues today as an activity enjoyed by many people in require a change from traditional boat design. many countries. This capability can serve us again in In 2014 researchers analyzing radar data from Cas- the exploration of alien worlds. Titan, the icy moon of sini noticed changes in surface roughness of all three Saturn, has surface seas despite its frigid climate. major seas from one pass of the moon to another indi- Could mankind sail the seas of Titan? cating the presence of waves [9]. It turns out that most While composed of liquid Methane instead of wa- of the recent studies of Titan have occurred during the ter, the hydrologic cycle surrounding these seas mirrors winter season in northern hemisphere. Spring arrived Earth’s in unexpected ways. The observation of den- in the northern hemisphere around 2010 and in 2016 dritic valley networks supports the theory of a surface the season is now in mid-summer. Researchers predict drainage system [6]. The Huygen’s probe found an the potential for these winds to reach up to 45 mi/hr atmosphere humid in methane and capable of generat- during the long northern summer season [4] [2].
    [Show full text]
  • Aerodynamics of High-Performance Wing Sails
    Aerodynamics of High-Performance Wing Sails J. otto Scherer^ Some of tfie primary requirements for tiie design of wing sails are discussed. In particular, ttie requirements for maximizing thrust when sailing to windward and tacking downwind are presented. The results of water channel tests on six sail section shapes are also presented. These test results Include the data for the double-slotted flapped wing sail designed by David Hubbard for A. F. Dl Mauro's lYRU "C" class catamaran Patient Lady II. Introduction The propulsion system is probably the single most neglect­ ed area of yacht design. The conventional triangular "soft" sails, while simple, practical, and traditional, are a long way from being aerodynamically desirable. The aerodynamic driving force of the sails is, of course, just as large and just as important as the hydrodynamic resistance of the hull. Yet, designers will go to great lengths to fair hull lines and tank test hull shapes, while simply drawing a triangle on the plans to define the sails. There is no question in my mind that the application of the wealth of available airfoil technology will yield enormous gains in yacht performance when applied to sail design. Re­ cent years have seen the application of some of this technolo­ gy in the form of wing sails on the lYRU "C" class catamar­ ans. In this paper, I will review some of the aerodynamic re­ quirements of yacht sails which have led to the development of the wing sails. For purposes of discussion, we can divide sail require­ ments into three points of sailing: • Upwind and close reaching.
    [Show full text]
  • Formula 1 Race Car Performance Improvement by Optimization of the Aerodynamic Relationship Between the Front and Rear Wings
    The Pennsylvania State University The Graduate School College of Engineering FORMULA 1 RACE CAR PERFORMANCE IMPROVEMENT BY OPTIMIZATION OF THE AERODYNAMIC RELATIONSHIP BETWEEN THE FRONT AND REAR WINGS A Thesis in Aerospace Engineering by Unmukt Rajeev Bhatnagar © 2014 Unmukt Rajeev Bhatnagar Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2014 The thesis of Unmukt R. Bhatnagar was reviewed and approved* by the following: Mark D. Maughmer Professor of Aerospace Engineering Thesis Adviser Sven Schmitz Assistant Professor of Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School ii Abstract The sport of Formula 1 (F1) has been a proving ground for race fanatics and engineers for more than half a century. With every driver wanting to go faster and beat the previous best time, research and innovation in engineering of the car is really essential. Although higher speeds are the main criterion for determining the Formula 1 car’s aerodynamic setup, post the San Marino Grand Prix of 1994, the engineering research and development has also targeted for driver’s safety. The governing body of Formula 1, i.e. Fédération Internationale de l'Automobile (FIA) has made significant rule changes since this time, primarily targeting car safety and speed. Aerodynamic performance of a F1 car is currently one of the vital aspects of performance gain, as marginal gains are obtained due to engine and mechanical changes to the car. Thus, it has become the key to success in this sport, resulting in teams spending millions of dollars on research and development in this sector each year.
    [Show full text]
  • Naca Research Memorandum
    https://ntrs.nasa.gov/search.jsp?R=19930086840 2020-06-17T13:35:35+00:00Z Copy RMA5lll2 NACA RESEARCH MEMORANDUM A FLIGHT EVALUATION OF THE LONGITUDINAL STABILITY CHARACTERISTICS ASSOCIATED WITH THE PITCH-TIP OF A SWEPT-WING AIRPLANE IN MANEUVERING FLIGHT AT TRANSONIC SPEEDS 4'YJ A By Seth B. Anderson and Richard S. Bray Ames Aeronautical Laboratory Moffett Field, Calif. ENGINEERING DPT, CHANCE-VOUGHT AIRuRAf' DALLAS, TEXAS This material contains information hi etenoe toe jeoted States w:thin toe of the espionage laws, Title 18, 15 and ?j4, the transnJssionc e reveLation tnotct: in manner to unauthorized person Is et 05 Lan. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON November 27, 1951 NACA RM A51112 INN-1.W, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS A FLIGHT EVALUATION OF THE LONGITUDINAL STABILITY CHARACTERISTICS ASSOCIATED WITH THE PITCH-UP OF A SWEPT-WING AIPLAI'1E IN MANEUVERING FLIGHT AT TRANSONIC SPEEDS By Seth B. Anderson and Richard S. Bray SUMMARY Flight measurements of the longitudinal stability and control characteristics were made on a swept-wing jet aircraft to determine the origin of the pitch-up encountered in maneuvering flight at transonic speeds. The results showed that the pitch-up. encountered in a wind-up turn at constant Mach number was caused principally by an unstable break in the wing pitching moment with increasing lift. This unstable break in pitching moment, which was associated with flow separation near the wing tips, was not present beyond approximately 0.93 Mach number over the lift range covered in these tests. The pitch-up encountered in a high Mach number dive-recovery maneuver was due chiefly to a reduction in the wing- fuselage stability with decreasing Mach number.
    [Show full text]
  • Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series
    Neil Pryde Sails International 1681 Barnum Avenue Stratford, CT 06614 203-375-2626 [email protected] INTERNATIONAL DESIGN AND TECHNICAL OFFICE Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series The following points on mainsail trim apply both to the Furling and Classic mainsails we produce for Beneteau USA and the Oceanis Line of boats. In sailing the boats we can offer these general ideas and observations that will apply to the 311’s through to the newest B49. Mainsail trim falls into two categories, upwind and downwind. MAINSAIL TRIM: The following points on mainsail trim apply both to the Furling and Classic mainsail, as the concepts are the same. Mainsail trim falls into two categories, upwind and downwind. Upwind 1. Upwind in up to about 8 knots true wind the traveler can be brought to weather of centerline. This ensures that the boom will be close centerline and the leech of the sail in a powerful upwind mode. 2. The outhaul should be eased 2” / 50mm at the stopper, easing the foot of the mainsail away from the boom about 8”/200mm 3. Mainsheet tension should be tight enough to have the uppermost tell tail on the leech streaming aft about 50% of the time in the 7- 12 true wind range. For those with furling mainsails the action of furling and unfurling the sail can play havoc with keeping the telltales on the sail and you may need to replace them from time to time. Mainsail outhaul eased for light air upwind trim You will find that the upper tell tail will stall and fold over to the weather side of the sail about 50% of the time in 7-12 knots.
    [Show full text]
  • Sail Trimming Guide for the Beneteau 37 September 2008
    INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 37 September 2008 © Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 • Fax: 203-375-2627 Email: [email protected] Web: www.neilprydesails.com All material herein Copyright 2007-2008 Neil Pryde Sails International All Rights Reserved HEADSAIL OVERVIEW: The Beneteau 37 built in the USA and supplied with Neil Pryde Sails is equipped with a 105% non-overlapping headsail that is 337sf / 31.3m2 in area and is fitted to a Profurl C320 furling unit. The following features are built into this headsail: • The genoa sheets in front of the spreaders and shrouds for optimal sheeting angle and upwind performance • The size is optimized to sheet correctly to the factory track when fully deployed and when reefed. • Reef ‘buffer’ patches are fitted at both head and tack, which are designed to distribute the loads on the sail when reefed. • Reefing marks located on the starboard side of the tack buffer patch provide a visual mark for setting up pre-determined reefing locations. These are located 508mm/1’-8” and 1040mm / 3’-5” aft of the tack. • A telltale ‘window’ at the leading edge of the sail located about 14% of the luff length above the tack of the sail and is designed to allow the helmsperson to easily see the wind flowing around the leading edge of the sail when sailing upwind and close-hauled. The tell-tales are red and green, so that one can quickly identify the leeward and weather telltales.
    [Show full text]
  • The Weather Helm Issue (Rev 20 02 2020)
    Corbin 39 – the weather helm issue (rev 20 02 2020) Synopsis The subject of weather helm comes up repeatedly when discussing the Corbin 39 and not all of the folklore is justified. This note attempts to summarise the issue and to relate it to sufficient evidence, and to qualitative theory, that we can be reasonably certain of the situation. Remember - It is possible to overpower a yacht and induce weather helm, what we are trying to do is identify excessive weather helm. The key take-away is that the excessive weather helm was a genuine issue, which affected all the mk1 cutters irrespective of whether they were equipped with the taller double-spreader mast or the shorter single-spreader mast, provided that the mast was set in the intended aft mast position. Perhaps this was worse in the mk1 tallmast vs the mk1 shortmast, but we are not at all certain of that. All the mk1’s that had the forestay relocated onto a 3-foot long bowsprit were later able to alleviate this to an extent. The mk 1’s that have reduced the area of their main by shortening the mainsail boom & foot (or used in-mast furling) have reportedly completely eliminated this weather helm. All other versions including the mk1 ketches and all the mk2 cutters & ketches appear to be completely unaffected. This is the first openly published version of this analysis. Previous drafts were incomplete and drew erroneous conclusions in some areas due to an absence of reliable data. That has now been overcome as further evidence has come forwards, and so there are material differences between this version and previous drafts.
    [Show full text]
  • How the Beaufort Scale Affects Your Sail Plan
    How the Beaufort scale affects your sail plan The Beaufort scale is a measurement that relates wind speed to observed conditions at sea. Used in the sea area forecast it allows sailors to anticipate the condition that they are likely to face. Modern cruising yachts have become wider over the years to allow more room inside the boat when berthed. This offers the occupants a large living space but does have an effect on the handling of the boat. A wide beam, relatively short keel and rudder mean that if they have too much sail up they have a greater tendency to broach into the wind. Broaching, although dramatic for those onboard, is nothing more than the boat turning into the wind and is easy to rectify by carrying less sail. If the helm is struggling to keep the boat in a straight line then the boat has too much ‘weather helm’ i.e. the boat keeps turning into the wind- in this instance it is necessary to reduce sail. Racer/cruisers are often narrower than their cruising counter parts, with longer keels and rudders which mean they are less likely to broach, but often more difficult to sail with a small crew. Cruising yachts often have large overlapping jibs or genoas and relevantly small main sails. This allows the sail area to be reduced quickly and easily simply by furling away some head sail. The main sail is used to balance boat as the main drive comes from the head sail. Racer cruisers will often have smaller jibs and larger main sails, so reducing the sail area means reefing the main sail first and using the jib to balance the boat.
    [Show full text]
  • NS14 ASSOCIATION NATIONAL BOAT REGISTER Sail No. Hull
    NS14 ASSOCIATION NATIONAL BOAT REGISTER Boat Current Previous Previous Previous Previous Previous Original Sail No. Hull Type Name Owner Club State Status MG Name Owner Club Name Owner Club Name Owner Club Name Owner Club Name Owner Club Name Owner Allocated Measured Sails 2070 Midnight Midnight Hour Monty Lang NSC NSW Raced Midnight Hour Bernard Parker CSC Midnight Hour Bernard Parker 4/03/2019 1/03/2019 Barracouta 2069 Midnight Under The Influence Bernard Parker CSC NSW Raced 434 Under The Influence Bernard Parker 4/03/2019 10/01/2019 Short 2068 Midnight Smashed Bernard Parker CSC NSW Raced 436 Smashed Bernard Parker 4/03/2019 10/01/2019 Short 2067 Tiger Barra Neil Tasker CSC NSW Raced 444 Barra Neil Tasker 13/12/2018 24/10/2018 Barracouta 2066 Tequila 99 Dire Straits David Bedding GSC NSW Raced 338 Dire Straits (ex Xanadu) David Bedding 28/07/2018 Barracouta 2065 Moondance Cat In The Hat Frans Bienfeldt CHYC NSW Raced 435 Cat In The Hat Frans Bienfeldt 27/02/2018 27/02/2018 Mid Coast 2064 Tiger Nth Degree Peter Rivers GSC NSW Raced 416 Nth Degree Peter Rivers 13/12/2017 2/11/2013 Herrick/Mid Coast 2063 Tiger Lambordinghy Mark Bieder PHOSC NSW Raced Lambordinghy Mark Bieder 6/06/2017 16/08/2017 Barracouta 2062 Tiger Risky Too NSW Raced Ross Hansen GSC NSW Ask Siri Ian Ritchie BYRA Ask Siri Ian Ritchie 31/12/2016 Barracouta 2061 Tiger Viva La Vida Darren Eggins MPYC TAS Raced Rosie Richard Reatti BYRA Richard Reatti 13/12/2016 Truflo 2060 Tiger Skinny Love Alexis Poole BSYC SA Raced Skinny Love Alexis Poole 15/11/2016 20/11/2016 Barracouta
    [Show full text]
  • On the Instabilities of Tropical Cyclones Generated by Cloud Resolving Models
    SERIES A DYANAMIC METEOROLOGY Tellus AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM On the instabilities of tropical cyclones generated by cloud resolving models By DAVID A. SCHECTERÃ, NorthWest Research Associates, Boulder, CO, USA (Manuscript received 30 May 2018; in final form 29 August 2018) ABSTRACT An approximate method is developed for finding and analysing the main instability modes of a tropical cyclone whose basic state is obtained from a cloud resolving numerical simulation. The method is based on a linearised model of the perturbation dynamics that distinctly incorporates the overturning secondary circulation of the vortex, spatially inhomogeneous eddy diffusivities, and diabatic forcing associated with disturbances of moist convection. Although a general formula is provided for the latter, only parameterisations of diabatic forcing proportional to the local vertical velocity perturbation and modulated by local cloudiness of the basic state are implemented herein. The instability analysis is primarily illustrated for a mature tropical cyclone representative of a category 4 hurricane. For eddy diffusivities consistent with the fairly conventional configuration of the simulation that generates the basic state, perturbation growth is dominated by a low azimuthal wavenumber instability having greatest asymmetric kinetic energy density in the lower tropospheric region of the inner core of the vortex. The characteristics of the instability mode are inadequately explained by nondivergent 2D dynamics. Moreover, the growth rate and modal structure are sensitive to reasonable variations of the diabatic forcing. A second instability analysis is conducted for a mature tropical cyclone generated under conditions of much weaker horizontal diffusion. In this case, the linear model predicts a relatively fast high-wavenumber instability that is insensitive to the parameterisation of diabatic forcing.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]