CHLORINATION and SELECTIVE VAPORIZATION of RARE EARTH ELEMENTS Daniel Gaede Montana Tech of the University of Montana

Total Page:16

File Type:pdf, Size:1020Kb

CHLORINATION and SELECTIVE VAPORIZATION of RARE EARTH ELEMENTS Daniel Gaede Montana Tech of the University of Montana Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2016 CHLORINATION AND SELECTIVE VAPORIZATION OF RARE EARTH ELEMENTS Daniel Gaede Montana Tech of the University of Montana Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Metallurgy Commons Recommended Citation Gaede, Daniel, "CHLORINATION AND SELECTIVE VAPORIZATION OF RARE EARTH ELEMENTS" (2016). Graduate Theses & Non-Theses. 72. http://digitalcommons.mtech.edu/grad_rsch/72 This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. CHLORINATION AND SELECTIVE VAPORIZATION OF RARE EARTH ELEMENTS by Daniel W. Gaede A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Metallurgical and Materials Engineering Montana Tech 2016 i Abstract Rare earth elements are part of the lanthanide series in the periodic table. The uses and applications for these elements are ever increasing. Applications vary from smart phones to medical imaging equipment and more. Current separation techniques used today are hydrometallurgically intensive. The purpose of this study was to investigate a pyrometallurgical alternative to separate rare earth elements in ores. The proposed method, chlorination, would convert the rare earth oxides to chlorides and then apply vapor phase separation techniques to isolate the rare earth chlorides by temperature. Various reagent grade rare earth oxides were initially studied to determine chlorination efficiencies. Chlorination optimization experiments were then performed on Yb2O3, where the parameters were refined. Experimental products were analyzed by x-ray diffraction and inductively coupled mass spectrometry to determine overall conversion efficiency. The o optimized parameters of 330 C, a molar ratio (NH4Cl:REO) of 21:1, and a time at temperature of one hour were applied to actual rare earth ore and concentrate samples. Overall conversion efficiencies of 92.15% were achieved from concentrate samples and 94.51% from ore samples. A sequential method was applied to high temperature vaporization experimentation. First, thermogravimetric analysis and individual vaporization experiments were performed on reagent grade rare earth chlorides. Next, trials proceeded to separate mixed series of light and heavy reagent grade rare earth chlorides. Lastly, vaporization techniques were applied to chlorinated ore samples. Results were determined through SEM evaluation on the captured residues. Although selective vaporization was observed, further evaluation is necessary to understand and refine the process. Keywords Rare Earths, Halogenation, Chlorination, Volatization, Vapor Phase Extraction, Thermodynamics ii Dedication First, I would like to dedicate this to my family, for without their support through the highs and lows, this would not have been possible. Words are not enough. Next, my friends, for their reality checks, humor, and support. Lastly, I wish to acknowledge my overall experience here in Montana. It has been a blast, and I would like to think I have been able to experience more than most who just come out for school. The friendships and experiences are memorable to say the least. From outlandish camping and hunting trips up in the mountains, swimming, floating, and fishing the rivers, incredible snowboarding, breathtaking views, a couple of summers being able to work for the Forest Service (KNF D-4 FIRE), and everything in between, it has been great, and all of it has been worth it!! iii Acknowledgments Bryce Ruffier for working alongside me in the lab through all the ups, downs, late nights, and molten accidents, as well as Ryan Foy and Sean Dudley, fellow graduate students. Neil Wahl and Rod James for their patience, inspiring, and insightful conversations. Dr. Huang and his help with StabCal, allowing me to dig in and begin to understand the rare earth chloride system. Larry Twidwell for his expertise and support in Design Expert. Jerry Downey and Jan Chorney for giving me a chance. Their help, guidance, and knowledge throughout this entire process is greatly appreciated. Gary Wyss from CAMP for his help with MLA and XRD analysis. Hazen Research for performing analysis on leach solutions and/or residues for rare earth content. Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0020. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. iv Table of Contents Abstract .............................................................................................................................................. i Keywords ............................................................................................................................................ i Dedication...........................................................................................................................................ii Acknowledgments ............................................................................................................................... iii List of Figures ..................................................................................................................................... xii List of Tables ................................................................................................................................... xxxi List of Equations ............................................................................................................................ xxxiv Glossary of Terms ........................................................................................................................... xxxv 1. Introduction..................................................................................................................................................... 1 1.1. Mineralogy ............................................................................................................................................. 5 1.2. Extractive Processes ............................................................................................................................ 11 1.3. Environmental ..................................................................................................................................... 14 2. Literature Review .......................................................................................................................................... 15 2.1. Carbochlorination/Chlorination ........................................................................................................... 15 2.2. Chlorination/Volatization .................................................................................................................... 25 2.3. Volatization .......................................................................................................................................... 26 2.4. TGA Analysis......................................................................................................................................... 31 3. Theory ........................................................................................................................................................... 35 3.1. Chlorination ......................................................................................................................................... 35 v 3.1.1. Gibbs Free Energy ......................................................................................................................... 36 3.1.2. Gibbs Free Energy and Equilibrium ............................................................................................... 39 3.1.3. Low Temperature Predominance Area Diagrams ......................................................................... 40 3.2. Vaporization ......................................................................................................................................... 43 3.2.1. Reagent Grade, Lights and Heavy Separation ............................................................................... 43 3.2.2. High Temperature Predominance Area Diagrams ........................................................................ 51 4. Experimental ................................................................................................................................................. 56 4.1. Chlorination ......................................................................................................................................... 56 4.1.1. Chlorination with Ammonium Chloride ........................................................................................ 56 4.1.1.1. Experimental Matrix with NH4Cl(s) ......................................................................................... 57 4.1.1.2. Experimental Matrix with HCl gas .........................................................................................
Recommended publications
  • A Mineralogy of Anthropocene E
    1 A Minerology for the Anthropocene Pierre FLUCK Institut Universitaire de France / Docteur-ès-Sciences / geologist and archeologist / Emeritus Professor at Université de Haute-Alsace This essay is a follow-up on « La signature stratigraphique de l’Anthropocène », which is also available on HAL- Archives ouvertes. Table of contents 1. Introduction: neoformation minerals in ancient mining galleries 2. Minerals from burning coal mines 3. Minerals from the mineral processing industry 4 ...and metallurgy 5. Neoformations in slags 6. Speciation of heavy metals in soils 7. Metal objects in their archaeological environment, or affected by fire 8. Neoformations in or on the surface of building stones 9. A mineralogy of materials. The “miracle of the potter”. The minerals in cement 10. A mineralogy of the biosphere? Conclusions Warning. This paper is written to be read by both specialists and a wider audience. However, it contains many mineral names. While these may resonate in the minds of mineralogists or collectors, they may not be as meaningful to less discerning readers. Such readers should not be scared, for they may find excellent encyclopaedic records on the web, including chemical composition, crystallographic properties and description of each of these species. This is why we have decided not to include further information in this paper. Acknowledgements. I would like to thank the mineralogists with whom I have had the opportunity to maintain fruitful exchanges for a long time: my pupil Hubert Bari, Éric Asselborn, Cédric Lheur, François Farges. And I would like to honour the memories of René Weil (1901-1983), my master in descriptive mineralogy, and of Jacques Geffroy (1918-1993), pupil of Alfred Lacroix, my master in metallogeny.
    [Show full text]
  • The Partnership of Smithson Tennant and William Hyde Wollaston
    “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt 9 The Partnership of Smithson Tennant and William Hyde Wollaston “A quantity of platina was purchased by me a few years since with the design of rendering it malleable for the different purposes to which it is adapted. That object has now been attained. ” WILLIAM HYDE W O L L A S T O N Up to the end of the eighteenth century the attempts to produce malleable platinum had advanced mainly in the hands of practical men aiming at its pre­ paration and fabrication rather than at the solution of scientific problems. These were now to be attacked with a marked degree of success by two remarkable but very different men who first became friends during their student days at Cam ­ bridge and who formed a working partnership in 1800 designed not only for scientific purposes but also for financial reasons. They were of the same genera­ tion and much the same background as the professional scientists of London whose work was described in Chapter 8, and to whom they were well known, but with the exception of Humphry Davy they were of greater stature and made a greater advance in the development of platinum metallurgy than their predecessors. Their combined achievements over a relatively short span of years included the successful production for the first time of malleable platinum on a truly com­ mercial scale as well as the discovery of no less than four new elements contained in native platinum, a factor that was of material help in the purification and treatment of platinum itself.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • ART. IX.-Notes on the Platinum, Metals, and Their 8L'paration from Each Other I by M
    1ll. C. Lea on the Platinum Metala. 81 ART. IX.-Notes on the Platinum, Metals, and their 8l'paration from each other i by M. CAREY LEA, Philadelphia.-Part I. (1) FEW branches of inorganic chemistry present difficulties com­ parable with those involved in the study and separation of the platinum metals. 'rheir close analogy with each other, and the remarkllble manner in which the relations of each to chemical reagents are controlled by the presence of the others, give rise to difficulties in their detection and separation which are only by degrees being surmounted. Much time and unwearied labor on the part of the chemist are required to rench results whith when obtained appear insignificant in proportion to the effort which they cost, and it may ill fnct be said that the platinum metals constitute a chemistry in themselves, governed by special rules and to be studied by special method~. Each step in the simplification of the processes by which the separations are effected, each decisive reaction by which the presence or ab­ sence of a member of the group may be certainly iuferred, is so much gained toward conquering a complete knowledge of these rare and mteresting bodies. All[. JOUR. BOI.-SEOOND BUlBS, VOL. XXXVIII, No.112.-JuLT, 1864. n 82 M. C. Lea on the Platinum Metals. For much the better half of all we know upon this subject, we are indebted to Dr. Claus, whose method of' separation I have followed up to a certain point, and then have diverged from it, with I think some adva.ntage.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 97, pages 2064–2072, 2012 New Mineral Names* G. DIEGO GATTA,1 FERNANDO CÁMARA,2 KIMBERLY T. TAIT,3,† AND DMITRY BELAKOVSKIY4 1Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli, 23-20133 Milano, Italy 2Dipartimento di Scienze della Terra, Università di degli Studi di Torino, Via Valperga Caluso, 35-10125 Torino, Italy 3Department of Natual History, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada 4Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia IN THIS ISSUE This New Mineral Names has entries for 12 new minerals, including: agardite-(Nd), ammineite, byzantievite, chibaite, ferroericssonite, fluor-dravite, fluorocronite, litochlebite, magnesioneptunite, manitobaite, orlovite, and tashelgite. These new minerals come from several different journals: Canadian Mineralogist, European Journal of Mineralogy, Journal of Geosciences, Mineralogical Magazine, Nature Communications, Novye dannye o mineralakh (New data on minerals), and Zap. Ross. Mineral. Obshch. We also include seven entries of new data. AGARDITE-(ND)* clusters up to 2 mm across. Agardite-(Nd) is transparent, light I.V. Pekov, N.V. Chukanov, A.E. Zadov, P. Voudouris, A. bluish green (turquoise-colored) in aggregates to almost color- Magganas, and A. Katerinopoulos (2011) Agardite-(Nd), less in separate thin needles or fibers. Streak is white. Luster is vitreous in relatively thick crystals and silky in aggregates. Mohs NdCu6(AsO4)3(OH)6·3H2O, from the Hilarion Mine, Lavrion, Greece: mineral description and chemical relations with other hardness is <3. Crystals are brittle, cleavage nor parting were members of the agardite–zálesíite solid-solution system. observed, fracture is uneven. Density could not be measured Journal of Geosciences, 57, 249–255.
    [Show full text]
  • High Temperature Sulfate Minerals Forming on the Burning Coal Dumps from Upper Silesia, Poland
    minerals Article High Temperature Sulfate Minerals Forming on the Burning Coal Dumps from Upper Silesia, Poland Jan Parafiniuk * and Rafał Siuda Faculty of Geology, University of Warsaw, Zwirki˙ i Wigury 93, 02-089 Warszawa, Poland; [email protected] * Correspondence: j.parafi[email protected] Abstract: The subject of this work is the assemblage of anhydrous sulfate minerals formed on burning coal-heaps. Three burning heaps located in the Upper Silesian coal basin in Czerwionka-Leszczyny, Radlin and Rydułtowy near Rybnik were selected for the research. The occurrence of godovikovite, millosevichite, steklite and an unnamed MgSO4, sometimes accompanied by subordinate admixtures of mikasaite, sabieite, efremovite, langbeinite and aphthitalite has been recorded from these locations. Occasionally they form monomineral aggregates, but usually occur as mixtures practically impossible to separate. The minerals form microcrystalline masses with a characteristic vesicular structure resembling a solidified foam or pumice. The sulfates crystallize from hot fire gases, similar to high temperature volcanic exhalations. The gases transport volatile components from the center of the fire but their chemical compositions are not yet known. Their cooling in the near-surface part of the heap results in condensation from the vapors as viscous liquid mass, from which the investigated minerals then crystallize. Their crystallization temperatures can be estimated from direct measurements of the temperatures of sulfate accumulation in the burning dumps and studies of their thermal ◦ decomposition. Millosevichite and steklite crystallize in the temperature range of 510–650 C, MgSO4 Citation: Parafiniuk, J.; Siuda, R. forms at 510–600 ◦C and godovikovite in the slightly lower range of 280–450 (546) ◦C.
    [Show full text]
  • An Exploration of Georgius Agricola's Natural Philosophy in De Re Metallica
    Mining Metals, Mining Minds: An Exploration of Georgius Agricola’s Natural Philosophy in De re metallica (1556) By Hillary Taylor Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in History January 31, 2021 Nashville, Tennessee Approved: William Caferro, Ph.D. Lauren R. Clay, Ph.D. Laura Stark, Ph.D. Elsa Filosa, Ph.D. Francesca Trivellato, Ph.D. For my parents, Jim and Lisa ii Acknowledgements I have benefitted from the generosity of many individuals in my odyssey to complete this dissertation. My sincerest thanks go to Professor William Caferro who showed me how to call up documents at the Archivio di Stato in Florence, taught me Italian paleography, read each chapter, and provided thoughtful feedback. It has been a blessing working closely with a scholar who is as great as he is at doing history. I have certainly learned by his example, watching as he spends his own time reading, translating, writing, and editing. I have attempted to emulate his productivity, and I know that I would not have finished the ultimate academic enterprise without his guidance. Professor Caferro pruned my prose without bruising my ego, too badly. I must also extend my warmest thanks to the other members of my committee, Professor Lauren Clay, Professor Laura Stark, Professor Elsa Filosa, and Professor Francesca Trivellato. I am also grateful to Professor Monique O’Connell, my undergraduate advisor at Wake Forest University. Monique was the first to introduce me to the historiographical complexities of Italian history and intellectual thought.
    [Show full text]
  • IUPAC-NIST Solubility Data Series. 87. Rare Earth Metal Chlorides in Water and Aqueous Systems
    IUPAC-NIST Solubility Data Series. 87. Rare Earth Metal Chlorides in Water and Aqueous Systems. Part 1. Scandium Group „Sc, Y, La… Tomasz Mioduskia… Institute of Nuclear Chemistry and Technology, Warsaw, Poland Cezary Gumińskib… Department of Chemistry, University of Warsaw, Warsaw, Poland Dewen Zengc… College of Chemistry and Chemical Engineering, Hunan University, Hunan, People’s Republic of China ͑Received 12 May 2008; revised manuscript received 20 May 2008; accepted 20 May 2008; published online 15 October 2008͒ This volume presents solubility data for rare earth metal chlorides in water and in ternary and quaternary aqueous systems. The material is divided into three parts: scan- dium group ͑Sc, Y, La͒, light lanthanide ͑Ce-Eu͒, and heavy lanthanide ͑Gd-Lu͒ chlo- rides; this part covers the scandium group. Compilations of all available experimental data are introduced for each rare earth metal chloride with a corresponding critical evalu- ation. Every such evaluation contains a tabulated collection of all solubility results in ͑ ͒ water, a scheme of the water-rich part of the equilibrium Y, La, Ln Cl3 –H2O phase diagram, solubility equation͑s͒, a selection of suggested solubility data, and a discussion of the multicomponent systems. Because the ternary and quaternary systems were almost never studied more than once, no critical evaluations or systematic comparisons of such data were possible. Only simple chlorides ͑no complexes͒ are treated as the input sub- stances in this work. The literature ͑including a thorough coverage of papers in Chinese and Russian͒ has been covered through the middle of 2007. © 2008 American Institute of Physics. ͓DOI: 10.1063/1.2956740͔ Key words: aqueous solution; lanthanum chloride; phase diagram; scandium chloride; solubility; yttrium chloride.
    [Show full text]
  • Ammonium Chloride
    Ammonium Chloride sc-202936 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Ammonium Chloride STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH2 HAZARD INSTABILITY0 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE As a flux for coating sheet iron with zinc, tinning; in dry and Leclanche batteries; dyeing; freezing mixtures; electroplating; to clean soldering irons; safety explosives; lustering cotton; tanning. Also used in washing powders; manufacture of dyes; in cement for iron pipes; for snow treatment (slows melting on ski slopes). SYNONYMS Cl-H4-N, NH4Cl, "ammonium muriate", "sal ammoniac", "sal ammonia", chloroammonium, Salmiac, Salammoniac, Salmiak, Amchlor, Ammoneric, Darammon, Salammonite Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 2 Body Contact: 2 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 0 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 11 EMERGENCY OVERVIEW RISK Harmful if swallowed. Irritating to eyes. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. ! A 58-year old woman taking 6 g/day of ammonium chloride as a urine-acidifying agent fro renal stone disease and urinary tract infection showed exhaustion, "air hunger" and profound metabolic acidosis.
    [Show full text]
  • Rights Reserved Organoscandium Chemistry
    @ 1974 KARL DEE SMITH ALL RIGHTS RESERVED ORGANOSCANDIUM CHEMISTRY by KARL DEE SMITH A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of The University of Alabama UNIVERSITY, AL1\BAMA 1973 --- e···· ACKNOWLEDGMENTS The author wishes to express his deep appreciation to: Dr. D. F. Smith and Dr. B. W. Ponder for their understanding, encouragement, and guidance throughout the course of this research. Steve Seale for his many hours spent in setting up a workable computer library to permit the completion of this work to become a reality. Merle Watson for his many services rendered in the making of the special glass apparatus needed throughout the course of this work. The computer operators, Steve Watson, Mike Webb, Bob McGwier, Al Martin, and Bill Gammon for their cooperation in efficiently running the hundreds of computer programs needed for the completion of this work. Sam Hassel, G. M. Nichols, and Harold Moore for their many services rendered in the maintenance, stockroom, and electronics fields, respectively. The secretaries for their services rendered. Segail Friedman for typing the final manuscript of this work. His wife, Becky, .and to Angela and Christopher for their confidence, encouragement, understanding, and love shown in every way. ii TABLE OF CONTENTS Page ACKNOWLEDGivIENTS • • ii LIS'l' OF TABLES . iv LIST OF FIGURES • vi Chapter I. INTRODUCTION 1 II. EXPERIMENTAL METHODS 9 Inert Atmosphere Glove Box . 9 Reagents and Solvents . • • • 9 Preparation of Compounds . • • • . • • • . 11 Preparation of Samples . • . • • • . • • 18 Computer Programs . • . • . • • . 19 Instrumentation ;, . • • • . • • • 20 III.
    [Show full text]
  • Z. Chern. 1961, 1, 332-4. Vit, J. Collect. Czech. Chern. Comm
    Scandium Chloride COMPONENTS: ORIGINAL MEASUREMENTS: Kirmse, E. M. (1) Scandium chloride; ScC13; [ 10361-8[:-9] ,I I Z. Chern. 1961, 1, 332-4. (2~ Uethano1; CH 40; I67-S6-1] VARIABLES: PREPARED BY: One temperature: T/K = 298.2 T. Mioduski EXPERIMENTAL VALUES: The solubility of ScC1 in methanol at 25 0 C was reported to be 3 45.5 mass % The corresponding molality calculated by the compiler is 5.52 mol kg-1 The solid phase was reported to be ScC1 .3CH 0H which could be fUrther dehydrated to SCC1 .2CH 0H (see discussion below). 3 3 3 3 COMMENTS AND/OR ADDITIONAL DATA: Since in the saturated solution there are almost 6 moles of solvent per mole of salt, the author suggests that SCC1 has a coordination number of 6. 3 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Isothermal method. About 10-15 cm3 alcohol Anhydrous ScC13 prepared by heating SC203 and activated charcoal in a stream of and ScC13 placed in glass stoppered bottles and mechanically rotated at 200 rpm in a chlorine at 900-1000oC (1). Source and thermostat for 14-15 days. After allowing purity of SC203 not specified. the equilibrated sIns to settle for 3 days, aliquots were removed for analyses. Sc Methanol was purified by fractional dis­ determined gravimetrically by evaporation of tillation from caS04.0.5H20. solvent followed by ignition to SC203' Identical results obtained by centrifuging the equilibrated sIns prior to analyses. Solid phase composition determined by analysis of wet residues. Samples dried in vacuum (11 ± 1 mm Hg) over P20~ at 18 ± lOC ESTIMATED ERROR: and weighed every 24 hours unt11 the mass was Soly: nothing specified.
    [Show full text]
  • ( I ) North of England Institute of Mining Engineers
    ( I ) NORTH OF ENGLAND INSTITUTE OF MINING ENGINEERS. TRANSACTIONS. VOL. XVIII. 1868-9. NEWCASTLE UPON TYNE. A REID. PRINTING COURT BUILDINGS AKENSIDE HILL 1869. ( II ) [blank page ] ( III ) CONTENTS OF VOL. XVIII. page. page Report of Council ....................... v Officers 1869/70 ............... xvii Finance Report .................. ........vii Members .......................... xviii Technical Education Report ......ix Graduates.................... xxxviii Treasurer's Account............ .......xii Subscribing Collieries......... xli General Account ....................... xiv Rules ( as altered to Patrons................................. .......xv August 7, 1869 ).....xliii Honorary and Life Members .....xvi Catalogue of Library. End of Vol. GENERAL MEETINGS. 1868. page Sept. 5. — Model of a new Safety-Cage exhibited by Mr. James Barkus; Mr. J. A. R. Morison's Invention for preventing Tampering with Safety-Lamps explained 2 Oct. 3. — Technical Education Committee's Report read ......... 7 "Remarks on Rivetting," by Mr. W. Boyd............ 9 Discussed........... ............... 4 Hann's Safety-Lamp exhibited and explained .... ... 5 Nov. 7. — Mr. George Elliot's Inaugural Address ...... 19 Report of the Smoke Committee ............... 37 Dec. 5. — Books Presented to Mr. E. Bainbridge ............ 41 Paper "On the Mechanical Stoking of Steam Boilers," by Mr. James Nelson........................ 51 Discussed ....................... 1 41 1869. Feb. 6. — Tail-Rope Committee's Report discussed ............ 61 Paper by Mr. A. L. Steavenson " On some Experiments with the Lemielle Ventilator at Page Bank Colliery " ......... 63 Discussed................ 57 Mar. 6. — Further Discussion on Tail-Rope Committee's Report ...... 71 Mr. Boyd's Paper “On Mechanical Rivetting " discussed...... 82 April 10.— Mr. I. L. Bell elected a Vice-President in place of Mr. J. F. Spencer (resigned) ... ....... 85 Further discussion on Mr. Nelson's Paper "On the Mechanical Firing of Steam Boilers 86 Further discussion on Mr.
    [Show full text]