Lack of Divergence Between 16S Mtdna Sequences of the Swimming

Total Page:16

File Type:pdf, Size:1020Kb

Lack of Divergence Between 16S Mtdna Sequences of the Swimming 475 Abstract–Lake Maracaibo, a large Lack of divergence between 16S mtDNA sequences Venezuelan estuarine lagoon, is report- edly inhabited by three species of the of the swimming crabs Callinectes bocourti genus Callinectes Stimpson, 1860 that are important to local fi sheries: C. sapi- and C. maracaiboensis (Brachyura: Portunidae) dus Rathbun, 1896, C. bocourti A. Milne from Venezuela* Edwards, 1879, and C. maracaiboensis Taissoun, 1969. Callinectes maracai- boensis, originally described from Lake Christoph D. Schubart Maracaibo and assumed endemic to Department of Biology those waters, has recently been reported University of Louisiana from other Caribbean localities and Lafayette, Louisiana 70504 Brazil. However, because characters Present address: Biologie I, Universität Regensburg sep arating it from the morphologically 93040 Regensburg, Germany similar C. bocourti are noted to be E-mail address: [email protected] vague, we have compared these spe- cies and several congeners by molec- ular methods. Among our specimens Jesús E. Conde from Lake Maracaibo and other parts Carlos Carmona-Suárez of the Venezuelan coast, those assign- able to C. bocourti and C. maracaiboen- Centro de Ecología sis on the basis of putatively diagnostic Instituto Venezolano de Investigaciones Científi cas (IVIC) characters in coloration and structural A. P. 21827 characteristics do not differ in their Caracas 1020-A, Venezuela 16S mtDNA sequences. These molec- ular results and our re-examination of supposed morphological differences Rafael Robles between these species suggest that C. Darryl L. Felder maracaiboensis is a junior synonym of Department of Biology C. bocourti, which varies markedly in University of Louisiana minor features of coloration and struc- Lafayette, Louisiana 70504 tural characteristics. Genetic relation- ships of this species to other species of swimming crabs of the genus Calli- nectes are also explored and presented as phylogenetic trees. Swimming crabs of the genus Calli- which are essential to fi shery-manage- nectes Stimpson, 1860 are widely dis - ment decisions. In particular, consistent tributed throughout the American trop- morphological distinction of the com- ics and subtropics, where many species monly encountered C. bocourti from C. are exploited commercially (Norse, 1977; maracaiboensis cannot be achieved with Williams, 1984). Members of this genus confi dence. play key trophic roles in coastal habitats Initially described as endemic from that range from sandy-mud bottoms to Lake Maracaibo, C. maracaiboensis seagrass meadows (Arnold, 1984; Orth has been reported from other Vene- and van Montfrans, 1987; Wilson et al., zuelan waters, as well as from sites 1987; Lin, 1991). Of the nine species in Jamaica, Curaçao, Colombia, and of Callinectes from the tropical western Brazil (Norse, 1977; Carmona-Suárez Atlantic, seven have been reported from and Conde, 1996; Sankarankutty et al., western Venezuela (Rodríguez, 1980; 1999). Although detailed descriptions Williams, 1984; Carmona-Suárez and have been provided by Taissoun (1969, Conde, 1996). However, knowledge of 1972) and Williams (1974) to diagnose these Venezuelan populations remains C. maracaiboensis, the same authors inadequate, despite the importance of have repeatedly emphasized its resem- several species in both large-scale com- blance to C. bocourti. Morphological mercial harvests and artisanal fi sh- distinction of the two species is based eries of coastal villages in the area upon postulated defi ning characters of (Oesterling and Petrocci, 1995; Ferrer- the frontal teeth, direction and form of Montaño, 1997; Conde and Rodríguez, 1999). Persistent diffi culty in identify- ing mixed samples of these species ham- * Contribution 75 of the University of Lou- Manuscript accepted 21 March 2001. pers understanding of their distribution, isiana Lafayette, Laboratory for Crusta- Fish. Bull. 99:475–481 (2001). abundance, and population dynamics, cean Research, Lafayette, LA 70504. 476 Fishery Bulletin 99(3) the anterolateral spines, convexity of the carapace, sur- product (547 bp excluding primer regions) from the mito- face granulation patterns, and varied morphometric mea- chondrial 16S rRNA gene was carried out by a polymerase- surements (Taissoun 1969, 1972). However, neither these chain-reaction (PCR) (35–40 cycles: 1 min at 94°C, 1 min at characters nor additional ones proposed by other authors 55°C, 2 min at 72°C (denaturing, annealing, and extension (Williams, 1974; Rodríguez, 1980) have proven to be of temperatures, respectively) with primers 16Sar (5′-CGCCT- consistent use in separating the species. Carapacial color GTTTATCAAAAACAT-3′), 16Sbr (5′-CCGGTCTGAACTCA- and granulation vary widely, and the outer frontal teeth GATCACGT-3′), 1472 (5′-AGATAGAAACCAACCTGG-3′), of many specimens cannot be classifi ed as a defi nitive tri- and 16L15 (5′-GACGATAAGACCCTATAAAGCTT-3′) (for angular (C. maracaiboensis) or obtuse (C. bocourti) shape. references to primers see Schubart et al., 2000). 16L15 is These concerns have led some authors to report only pos- an internal primer and, in combination with 16Sbr, was sible co-occurrence of C. maracaiboensis in their samples used for partial amplifi cation of the formalin-preserved of C. bocourti, as in records from Puerto Rico (Buchanan specimen. PCR products were purifi ed with Microcon-100® and Stoner, 1988). fi lters (Millipore Corp., Bedford, MA) and sequenced with Recently, molecular markers have proven particularly the ABI BigDye® Terminator Mix (PE Biosystems, Welles- valuable in decapod crustacean systematics. In addition to ley, MA) in an ABI Prism 310 Genetic Analyzer® (Applied reconstructing phylogenetic relationships, molecular se- Biosystems, Foster City, CA). Sequences were manually quences are of value in recognizing questionable species aligned with the multisequence-editing program ESEE separations (e.g. Geller et al., 1997; Sarver et al., 1998; (Cabot and Beckenbach, 1989). New sequences were ac- Schneider-Broussard et al., 1998; Schubart et al., 1998; cessioned to the European Molecular Biology Laboratory Schubart et al., in press). In our study, we used sequences (EMBL) genomic library (see Table 1). Sequences avail- of a mitochondrial gene (16S rRNA) to examine genetic able online (by electronic database accession numbers that differentiation between the morphologically similar spe- follow) were obtained for “Callinectes sapidus” (U75267), cies C. bocourti and C. maracaiboensis and to compare C. ornatus (U75268), C. similis (U75269), and C. sapidus these sequences to those of other swimming crabs of the (AJ130813). genus Callinectes in a phylogenetic analysis. Sequence divergence was analyzed by using Kimura 2-parameter distances, UPGMA cluster analysis, and neighbor-joining (NJ) distance analysis (Saitou and Nei, Materials and methods 1987) with the program MEGA (Kumar et al. 1993). Sta- tistical signifi cance of groups within inferred trees was Swimming crabs were caught by hand in shallows of the evaluated by the interior branch method (Rzhetsky and Golfete de Cuare (68°37′W, 10°06′N, State of Falcón, Vene- Nei, 1992). As a second phylogenetic method, a maximum zuela) in November–December 1998 and March 1999, and parsimony (MP) analysis was carried out with a heuristic in the shallows of El Moján, Lago de Maracaibo (71°39′W, search and random sequence addition (tree-bisection and 10°58′N, State of Zulia, Venezuela) in October 1999. Crabs reconnection as branch-swapping option) and by omission were transported to the Instituto Venezolano de Investig- of gaps with the program PAUP (Swofford, 1993). Signifi - aciones Científi cas, Caracas, in liquid nitrogen and then cance levels were evaluated with the same software and stored in a –70°C freezer. Two walking legs and one swim- the bootstrap method with 2000 replicates. ming leg were separated from each specimen, preserved individually in 85% ethanol, and shipped to the University of Louisiana, Lafayette (U.S.A.), for molecular analyses. Results Specimens were assigned to Callinectes bocourti or C. maracaiboensis according to morphological characters Sequencing of 15 specimens of Callinectes bocourti and provided by Taissoun (1969, 1972), Williams (1974, 1978), C. maracaiboensis from Golfete de Cuare and El Moján Fischer (1978), and Rodríguez (1980). Eight specimens of (both Venezuela) and the Río Sinú estuary (Colombia) C. bocourti and six of C. maracaiboensis from Venezuela revealed the existence of seven different haplotypes. Two were used for the molecular analysis. In addition, a short haplotypes (ht-1 and ht-5) clearly predominated (together fragment (~300 base pairs) of 16S mtDNA was obtained 64.3%) and were found in both species (ht-1 in two Cal- with an internal primer for one formalin-preserved speci- linectes bocourti and three C. maracaiboensis from Golfete men of C. bocourti from Colombia. These voucher speci- de Cuare, ht-5 in three C. bocourti and one C. maracai- mens, lacking limbs (which had been removed for analy- boensis from El Moján). The other fi ve haplotypes (ht-2, sis), were cataloged in collections of the Laboratorio de ht-3, ht-4, ht-6, ht-7) each differed from ht-1 or ht-5 in Ecología y Genética de Poblaciones, Instituto Venezolano not more than two positions and were found in only single de Investigaciones Científi cas (IVIC), and in the Univer- individuals (Fig. 1, Table 2). Consequently there is not sity of Louisiana Zoological Collection (Table 1). For out- a single diagnostic molecular character in our sequenced
Recommended publications
  • Bacterial Diseases of Crabs: a Review ⇑ W
    Journal of Invertebrate Pathology 106 (2011) 18–26 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Minireview Bacterial diseases of crabs: A review ⇑ W. Wang Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China article info abstract Keywords: Bacterial diseases of crabs are manifested as bacteremias caused by organisms such as Vibrio, Aeromo- Bacteria nas, and a Rhodobacteriales-like organism or tissue and organ tropic organisms such as chitinoclastic Disease bacteria, Rickettsia intracellular organisms, Chlamydia-like organism, and Spiroplasma. This paper pro- Crab vides general information about bacterial diseases of both marine and freshwater crabs. Some bacteria pathogens such as Vibrio cholerae and Vibrio vulnificus occur commonly in blue crab haemolymph and should be paid much attention to because they may represent potential health hazards to human beings because they can cause serious diseases when the crab is consumed as raw sea food. With the development of aquaculture, new diseases associated with novel pathogens such as spiroplasmas and Rhodobacteriales-like organisms have appeared in commercially exploited crab species in recent years. Many potential approaches to control bacterial diseases of crab will be helpful and practicable in aquaculture. Ó 2010 Published by Elsevier Inc. Contents 1. Introduction .........................................................................................................
    [Show full text]
  • VITAE HARRIET MACGILL PERRY 872-4218 (Work)
    VITAE HARRIET MACGILL PERRY 872-4218 (work) PRESENT POSITION: Director, Center for Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564; Assistant Professor, Department of Coastal Sciences, University of Southern Mississippi EDUCATION: B.S., Biology, Florida State University, 1965. M.S., Zoology, University of Southern Mississippi, 1971. PROFESSIONAL EXPERIENCE January 2000 to Present: Director, Center for Fisheries Research and Development, Institute of Marine Science, Gulf Coast Research Laboratory, The University of Southern Mississippi. July 1998 to Present: Assistant Professor, Department of Coastal Sciences, Institute of Marine Science, The University of Southern Mississippi. October 1979 to Present: Research Biologist, Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi. August 1968 to September 1979: Bio-technician, Fisheries Research and Development, Gulf Coast Research Laboratory, Ocean Springs, Mississippi. MAJOR RESEARCH INTERESTS Fishery development, management of marine fisheries, blue crab aquaculture, population dynamics of estuarine and marine invertebrates, invertebrate taxonomy, invasive species. Gulf Guardian Award, The Alabama/Mississippi Rapid Assessment Program. PROCEEDINGS/BOOK CHAPTERS Co-editor - Proceedings of the Blue Crab Colloquium, Gulf States Marine Fisheries Commission, 1982. Editor - Profile of the Blue Crab Fishery of the Gulf of Mexico, Gulf States Marine Fisheries Commission, 1984. Co-editor - Proceedings of the National Symposium of the Soft-Shelled Blue Crab Fishery, Southeast Marine Advisory Service Network and Sea Grant Mid-Atlantic Advisory Service Network, 1985. Co-editor - The Blue Crab Fishery of the Gulf of Mexico, United States: A Regional Management Plan. Gulf States Marine Fisheries Commission, 1990. Co-editor - A Profile of the Western Gulf Stone Crab, Menippe adina.
    [Show full text]
  • Meat Yield of Callinectes Bocourti A. Milne Edwards, 1879 (Crustacea, Portunidae) in Iguape, São Paulo, Brazil*
    Invest. Mar., Valparaíso, 34(2): 231-236,Meat 2006 yield of Callinectes bocourti A. Milne Edwards, 1879 231 Nota Científica Meat yield of Callinectes bocourti A. Milne Edwards, 1879 (Crustacea, Portunidae) in Iguape, São Paulo, Brazil* Gustavo Yomar-Hattori1, Bruno Sampaio-Sant’Anna1 & Marcelo A. Amaro-Pinheiro1 1Universidade Estadual Paulista, Campus do Litoral Paulista, Unidade São Vicente Grupo de Pesquisa em Biologia de Crustáceos (CRUSTA) Praça Infante Dom Henrique, s/n São Vicente (SP), CEP 11330-900, Brasil ABSTRACT. The objective of the present study was to analyze the meat yield for both sexes of the crab Callinectes bocourti in the region of Iguape, Brazil. The carapace width for males was 78.1-114.0 mm (96.7 ± 9.5 mm) and for females 76.0-106.3 mm (93.0 ± 7.8 mm). In males, the total wet weight ranged from 65.53 to 224.36 g (134.04 ± 40.77 g) and for females from 56.66 to 164.74 g (105.93 ± 26.88 g). A comparison of morphological structures revealed that the greatest meat yield was in the carapace (55.1%), followed by the right chela (16.9%), the left chela (15.9%), and the legs (12.1%). The total yield from the males (28.5%) was slightly higher than that from the females (22.1%). In general, portunids yield more meat than other crab species. The results of this study will allow the optimization of meat production for this crab species. Manual meat removal makes the process more expensive. This activity could offer an alternative to the fishing communities that live exclusively from this fishery resource.
    [Show full text]
  • Population Biology of Callinectes Ornatus Ordway, 1863 (Decapoda, Portunidae) from Ubatuba (SP), Brazil*
    SCI. MAR., 63 (2): 157-163 SCIENTIA MARINA 1999 Population biology of Callinectes ornatus Ordway, 1863 (Decapoda, Portunidae) from Ubatuba (SP), Brazil* M.L. NEGREIROS-FRANSOZO1, F.L.M. MANTELATTO2 and A. FRANSOZO1 1Departamento de Zoologia, Instituto de Biociências, Centro de Aqüicultura - UNESP. C.P. 510 - Cep 18.618-000 Botucatu, São Paulo, Brasil. 2Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto – USP. Cep 14.040-901 Ribeirão Preto, São Paulo, Brasil. SUMMARY: Population structure and reproductive season of the portunid crab Callinectes ornatus were studied in animals collected from the Ubatuba bays, São Paulo, Brazil (23° 20’ to 23o 35’ S and 44o 50’to 45o 14’ W). The samples were taken in three trawls performed every other month from January 1991 to May 1993. A total of 3,829 specimens of C. ornatus were obtained. Their size ranged from 9.3 to 84.6 mm (carapace width). Their median size based on their cephalothoracic width and their size frequency were determined as well. Their reproduction was continuous, with variable proportions of ovigerous females. The highest incidence of ovigerous females occurred in January 1991, 1992 and 1993 and March and November 1992. The oscillations of the environmental factors between the seasons are not so intense in subtropical regions, therefore allowing the continuity of the physiological process of growth and reproduction throughout the year. Key words: Portunidae, reproduction, Callinectes, South Brazilian coast. INTRODUCTION Although representatives of the entire genus Callinectes are known as blue crabs, this name is The Portunidae family presents more than 300 most commonly applied to C.
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • ABSTRACT RINDONE, RICHARD RYAN. Predator-Prey Dynamics
    ABSTRACT RINDONE, RICHARD RYAN. Predator-prey Dynamics between Recently Established Stone Crabs (Menippe spp.) and Oyster Prey (Crassostrea virginica). (Under the direction of David B. Eggleston). Range expansion and population establishment of individual species can have significant impacts on previously established food webs and predator-prey dynamics. The stone crab (Menippe spp.) is found throughout southwestern North Atlantic waters, from North Carolina through the Gulf of Mexico and the Central American Caribbean, and including the Greater Antilles. Recent observations suggest that stone crabs have become better established on certain oyster reefs in North Carolina than in the early 1900’s when they we first observed in NC. To assess the predatory impact of stone crabs on oysters, we (1) quantified stone crab densities on subtidal oyster reefs in Pamlico Sound, NC using scuba diver surveys, and (2) conducted laboratory predation experiments to assess the functional response of stone crabs to varying densities of oysters. We then (3) analyzed previously unpublished functional response data on another important oyster predator, the mud crab Panopeus herbstii. Finally, we (4) compared and contrasted potential predatory impacts of stone, mud and blue crabs (Callinectes sapidus). The functional response data and analyses for stone crabs was consistent with either a type I or II functional response, whereas mud crabs exhibited a type I functional response. Mud crabs, on a m2 basis, inflicted the highest proportional mortality on oysters over a 24 hour period, followed by stone and then blue crabs. Proportional mortality did not vary significantly with oyster size; however, relatively small and large oysters were consumed disproportionately less than medium- sized oysters, likely due to the mechanical inability of stone crabs to handle small oysters, and the inability to crush large oysters.
    [Show full text]
  • Aquatic Nuisance Species Management Plan
    NORTH CAROLINA ria ut N e Mystery er Prim es S Wat ros in na e Ch il Aquatic ish F on Nuisance Li rn Sna Species Nor the kehead Marbled Cray fish Hydrill a h Spo fis tted Jelly MANAGEMENT PLAN NORTH CAROLINA AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Prepared by the NC Aquatic Nuisance Species Management Plan Committee October 1, 2015 Approved by: Steve Troxler, Commissioner North Carolina Department of Agriculture and Consumer Services Donald R. van der Vaart, Secretary North Carolina Department of Environmental Quality Gordon Myers, Executive Director North Carolina Wildlife Resources Commission TABLE OF CONTENTS Acknowledgements Executive Summary I. Introduction .....................................................................................................................................................................................................................1 The difference between Aquatic Invasive Species (AIS) and Aquatic Nuisance Species (ANS) ................................................................5 Plan Purpose, Scope and Development ............................................................................................................................................................................. 5 Aquatic Invasive Species Vectors and Impacts ............................................................................................................................................................... 6 Interactions with Other Plan ................................................................................................................................................................................................
    [Show full text]
  • PARASITISMO Y EPIBIOSIS EN Callinectes Ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA
    SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente ISSN 1315-0162 [email protected] Universidad de Oriente Venezuela PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA Tenia, Robert; Figueredo, Arnaldo ; Lira, Carlos; Fuentes, José Luis PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, vol. 28, núm. 2, 2016 Universidad de Oriente Disponible en: http://www.redalyc.org/articulo.oa?id=427749623002 PDF generado por Redalyc a partir de XML-JATS4R Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA PARASITISM AND EPIBIOSIS IN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) IN WATERS FROM SOUTHWESTERN PORLAMAR BAY, MARGARITA ISLAND, VENEZUELA Robert Tenia Universidad de Oriente, Venezuela Arnaldo Figueredo / arnaldo.fi[email protected] Universidad de Oriente, Venezuela Carlos Lira Universidad de Oriente, Venezuela José Luis Fuentes Universidad de Oriente, Venezuela Resumen: Callinectes ornatus es un crustáceo decápodo ampliamente distribuido Robert Tenia, Arnaldo Figueredo, en el Atlántico centro-occidental, con un rol ecológico significativo y una creciente Carlos Lira, et al. valoración socio-económica en las comunidades costeras. Hasta la fecha, existen pocos PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 estudios sobre parásitos y simbiontes en esta especie, a pesar que tales investigaciones (CRUSTACEA: PORTUNIDAE) EN pueden brindar importante información sobre las relaciones ecológicas en que participa.
    [Show full text]
  • Crustacean Resources in The
    Cover photos courtesy of The Southeastern Regional Taxonomic Center (SERTC), South Carolina Department of Natural Resources Research Needs for the Sustainable Management of Crustacean Resources in the South Atlantic Bight. Report from a workshop held at the Marine Resources Research Institute Charleston, South Carolina April 9-10, 2014 Authored by Jeff Brunson, Peter Kingsley-Smith, John Leffler, Blaik Keppler, Amy Fowler, Larry DeLancey and David Whitaker. South Carolina Department of Natural Resources TABLE OF CONTENTS EXECUTIVE SUMMARY 3 RATIONALE AND OVERVIEW OF WORKSHOP 6 LIST OF WORKSHOP ATTENDEES 7 ACKNOWLEDGEMENTS 8 WORKSHOP AGENDA 9 IDENTIFICATION OF RESEARCH PRIORITIES 10 Blue crabs Disease 10 Habitat Condition and Loss 11 Climate Change 12 Stock Assessment 14 Penaeid shrimp Disease 16 Habitat Condition and Loss 18 Climate Change 19 Stock Assessment 21 Commercial Fisheries 22 Horseshoe crabs Disease 23 Habitat Condition and Loss 23 Climate Change 24 Stock Assessment 24 Fishery and Industry Practices 25 Stone crabs Hybrids 25 Disease 25 Habitat Condition and Loss 26 Climate Change 26 Stock Assessment 26 Fishery Practices 27 RESOURCE MANAGER PANEL SUMMARY 28 AREAS OF EXPERTISE OF WORKSHOP ATTENDEES 30 2 EXECUTIVE SUMMARY While the management authority for crustacean fisheries generally resides with individual states, crustacean resources are often interconnected within the region of the South Atlantic Bight. Declines among certain economically-important crustacean fisheries (i.e., blue crabs and shrimp) have been reported for both fishery-dependent and fishery-independent data region-wide since 2000. This workshop provided an opportunity for state resource managers and researchers to discuss issues affecting those fisheries and to attempt to identify approaches and resources for addressing the concerns raised.
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Redalyc.Ontogenetic Distribution of Callinectes Ornatus
    Ciencias Marinas ISSN: 0185-3880 [email protected] Universidad Autónoma de Baja California México Segura de Andrade, Luciana; Fransozo, Vívian; Cobo, Valter José; Leão Castilho, Antônio; Bertini, Giovana; Fransozo, Adilson Ontogenetic distribution of Callinectes ornatus (Decapoda, Portunoidea) in southeastern Brazil Ciencias Marinas, vol. 39, núm. 4, diciembre, 2013, pp. 371-385 Universidad Autónoma de Baja California Ensenada, México Available in: http://www.redalyc.org/articulo.oa?id=48029963004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciencias Marinas (2013), 39(4): 371–385 http://dx.doi.org/10.7773/cm.v39i4.2280 C M Ontogenetic distribution of Callinectes ornatus (Decapoda, Portunoidea) in southeastern Brazil Distribución ontogenética de Callinectes ornatus (Decapoda, Portunoidea) en el sureste de Brasil Luciana Segura de Andrade1*, Vívian Fransozo2, Valter José Cobo3, Antônio Leão Castilho1, Giovana Bertini4, Adilson Fransozo1 1 Departamento de Zoologia, Instituto de Biociências, NEBECC (Crustacean Biology, Ecology and Culture Study Group), Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubião Junior, s/n, 18618- 000, Botucatu, SP, Brazil. 2 Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Estrada do Bem Querer, Km 04, 45031-900, Vitória da Conquista, BA, Brazil. 3 Laboratório de Zoologia, Departamento de Biologia, Universidade de Taubaté. Praça Marcelino Monteiro 63, 12030-010, Taubaté, São Paulo, Brazil. 4 Universidade Estadual Paulista, Campus Experimental de Registro, Rua Nelson Brihi Badur, 430, 11900-000, Registro, SP, Brazil. * Corresponding author.
    [Show full text]
  • Abundance and Spatial-Temporal Distribution of the Family Portunidae (Crustacea, Decapoda) in the Curuçá Estuary on the Northern Coast of Brazil
    Braz. J. Aquat. Sci. Technol., 2009, 13(1):71-79. ABUNDANCE AND SPATIAL-TEMPORAL DISTRIBUTION OF THE FAMILY PORTUNIDAE (CRUSTACEA, DECAPODA) IN THE CURUÇÁ ESTUARY ON THE NORTHERN COAST OF BRAZIL Nevis, A. B.*; Martinelli, J. M.; Carvalho, A. S. S. & Nahum, V. J. I. Laboratório de Biologia Pesqueira e Manejo dos Recursos Aquáticos, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral 2651, Terra Firme, Belém, PA – Brasil, CEP 66077-530 *Corresponding author: [email protected] ABSTRACT Nevis, A. B.; Martinelli, J. M.; Carvalho, A. S. S. & Nahum, V. J. I. 2009. Abundance and spatial-temporal distribution of the family Portunidae (Crustacea, Decapoda) in the Curuçá estuary on the northern coast of Brazil. Braz. J. Aquat. Sci. Technol. 13(1):71-79. ISSN 1808-7035. Species composition, abundance and distribution patterns of the family Portunidae in the Curuçá estuary in the northeastern portion of the state of Pará (northern Brazil) were studied bimonthly from July 2003 to July 2004. Samples were taken with a wing trawl net during the day at ebb tide during last quarter moon. A total of 427 individuals were collected, comprising three species: Callinectes bocourti, Callinectes danae and Callinectes ornatus. C. danae was the dominant species (56%). C. bocourti demonstrated a preference for the rainy season and C. ornatus preferred the dry season. C. danae was present in both seasons. The results indicate that variation in salinity and pH related to season (dry and rainy) are considered determinant factors for the distribution of C. bocourti and C. ornatus. Keywords: Composition, Brachyura, Callinectes, swimming crab, Amazon.
    [Show full text]