The Origin and Diversification of Plant Family Dipterocarpaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nesting Behavior of Bornean Immature Orangutan (Pongo Pygmaeus Wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 2172-2179 DOI: 10.13057/biodiv/d210545 Nesting behavior of Bornean immature Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia FOUAD FAUZI1, SUEMARNO2, AMINUDIN AFANDHI2, AMIN SETYO LEKSONO3,♥ 1Department of Forestry, Faculty of Agriculture, Universitas Palangkaraya. Jl. Yos Sudarso, Palangka Raya 74874, Central Kalimantan, Indonesia 2Faculty of Agriculture, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia 3Deparment of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia. Tel.: +62-341-575841, Fax.: +62-341-554403, email: [email protected] Manuscript received: 26 February 2020. Revision accepted: 23 April 2020. Abstract. Fauzi F, Suemarno, Afandhi A, Leksono AS. 2020. Nesting behavior of Bornean immature Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia. Biodiversitas 21: 2172-2179. This research aimed at analyzing the nesting behavior of Bornean Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum, Palangka Raya, Central Kalimantan, Indonesia. The objects of observation were the immature orangutan nest, and the type of nest tree. The purposive sampling technique was used because not all immature Orangutan could make a nest. The Focal animal sampling method was used to determine the daily behavior and nets building activity. It involved observing and recording the behavior of five young Orangutans over a certain period of time and analyzing the nest made. The results of the study established that the daily activity of immature Orangutan on an average sequentially ranges from feeding 17.18%, moving 23.92%, resting 26.34%, and social behavior 32.57%. -
Frugivory in Sun Bears (Helarctos Malayanus) Is Linked to El Niño-Related fluctuations in Fruiting Phenology, East Kalimantan, Indonesia
Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2006? 2006 89? 489508 Original Article PHENOLOGICAL INFLUENCES ON SUN BEAR FRUGIVORY G. M. FREDRIKSSON ET AL. Biological Journal of the Linnean Society, 2006, 89, 489–508. With 6 figures Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia GABRIELLA M. FREDRIKSSON1*, SERGE A. WICH2 and TRISNO3 1Institute for Biodiversity and Ecosystem Dynamics/Zoological Museum, University of Amsterdam, PO Box 94766, 1090 GT Amsterdam, the Netherlands 2Utrecht University, Behavioural Biology, PO Box 80086, 3508 TB Utrecht, the Netherlands 3Sugai Wain Management Board, Sekretariat d/a Kantor Bapedalda Kota Balikpapan, Jl. Jend. Sudirman No.1, Balikpapan, East Kalimantan, Indonesia Received 6 December 2004; accepted for publication 15 January 2006 Sun bear (Helarctos malayanus) frugivory and fruiting phenology was investigated in a lowland dipterocarp forest in East Kalimantan, Indonesia. Two mast fruiting events, both coinciding with El Niño/Southern Oscillation events, occurred 4 years apart, resulting in large fluctuations in fruit availability. Sun bear fruit availability decreased from 13 trees ha−1 fruiting month−1 during the mast fruiting to 1.6 trees ha−1 fruiting month−1 during the intermast period. Almost 100% of sun bear diet consisted of fruit during mast fruiting period, whereas sun bear diet was predomi- nantly insectivorous during intermast periods. The majority of sun bear fruit trees displayed ‘mast-fruiting’ and ‘supra-annual’ fruiting patterns, indicating sporadic productivity. Sun bears fed on 115 fruit species covering 54 gen- era and 30 families, with Ficus (Moraceae) being the main fallback fruit. -
Emergence and Extinction of Dipterocarpaceae in Western India with Reference to Climate Change: Fossil Wood Evidences
Emergence and extinction of Dipterocarpaceae in western India with reference to climate change: Fossil wood evidences Anumeha Shukla∗, RCMehrotraand J S Guleria Birbal Sahni Institute of Palaeobotany, 53 University road, Lucknow 226 007, India. ∗Corresponding author. e-mail: anu [email protected] Climate has played a crucial role in assigning a different kind of topography to Rajasthan and Gujarat since the Cenozoic time. Evidently, three genera, namely, Dipterocarpus Gaert. f., Hopea Roxb. and Shorea Roxb. of the Dipterocarpaceae are described from the Neogene sediments of western India (Rajasthan and Gujarat). These taxa are marked by their complete absence in the region today. The presence of Dipterocarpaceae in western India has been noticed from the Early Eocene up to the Plio- Pleistocene in deep time. The family is usually a dominant component of the humid tropical and subtropical flora of the Indo-Malayan region and its discovery, along with earlier described fossils from western India indicates existence of ancient tropical rain forests in western India. A change in the climate affected warm and humid conditions occurring there during the Cenozoic resulting in arid to semi-arid climate at present which is responsible for the ultimate extinction of Dipterocarpaceae in the region. In addition, the palaeobiogeography of Dipterocarpaceae is reviewed. 1. Introduction understorey. In south Asia, the dipterocarps are mainly distributed in tropical peninsula from Kar- Dipterocarpaceae, a well known family of the Asian nataka coast to the tip of southern India and north- rain forests (Ashton 1982, 1988), has been vari- east India (figure 1). Shorea robusta Roth (locally ously assigned to Malvales and Theales and con- known as sal), commercially the most important sists of the following three subfamilies with an timber of India, is a large deciduous tree occur- intercontinental disjunct distribution: (1) Diptero- ring widely in northern and central India. -
Pakaraimaea Dipterocarpacea
The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Ecosystem Profile Madagascar and Indian
ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra, -
Closterium Thailandicum N
Tropical palynofloras from Middle Miocene Chiang Muan basin, Phayao, Thailand Wickanet Songtham1, Benjavun Ratanasthien2 and Dallas C. Mildenhall3 1 Bureau of Geological Survey, Department of Geological Resources, Rama VI Road, Ratchathevee, Bangkok 10400, Thailand 2 Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand 3 Institute of Geological and Nuclear Sciences, Lower Hutt, P.O. Box 30-368 New Zealand Á¦¼´µ °¡¦¦Å¤oÁ ¦°µÂ°o Án ¸¥¤nª ´®ª¡³Á¥µ´ ª·Á« ¦¦¦¤1, ÁȪ¦¦ ¦´Á¸¥¦2 ¨³ Dallas C. Mildenhall3 1 ε´¦¸ª¥µ· ¦¤¦´¡¥µ¦¦¸ ¡¦³¦µ¤¸É 6 ¦µÁª¸ ¦»Á¡¤®µ¦ 10400 2 £µª·µ¦ª¸ ·¥µ ³ª·¥µ«µ¦r ¤®µª·¥µ¨´¥Á¸¥Ä®¤n ´®ª´Á¥Ä®¤¸ n 50200 3 Institute of Geological and Nuclear Sciences, Lower Hutt, P.O. Box 30-368 New Zealand ABSTRACT Sporomorphs from sediments of Middle Miocene Chiang Muan basin include abundant Crassoretitriletes vanraadshoovenii, Actinastrum bansaense n. sp., and Closterium thailandicum n. sp., and common Dipterocarpaceae, Lagerstroemia, Ilexpollenites, Botryococcus, Myrtaceidites, and Combretum with rare forms of Florschuetzia, Homonoia, Calophyllum, Striatriletes susannae, and Mimosoideae. There are abundant Laevigatosporites haardtii fern spores in some horizons with various forms of as yet unidentified tricolporate and tricolpate pollen. The sporomorphs, representing tropical palynofloras derived from tropical monsoon forests, accumulated mainly in lacustrine depositional environments. Origins and distributions of the families Dipterocarpaceae and Myrtaceae are discussed and new criteria elucidating their paleophytogeographic histories in relation to northern Thailand are proposed. ´¥n° Á¦¼´µ °¨³°°Á¦ °¦r ¨³µ®¦nµ¥µ³°¤´¥Å¤Ã°¸°¨µµÂ°nÁ¸¥ ¤nªÃÁnoª¥°¦r ° Crassoretitriletes vanraadshoovenii µ®¦nµ¥Êεº Actinastrum bansaense n. -
Phylogeny of the Tropical Tree Family Dipterocarpaceae Based on Nucleotide Sequences of the Chloroplast Rbcl Gene1
American Journal of Botany 86(8): 1182±1190. 1999. PHYLOGENY OF THE TROPICAL TREE FAMILY DIPTEROCARPACEAE BASED ON NUCLEOTIDE SEQUENCES OF THE CHLOROPLAST RBCL GENE1 S. DAYANANDAN,2,6 PETER S. ASHTON,3 SCOTT M. WILLIAMS,4 AND RICHARD B. PRIMACK2 2Biology Department, Boston University, Boston, Massachusetts 02215; 3Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138; and 4Division of Biomedical Sciences, Meharry Medical College, 1005 D. B. Todd, Jr. Boulevard, Nashville, Tennessee 37208 The Dipterocarpaceae, well-known trees of the Asian rain forests, have been variously assigned to Malvales and Theales. The family, if the Monotoideae of Africa (30 species) and South America and the Pakaraimoideae of South America (one species) are included, comprises over 500 species. Despite the high diversity and ecological dominance of the Dipterocar- paceae, phylogenetic relationships within the family as well as between dipterocarps and other angiosperm families remain poorly de®ned. We conducted parsimony analyses on rbcL sequences from 35 species to reconstruct the phylogeny of the Dipterocarpaceae. The consensus tree resulting from these analyses shows that the members of Dipterocarpaceae, including Monotes and Pakaraimaea, form a monophyletic group closely related to the family Sarcolaenaceae and are allied to Malvales. The present generic and higher taxon circumscriptions of Dipterocarpaceae are mostly in agreement with this molecular phylogeny with the exception of the genus Hopea, which forms a clade with Shorea sections Anthoshorea and Doona. Phylogenetic placement of Dipterocarpus and Dryobalanops remains unresolved. Further studies involving repre- sentative taxa from Cistaceae, Elaeocarpaceae, Hopea, Shorea, Dipterocarpus, and Dryobalanops will be necessary for a comprehensive understanding of the phylogeny and generic limits of the Dipterocarpaceae. -
THE DISTRIBUTION of the DIPTEROCARPACEAE in THAILAND by Tern Sm Itinand (Read at Xitb Pacific Science Congress, Tokyo, 1St September 1966)
THE DISTRIBUTION OF THE DIPTEROCARPACEAE IN THAILAND by Tern Sm itinand (Read at XItb Pacific Science Congress, Tokyo, 1st September 1966) ABSTRACT The family Dipterocarpaceae is represented in Thailand by 9 genera and 6 3 species, and can be classified into 2 groups, evergreen and deciduous or xerophytic. The majority belong to the evergreen, which is scattered all over the country either in gallery forest (Dij;tero carpus alatus, VaLica cinerea and Hopea odorata), along the hill streams (Dipterocarpus oblongifolius and V atica odorata), in the low-lying land (Dij;terocarpus baudii, D. dyeri, D. gmcilis, D. clwrtaceus, D. ken·ii, Slwrea and f-loj;ea spp.), or on bill slopes (Dij;terocarpus cnslatus, D. gt·andiflorus, D. Tetusus, D. turbinatus, D . IIWC1"0carpus, Hopea odomta, I-Iopea f enea and S!wrea talura). Only 5 xerophytic species are represented (Dipterocmpus obtusifolius, D. tuberculatus, D. intn·catus, Shorea obtusa and Pe11taC11·1e suavi.s), occupying either the high plateau or ridges, and forming a climatic forest type, the Dry Deciduous Diptero carp forest. The highest elevation reached by the Dipterocarps is 1300 m.a.s.l. (D1j;terocarpus tuberculatus, D. obtusifolius, Shot·ea obtusa and Pentacme suavis). Parashortea stellata and Shorea Togersiana follow the Tenesserim tract, while Cotylelobium lanceolatum, Balanocarpus heimii, Shorea curtisii, S. assamica var. globifera, S. guiso, S. faguetiana, S. hemsleyana, S. sumatrana, S. mae1·optera, S. glauca S. j;arv lfolia, I-Iopea pedicellata, I-I. lat1jolia, Vatica staj;fiana, and V. lowii are confined to the Peninsular region not beyond the latitude 1 o·N. Species found only in the Northeastern region are I-Iopea 1·eticulata and I-I. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales)
© 2020 The Japan Mendel Society Cytologia 85(2): 141–149 Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales) Kazuo Oginuma1*, Shawn Y. K. Lum2 and Hiroshi Tobe3 1 The Community Center for the Advancement of Education and Research at the University of Kochi, 5–15 Eikokuji-cho, Kochi 780–8515, Japan 2 Asian School of the Environment, Nanyang Technological University, Singapore 639798 3 Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan Received January 16, 2020; accepted February 9, 2020 Summary Previous chromosome information is restricted to Dipterocarpoideae, one of the two subfamilies of Dipterocarpaceae, and no chromosome information is available for another subfamily Monotoideae. Here we present the first karyomorphology of Marquesia macroura (2n=22) (Monotoideae), as well as of four species (2n=22) of four genera in tribe Dipterocarpeae and five species (2n=14) of tribe Shoreae in Dipterocarpoideae. Comparisons within Dipterocarpaceae and with Sarcolaenaceae (2n=22) sister to Dipetrocarpaceae in the light of phylogenetic relationships show that the basic chromosome number x=11 is plesiomorphic and x=7 apomor- phic in Dipterocapaceae. Based on available information, tribe Shoreae (x=7) has a uniform karyotype where all chromosomes have a centromere at median position, while the rest of the family (x=11) have a diverse karyotype in terms of the frequency of chromosomes with a centromere at median, submedian and subterminal position. We discussed the meaning of lability of karyotype in chromosome evolution. Keywords Basic chromosome number, Chromosome evolution, Dipterocarpaceae, Karyomorphology. Dipterocarpaceae (Malvales) are a family of 16 gen- x=10, and five genera Dryobalanops, Hopea, Neobala- era and 680 species distributed in tropical regions of nocarpus, Parashorea and Shorea of tribe Shoreae all the Old World, especially in the rain forests of Malesia have x=7. -
Origins and Assembly of Malesian Rainforests
ES50CH06_Kooyman ARjats.cls October 21, 2019 11:31 Annual Review of Ecology, Evolution, and Systematics Origins and Assembly of Malesian Rainforests Robert M. Kooyman,1,2 Robert J. Morley,3,4 Darren M. Crayn,5 Elizabeth M. Joyce,5 Maurizio Rossetto,2 J.W. Ferry Slik,6 Joeri S. Strijk,7,8,9 Ta o S u , 9,10 Jia-Yee S. Yap,2,11 and Peter Wilf12 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; email: [email protected] 2National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia 3Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom 4Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 5Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia 6Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam 7State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China 8Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR 9Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 10Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar Access provided by 118.208.177.216 on 11/06/19. For personal use only. 11Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia 12Department of Geosciences, Pennsylvania State University, University Park, Annu.