Breeding Systems of Some Cold Tolerant Eucalyptus Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pests, Diseases, and Aridity Have Shaped the Genome of Corymbia Citriodora
Lawrence Berkeley National Laboratory Recent Work Title Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Permalink https://escholarship.org/uc/item/5t51515k Journal Communications biology, 4(1) ISSN 2399-3642 Authors Healey, Adam L Shepherd, Mervyn King, Graham J et al. Publication Date 2021-05-10 DOI 10.1038/s42003-021-02009-0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s42003-021-02009-0 OPEN Pests, diseases, and aridity have shaped the genome of Corymbia citriodora ✉ Adam L. Healey 1,2 , Mervyn Shepherd 3, Graham J. King 3, Jakob B. Butler 4, Jules S. Freeman 4,5,6, David J. Lee 7, Brad M. Potts4,5, Orzenil B. Silva-Junior8, Abdul Baten 3,9, Jerry Jenkins 1, Shengqiang Shu 10, John T. Lovell 1, Avinash Sreedasyam1, Jane Grimwood 1, Agnelo Furtado2, Dario Grattapaglia8,11, Kerrie W. Barry10, Hope Hundley10, Blake A. Simmons 2,12, Jeremy Schmutz 1,10, René E. Vaillancourt4,5 & Robert J. Henry 2 Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). 1234567890():,; Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements. -
Quambalaria Leaf and Shoot Blight on Eucalyptus Nitens in South Africa
CSIRO PUBLISHING www.publish.csiro.au/journals/app Australasian Plant Pathology, 2006, 35, 427–433 Quambalaria leaf and shoot blight on Eucalyptus nitens in South Africa J. RouxA,B, Z. L. MthalaneA, Z. W. de BeerA, B. EisenbergA and M. J. WingfieldA ADepartment of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. BCorresponding author. Email: [email protected] Abstract. Quambalaria spp. cause leaf and shoot dieback diseases on young Eucalyptus trees in Australia, Thailand, South America and South Africa. The disease was first recorded in South Africa in the early 1990s but has been restricted to nurseries in the subtropical north-east coastal area of the country, without resulting in great effect. Recent disease surveys in the Mpumalanga Province of South Africa have revealed extensive shoot and leaf dieback, as well as stem cankers on 1-year-old E. nitens trees. Some symptoms of the disease resembled Quambalaria leaf and shoot blight. However, this was the first time it had occurred on the stems of larger trees, on E. nitens or in the cold temperate region of the country. The aim of this study was to identify the causal agent of the disease and to test different Eucalyptus spp. and clones of relevance to the South African forestry industry for their susceptibility to the pathogen. Comparisons of DNA sequence data for the ITS and 5.8S regions were used to identify the fungus. Results showed that the pathogen represented Q. eucalypti. Inoculation trials showed that all the material tested was susceptible to infection by Q. -
Tree Growth Stress and Related Problems
J Wood Sci DOI 10.1007/s10086-017-1639-y REVIEW ARTICLE Tree growth stress and related problems 1 1 1 2 Joseph Gril • Delphine Jullien • Sandrine Bardet • Hiroyuki Yamamoto Received: 23 May 2016 / Accepted: 15 May 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Tree growth stress, resulted from the combined near future, we expect to develop plantation forests and effects of dead weight increase and cell wall maturation in utilize more wood as industrial resources; in that case, we the growing trees, fulfills biomechanical functions by need to respond to their large growth stress. Thermal enhancing the strength of growing stems and by controlling treatment is one of the possible countermeasures: green their growth orientation. Its value after new wood forma- wood heating involves the hygrothermal recovery of vis- tion, named maturation stress, can be determined by mea- coelastic locked-in growth strains and tends to counteract suring the instantaneously released strain at stem periphery. the effect of subsequent drying. Methods such as smoke Exceptional levels of longitudinal stress are reached in drying of logs are proposed to increase the processing yield reaction wood, in the form of compression in gymnosperms at a reasonable cost. or higher-than-usual tension in angiosperms, inspiring theories to explain the generation process of the maturation Keywords Mechanical stress Á Tension wood Á stress at the level of wood fiber: the synergistic action of Compression wood Á Biomechanics Á Hygrothermal compressive stress generated in the amorphous lignin– recovery hemicellulose matrix and tensile stress due to the short- ening of the crystalline cellulosic framework is a possible driving force. -
Trees for Farm Forestry: 22 Promising Species
Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Huiles Essentielles D'eucalyptus Globulus, D'eucalyptus Radiata Et De
Huiles essentielles d’Eucalyptus globulus, d’Eucalyptus radiata et de Corymbia citriodora : qualité, efficacité et toxicité Nathalie Koziol To cite this version: Nathalie Koziol. Huiles essentielles d’Eucalyptus globulus, d’Eucalyptus radiata et de Corymbia citriodora : qualité, efficacité et toxicité. Sciences pharmaceutiques. 2015. hal-01733789 HAL Id: hal-01733789 https://hal.univ-lorraine.fr/hal-01733789 Submitted on 14 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
Eucalyptus Utilis
Euclid - Online edition Eucalyptus utilis Classification Eucalyptus | Symphyomyrtus | Bisectae | Glandulosae | Erectae | Abundae Nomenclature Eucalyptus utilis Brooker & Hopper, Nuytsia 14: 349 (2002). T: Hopetoun, 19 Oct. 1964, C.A.Gardner 14888; holo: PERTH. Eucalyptus platypus var. heterophylla Blakely, Key Eucalypts 107 (1934). Type: near Ongerup, Western Australia, 30 May 1917, F. Stoward s.n.; holo: NSW. = E. platypus Hook. X E. spathulata Hook. (fide S.D.Hopper). Description Mallet to 7 m tall though often bushy. Lignotuber absent. Bark smooth throughout, grey to grey-green over coppery to orange. Branchlets have oil glands in the pith. Juvenile growth (coppice or field seedlings to 50 cm): stems rounded in cross-section, may feel rough on lower parts; juvenile leaves always petiolate, alternate, ovate, 2–8 cm long, 1.5–3.5 cm wide, green to grey-green, lowest leaves may feel rough. Adult leaves alternate, thick, held erect, petioles 0.8–2 cm long; blade ovate to lanceolate, rarely almost elliptical, 4.5–8 cm long, 1–3(4) cm wide, base tapering to petiole, margin entire or indented, apex pointed, concolorous, green, glossy, surface appearing "glazed", side-veins acute or obscure, reticulation not visible, intramarginal vein remote from margin, oil glands numerous, round or slightly irregular. Inflorescence axillary unbranched, peduncles broadly flattened, erect to slightly spreading in bud and flower stage, 1.3–3.3 cm long; buds 7 per umbel, shortly pedicellate or sessile (pedicels 0–0.5 cm long). Mature buds elongated ovoid, 1.2–2.8 cm long, 0.4–0.7 cm wide, with the hypanthium wider than the operculum at the join, scar present (outer operculum lost early), inner operculum horn-shaped, sometimes slightly warty, ca 1.2–2.3 times the length of the ribbed hypanthium, stamens erect, in about 3 whorls on the broad staminophore, anthers oblong, versatile, dorsifixed, dehiscing by longitudinal slits, style long and straight, stigma blunt to slightly dilated, locules 3 or 4, the placentae each with 4 vertical rows of ovules. -
Plant List for Wanniassa Hills – South – 11 June 2003
Wednesday Walk – Wanniassa Hills – 24 June 2015 The walk was on the western side of Wanniassa Hills with great views to the Murrumbidgee Corridor and beyond. To return, we crossed under Erindale Drive and walked back on Farrer Ridge. We found great displays of Leucopogon attenuatus and Cryptandra sp. Floriferous (aka C. amara var. floribunda) in full flower - hillsides of the L. attenuatus in fact. They gave off a lovely honey perfume. There were a few flowers on Acacia ulicifolia and A. gunnii and we saw the first Hovea heterophylla of the season, flowering, as well as Indigofera australis. As always, the trees were amazing - some very old Eucalyptus polyanthemos, some supporting big clumps of Amyema miquelii and a couple of Muellerina eucalyptoides on one. We added a few new species to our already long list - Arthropodium minus, Carex appressa, Glycine tabacina, Monotoca scoparia and Thelymitra sp. For images below JG = Jean Geue; MB = Martin Butterfield Hillside of Cryptandra sp. Floriferous & Leucopogon attenuatus MB Cryptandra sp. Floriferous MB Leucopogon attenuatus JG Persoonia rigida JG Persoonia rigida MB Eucalyptus rossii JG Acacia dealbata JG Acacia dealbata MB Acacia melanoxylon MB Acacia ulicifolia MB Cheilanthes distans MB Hovea heterophylla MB Prepared by the Wednesday Walkers of the Australian Native Plants Society, Canberra Region Plant List for Wanniassa Hills – 24 June 2015 ? indicates that those present were unsure of the plant name Acacia buxifolia Geranium sp. Acacia dealbata Glycine clandestina Acacia decurrens Glycine tabacina Acacia gunnii Gonocarpus tetragynus Acacia implexa Goodenia hederacea Acacia mearnsii Hardenbergia violacea Acacia melanoxylon Hibbertia obtusifolia Acacia penninervis Hovea heterophylla Acacia pycnantha Hydrocotyle laxiflora Acacia rubida Indigofera adesmiifolia Acacia ulicifolia Indigofera australis Acaena ovina Juncus subsecundus Allocasuarina verticillata Kunzea ericoides Amyema miquelii Lepidosperma laterale Aristida ramosa Leucochrysum albicans var. -
Indigenous Plants of Bendigo
Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4 -
Drought and Heat Triggers Sudden and Severe Dieback in a Dominant Mediterranean-Type Woodland Species
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Repository Open Journal of Forestry 2012. Vol.2, No.4, 183-186 Published Online October 2012 in SciRes (http://www.SciRP.org/journal/ojf) DOI:10.4236/ojf.2012.24022 Drought and Heat Triggers Sudden and Severe Dieback in a Dominant Mediterranean-Type Woodland Species George Matusick, Katinka X. Ruthrof, Giles St. J. Hardy Centre of Excellence for Climate Change Woodland and Forest Health, Murdoch University, Perth, Australia Email: [email protected] Received June 7th, 2012; revised July 10th, 2012; accepted July 25th, 2012 Ecosystems in Mediterranean climate regions are projected to undergo considerable changes as a result of shifting climate, including from extreme drought and heat events. A severe and sudden dieback event, occurring in regionally significant Eucalyptus gomphocephala woodland in Western Australia, coincided with extreme drought and heat conditions in early 2011. Using a combination of remote sensing and field- based approaches, we characterized the extent and severity of canopy dieback following the event, as well as highlighted potential predisposing site factors. An estimated 500 ha of woodland was severely affected between February and March 2011. Tree foliage rapidly discolored and died over this period. In the af- fected portion of the woodland, approximately 90% of trees greater than 20 cm DBH were impacted, while in the adjacent unaffected woodland 6% showed signs of damage. Tree density in the unaffected area had approximately 4.5 times more trees than the affected woodland. Precipitation drainage patterns are thought to explain the difference between affected and unaffected woodland. -
Muntries the Domestication and Improvement of Kunzea Pomifera (F.Muell.)
Muntries The domestication and improvement of Kunzea pomifera (F.Muell.) A report for the Rural Industries Research and Development Corporation by Tony Page January 2004 RIRDC Publication No 03/127 RIRDC Project No UM-52A © 2004 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 0642 58693 4 ISSN 1440-6845 Muntries: The domestication and improvement of Kunzea pomifera (F.Muell) Publication No. 03/127 Project No: UM-52A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Tony Page 500 Yarra Boulevard RICHMOND VIC 3121 Phone: 03 9250 6800 Fax: 03 92506885 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected]. Website: http://www.rirdc.gov.au Published in January 2004 Printed on environmentally friendly paper by Canprint ii Foreword Many Australian native plant foods have the potential to broaden the culinary and nutritional composition of the human diet, both in Australia and worldwide. -
Genetic Diversity and Adaptation in Eucalyptus Pauciflora
Genetic diversity and adaptation in Eucalyptus pauciflora Archana Gauli (M.Sc.) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences, University of Tasmania June, 2014 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Archana Gauli Date Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date Statement regarding published work contained in thesis The publishers of the paper comprising Chapter 2 and Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date i Statement of publication Chapter 2 has been published as: Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany 61, 622-632. Chapter 3 has been accepted for publication as: Gauli A, Steane DA, Vaillancourt RE, Potts BM (in press) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp.