Identification of Rodent Species That Infest Poultry Houses in Mafikeng, North West Province, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Rodent Species That Infest Poultry Houses in Mafikeng, North West Province, South Africa Hindawi International Journal of Zoology Volume 2019, Article ID 1280578, 8 pages https://doi.org/10.1155/2019/1280578 Research Article Identification of Rodent Species That Infest Poultry Houses in Mafikeng, North West Province, South Africa Tsepo Ramatla ,1 Nthabiseng Mphuthi,1 Kutswa Gofaone,1 MoetiO.Taioe,2 Oriel M. M. Thekisoe,3 and Michelo Syakalima1 1 Department of Animal Health, School of Agriculture, Faculty of Natural and Agricultural Science, Mafkeng Campus, North West University, Private Bag X2046, Mmabatho, 2735, South Africa 2CenterforConservationScience,NationalZoologicalGardensofSouthAfrica,SouthAfricanNationalBiodiversityInstitute, PO Box 754, Pretoria, 0001, South Africa 3Unit for Environmental Sciences and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa Correspondence should be addressed to Tsepo Ramatla; [email protected] Received 1 November 2018; Accepted 25 March 2019; Published 18 April 2019 Academic Editor: Hynek Burda Copyright © 2019 Tsepo Ramatla et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rodents cause serious adverse efects on farm production due to destruction of food, contamination of feed, and circulation of diseases. Te extent of damage or the diseases spread will depend on the type of rodents that invade the farm. Tis study was conducted in order to fnd out the species of rodents that infest poultry farms around Mafkeng, North West Province of South Africa.TestudywaspartofabroaderprojectthatwasinvestigatingSalmonella vectors in the poultry farms around the province. Te study trapped 154 rodents from selected farms and used the Cytochrome oxidase subunit 1 (COI) and the Cytochrome b (Cyt- b) barcoding genes for species identifcation. Two rodent pest species, namely, Rattus rattus (the black rat) and Rattus tanezumi (the Asian Rat/Asian House Rat) were identifed. A total of 99 (64.3%) were identifed as Rattus rattus and 55 (35.7%) were Rattus tanezumi. Between the two target genes, Cyt-b gene was only able to identify 40 (25.97%) of the total samples while COI was more efcient and amplifed all the samples and thus was a better target gene for this kind of identifcation. Te two rat species identifed are known vectors of serious diseases; thus their presence should be regarded as an indication of high risk for diseases. Despite having been detected in the country before, fnding R. tanezumi as the second largest rat species in the area was unexpected since this species is known to be indigenous to Asia. 1. Introduction mulium. Te genus has some of the most adaptable rodents in theworldandmostofthemhavetheiroriginsinAsiawhere Rodents are relatively small mammals belonging to the order they migrated from to other parts of the world following Rodentia that includes porcupines, rats, mice, squirrels and the development of agriculture which provided food and marmots [1]. Tey are famously known to cause huge losses shelter for their survival. Teir intricate association with tostoredfood,crops,andpropertyandalsototransmitmany farms makes them very important vectors of pathogens some pathogens that cause diseases of humans and animals [2]. of which are zoonotic. For instance, the brown rat is famous as Te house mouse (Mus musculus), roof rats (Rattus rattus), a carrier of gastrointestinal helminths and mites responsible and the brown rat (R. norvegicus) are the three main species for Plague, the black rat is a carrier of trematode species, of rodents usually found worldwide [3]. Te genus Rattus is cestode species, and Salmonella spp., and the Asian rat is a one of the most common rodents found in poultry houses source of gastrointestinal helminths [4–7]. worldwide. Identifying the rodent species in a farm set-up is, Te genus Rattus consists mainly of Black rat (R. rattus), therefore, important in determining the specifc rat species’ Norway rat (R. norvegicus), Asian rat (R. tanezumi), and R. risktodiseaseaswellasotheradverseefectsinafarm. 2 International Journal of Zoology MAFIKENG Figure 1: Map of Africa showing the Mafkeng sampling area in the North West Province of South Africa. ∘ Unfortunately, rodents are not very easy to distinguish by Molema district (Figure 1). Te city lies between 25 and 28 C ∘ the routine methods available that use physical attributes and South of the Equator and 22 and 28 C longitude east of so molecular identifcation has been ofering the best option the Greenwich meridian. It shares an international border for identifcation. Molecular identifcation can be achieved with the Republic of Botswana in the North and is 260 km byanumberofmethodsbutDNAbarcoding,whichisa West of Johannesburg. Mafkeng is built on the open veld taxonomic method that uses a short genetic marker in an at an elevation of 1500m along the banks of the Upper organism’s DNA to identify it to a particular species, has been Molopo River. Climatic conditions of the province difer found easy and particularly efective for this purpose [8]. Te signifcantly from West to East. Te Western region receives target gene used for barcoding is the COI gene which is a very less than 300 mm of rain per annum, the central region common gene among species and has been fairly conserved around 550 mm per annum, while the Eastern and South over generations [9, 10]. Another gene commonly used is the Eastern regions receive over 600 mm per annum [12]. Cytochrome b gene which is also a very good discriminatory gene for species identifcation [8, 11]. Tese two genes were, 2.2. Collection of Samples. Alistofpoultryfarmsinthe therefore, used in this study to identify rodents in poultry Mafkeng area was compiled using the Department of Agri- houses from selected farms around Mafkeng, North West culture records. A few farms in the north, south, east, and Province of South Africa. west were randomly selected, the farmers were approached, and those that agreed were included in the study. Rodents 2. Materials and Methods were captured using Sherman rat traps [13] baited with peanut butter plus cheese and placed where the rats regularly 2.1. Study Area. Te study was carried out in Mafkeng, visit. Te traps were checked each morning during three the North West Province of South Africa. Te North West consecutive days. Te target number of rats was between Province is referred to as one of the biggest agricultural 150 and 200 based on previous studies [2, 5]. Live rats production areas in South Africa, with some of the largest were euthanized humanely using chloroform inhalation [14]. cattle herds in the country found at Stellaland (Vryburg) Teir surface was disinfected with 70% ethyl alcohol before and mixed crop farming land. Te province is also the dissection. Dissection of the abdominal cavity was done using second largest chicken producer in South Africa at 21.3% afer a surgical blade, a pair of forceps, and kidneys were harvested ∘ Western Cape with 21.9% (SAPA, 2014). Te province has four and placed in 4 C until processing. Extra care was taken in districts, namely, Bojanala Platinum, Ngaka Modiri Molema, order to avoid cross-contamination by using new disposable Dr Ruth Segomotsi Mompati, and Dr Kenneth Kaunda. Tis utensils like scalpels, forceps, petri-dishes, and gloves for study was conducted around Mafkeng in Te Ngaka Modiri each sample. Afer collecting the samples, carcasses were International Journal of Zoology 3 placed in carcass containers located within designated carcass for Biotechnology Information (NCBI) to identify sequences refrigerators/freezers in the post mortem room and then with high similarity (38). One direction sequencing was done. incinerated. 2.7. Phylogenetic Analysis. Gene sequences obtained from all 2.3. DNA Extraction. DNA was extracted from tissues (kid- positively tested amplicons were edited using BioEdit [17] to ney) using a QIAamp DNA Blood and Tissue Kit [Qiagen, remove any degenerate base pairs and then saved as FASTA Hilden, Germany (No. 69504)]. Te procedure was per- format. To confrm sequences obtained from CO1 and Cyt- formed according to protocols provided by the manufactur- b analysis, the nucleotide basic local alignment search tool ∘ ers. Te DNA extracted was stored at −80 Cuntilanalysisby (BLASTn) was used. Only gene sequences with 97% to 100% PCR. similarity match score were considered as signifcant. Te phylogenetic tree was constructed to illustrate the evolutionary relationships among Rattus spp. Multiple align- 2.4. Evaluation of the Quantity and Quality of Isolated DNA. ments of the sequences were carried out by MAFFT program Te amount of DNA extracted from the samples was deter- 6.864 against corresponding nucleotide sequences retrieved mined by spectrophotometry with a NanoDrop ND-1000 sys- from Gen-Bank. Evolutionary distance matrices were gen- tem (NanoDrop Technologies, Inc., Wilmington, DE, USA). erated [18]. Te aligned Cyt-b sequences were used to con- Te purity of DNA was determined spectrophotometrically struct a phylogenetic tree as implemented in the MEGA 7 from the ratio of absorbance at 260 and 280 nm (A260/A280). package and the neighbor-joining (NJ) and distance matrix A ratio of between 1.7 and 2 indicates an excellent quality of methods were used [18]. A bootstrap confdence analysis was DNA. performed with 1000 replicates. A putative chimeric sequence was identifed using the Chimera Buster 1.0 sofware. Manip- 2.5. PCR for Amplifcation
Recommended publications
  • Rodent Identification and Signs of Stowaways Key Features of UK Target Rodents
    FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Rodent identification and signs of stowaways Key features of UK target rodents Black rat Brown rat House mouse FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Identifying rodent droppings Rodent droppings can be very variable (depending on diet), including in colour, but as a guide: Brown rat Black rat House mouse -13-19mm long, -7-14mm long -4-8mm long -3-4mm thick -3-4mm thick -2mm thick -Rounded ends, one end may go to -Tapered ends -Small and thin a point (as pictured) -Often slightly curved -A bit like grains of rice -Likely to contain fur -Likely to contain fur -Strong smell of ammonia. -Often located in latrines along tracks, at feeding sites and on prominent rocks Figure 2.9 Droppings of UK invasive rodents. Images: taken from Morton & Cole 2013 Rabbit or goat droppings be mistaken for rat droppings, though they are usually more spherical (particularly rabbit) and uniform. Goat droppings may be more cylindrical but with flatter or round, rather than tapered ends. Breaking up droppings should help (wear gloves): rabbit and goat droppings just contain vegetation, whereas rat droppings are likely to contain fur and a range of food stuffs. Shrew droppings – typically 2-4mm long and 1-2mm thick, these should be smaller than rat or mouse droppings. However, evidence from St Agnes and Gugh (Isles of Scilly) shows shrew droppings can be much larger than this. They are of a sandy consistency and are largely comprised of insect remains, whereas rodent droppings generally contain a wider array of food sources.
    [Show full text]
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Review of the Hylomyscus Denniae Group (Rodentia: Muridae) in Eastern Africa, with Comments on the Generic Allocation of Epimys Endorobae Heller
    PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 119(2):293–325. 2006. Review of the Hylomyscus denniae group (Rodentia: Muridae) in eastern Africa, with comments on the generic allocation of Epimys endorobae Heller Michael D. Carleton, Julian C. Kerbis Peterhans, and William T. Stanley (MDC) Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0108, U.S.A., e-mail: [email protected]; (JKP) University College, Roosevelt University, Chicago, Illinois 60605, U.S.A.; Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected]; (WTS) Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected] Abstract.—The status and distribution of eastern African populations currently assigned to Hylomyscus denniae are reviewed based on morpho- logical and morphometric comparisons. Three species are considered valid, each confined largely to wet montane forest above 2000 meters: H. denniae (Thomas, 1906) proper from the Ruwenzori Mountains in the northern Albertine Rift (west-central Uganda and contiguous D. R. Congo); H. vulcanorum Lo¨nnberg & Gyldenstolpe, 1925 from mountains in the central Albertine Rift (southwestern Uganda, easternmost D. R. Congo, Rwanda, and Burundi); and H. endorobae (Heller, 1910) from mountains bounding the Gregory Rift Valley (west-central Kenya). Although endorobae has been interpreted as a small form of Praomys, additional data are presented that reinforce its membership within Hylomyscus and that clarify the status of Hylomyscus and Praomys as distinct genus-group taxa. The 12 species of Hylomyscus now currently recognized are provisionally arranged in six species groups (H.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Life History Account for Black
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group BLACK RAT Rattus rattus Family: MURIDAE Order: RODENTIA Class: MAMMALIA M140 Written by: P. Brylski Reviewed by: H. Shellhammer Edited by: R. Duke DISTRIBUTION, ABUNDANCE, AND SEASONALITY The black rat was introduced to North America in the 1800's. Its distribution in California is poorly known, but it probably occurs in most urban areas. There are 2 subspecies present in California, R. r. rattus and R. r. alexandrinus. R. r. rattus, commonly called the black rat, lives in seaports and adjacent towns. It is frequently found along streamcourses away from buildings (Ingles 1947). R. r. alexandrinus, more commonly known as the roof rat, lives along the coast, in the interior valleys and in the lower parts of the Sierra Nevada. The distribution of both subspecies in rural areas is patchy. Occurs throughout the Central Valley and west to the San Francisco Bay area, coastal southern California, in Bakersfield (Kern Co.), and in the North Coast area from the vicinity of Eureka to the Oregon border. Confirmed locality information is lacking. Found in buildings, preferring attics, rafters, walls, and enclosed spaces (Godin 1977), and along streamcourses (Ingles 1965). Common in urban habitats. May occur in valley foothill riparian habitat at lower elevations. In northern California, occurs in dense himalayaberry thickets (Dutson 1973). SPECIFIC HABITAT REQUIREMENTS Feeding: Omnivorous, eating fruits, grains, small terrestrial vertebrates, fish, invertebrates, and human garbage. Cover: Prefers buildings and nearby stream courses. Where the black rat occurs with the Norway rat, it usually is forced to occupy the upper parts of buildings (Godin 1977).
    [Show full text]
  • Molecular Phylogenetic Characterization of Common Murine Rodents from Manipur, Northeast India
    Genes Genet. Syst. (2015) 90, p. 21–30 Molecular phylogenetic characterization of common murine rodents from Manipur, Northeast India Dhananjoy S. Chingangbam1, Joykumar M. Laishram1 and Hitoshi Suzuki2* 1Plant Breeding and Genetics Department, Central Agricultural University, Iroishemba, Imphal, Manipur 795004, India 2Graduate School of Environmental Earth Science, Hokkaido University, North 10, West 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan (Received 11 July 2014, accepted 8 February 2015) The Indian subcontinent and Southeast Asia are hotspots of murine biodiver- sity, but no species from the Arakan Mountain system that demarcates the border between the two areas has been subjected to molecular phylogenetic analyses. We examined the mitochondrial cytochrome b gene sequences in six murine species (the Rattus rattus species complex, R. norvegicus, R. nitidus, Berylmys manipulus, Niviventer sp. and Mus musculus) from Manipur, which is located at the western foot of the mountain range. The sequences of B. manipulus and Niviventer sp. examined here were distinct from available congeneric sequences in the databases, with sequence divergences of 10–15%. Substantial degrees of intrapopulation divergence were detected in R. nitidus and the R. rattus species complex from Manipur, implying ancient habitation of the species in this region, while the recent introduction by modern and prehistoric human activities was suggested for R. norvegicus and M. musculus, respectively. In the nuclear gene Mc1r, also analyzed here, the R. rattus species complex from Manipur was shown to possess allelic sequences related to those from the Indian subcontinent in addition to those from East Asia. These results not only fill gaps in the phylo- genetic knowledge of each taxon examined but also provide valuable insight to bet- ter understand the biogeographic importance of the Arakan Mountain system in generating the species and genetic diversity of murine rodents.
    [Show full text]
  • Complete Sections As Applicable
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.014aM officers) Short title: One (1) new species in the genus Mammarenavirus (e.g. 6 new species in the genus Zetavirus) Modules attached 2 3 4 5 (modules 1 and 11 are required) 6 7 8 9 10 Author(s): Kim Blasdell, [email protected] Veasna Duong, [email protected] Marc Eloit, [email protected] Fabrice Chretien, [email protected] Sowath Ly, [email protected] Vibol Hul, [email protected] Vincent Deubel, [email protected] Serge Morand, [email protected] Philippe Buchy, [email protected] / [email protected] Corresponding author with e-mail address: Philippe Buchy, [email protected] / [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee ICTV Arenaviridae Study Group chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: July 18, 2016 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Page 1 of 12 MODULE 2: NEW SPECIES creating and naming one or more new species.
    [Show full text]
  • Rodents Prevention and Control
    RODENTS PREVENTION AND CONTROL Santa Cruz County Mosquito & Vector Control 640 Capitola Road • Santa Cruz, CA 95062 (831) 454-2590 www.agdept.com/mvc.html [email protected] Protecting Public Health Since 1994 RODENT SERVICES Residents, property managers, and businesses in Santa Cruz County can request a site visit to assist them with rodent issues to protect public health. Our services include an exterior inspection of your home in which a certified technician looks for rodent entry points and gives advice on preventing rodents from getting into your home. Employees do not bait or trap, but provide guidance and recommendations such as blocking openings and reducing food sources and hiding places. GENERAL INFORMATION Control strategies may vary depending on pest species. ROOF RAT Rattus rattus (also known as black rat, fruit rat or ship rat) Tail Longer than head and body combined Body Slender, belly can be white, light gray, or light tan Ear Large Eye Large Nose Pointed Habits Climb Feces Smaller, pointy ends (actual size) Roof Rat (Rattus rattus)** NORWAY RAT Rattus novegicus (also known as wharf rat,brown rat, sewer rat, common rat) Tail Shorter than head and body combined (If you fold tail back, it cannot reach its head) Body Heavy, thick Ear Small Eye Small Nose Blunt Habits Burrow, can enter through a hole the size of a quarter, likes water Feces Rounder, blunt ends (actual size) Norway Rat (Rattus novegicus)** 2 HOUSE MOUSE Mus musculus Feet Small Head Small Habits Common in homes and buildings, can enter through a hole as small
    [Show full text]
  • Norway Or Brown Rat (Rattus Norvegicus), Roof Or Black Rat (Rattus Rattus)
    Norway or Brown Rat (Rattus norvegicus), Roof or Black Rat (Rattus rattus) Figure 1 Brown rat Figure 2 Black Rat The two species of rats commonly found in Wisconsin are the Norway (brown) rat and the Roof (black) Rat. The Norway rat is stocky and tends to burrow along building foundations, beneath rubbish or wood piles and in moist areas around gardens and fields. The roof rat is generally smaller with a very long tail. Roof rats are good climbers and usually live in above ground nests in shrubs or trees. Damage Rats eat a wide variety of foods as well as cause damage to structures, packaging materials (such as seed packages) and containers by gnawing. They are particularly problematic because they can spread disease through their feces, urine and through biting. They may be infested with fleas and mites which also can spread disease. When Are They Active Rats do not hibernate and are active throughout the year. Because they are mostly active at night they often are not seen, however, they leave evidence such as gnaw marks, droppings, tracks, burrows and nests made of shredded materials. Susceptible Plants Rats are omnivores, eating a variety of food, but generally prefer cereal grains, nuts and fruit. The more common problem associated with rats is contamination of food stuff and animal feed from droppings and urination as well as damage caused by gnawing. Prevention/Control Methods Successful management of rats is dependent on maintaining good housekeeping in and around gardens and garden structures to reduce shelter and food sources. Off the ground storage of gardening equipment, supplies, boxes and containers as well as keeping the garden free of debris and trash will create an environment less suitable for rats.
    [Show full text]
  • Distribution of Native and Non-Native Rats (Rattus Spp.) Along an Elevational Gradient in a Tropical Rainforest of Southern Luzon, Philippines
    ECOTROPICA 14: 129–136, 2008 © Society for Tropical Ecology DISTRIBUTION OF NATIVE AND NON-NATIVE RATS (RATTUS SPP.) ALONG AN ELEVATIONAL GRADIENT IN A TROPICAL RAINFOREST OF SOUTHERN LUZON, PHILIPPINES Cristina C. Salibay & Hazel Anne V. Luyon De La Salle University-Dasmariñas, Dasmariñas, Cavite, Philippines Abstract. Rats (Muridae) of the genus Rattus occur in the Philippines, both as native and as invasive species. While the invasive species are well known to use a large range of anthropogenic habitats, little is known about their potential to occur in forest areas. We studied the occurrence and relative abundance of different species of Rattus in forests along elevational gradients on three mountains within the Palay-palay / Mataas na Gulod National Park in Southern Luzon, Philippines. Four Rattus species were collected and their occurrence and relative abundance were found to differ significantly between species and along elevational gradients. Rattus norvegicus (40.3% of captures), R. tanezumi (21.5%), and R. argentiventer (5.6%) are invasive species and R. everetti (32.7%) a native forest-inhabiting species. While the three invasive species were most abundant at low elevations, R. everetti was most abundant at higher elevations. The number of invasive rats has been attributed to their survival and adaptation at lower elevations, where habitat conversion and degradation are most intense, while native species are more common at higher elevations where habitat is relatively un- disturbed. Key words: elevation, forest species, invasive species, Philippines, rainforest, Rattus species. INTRODUCTION and occur at high abundances in local mammal as- semblages (Heaney et al. 1998, Steppan et al. 2003).
    [Show full text]
  • FEEDING BERA VIOUR of the LARGE BANDICOOT RAT BANDICOTA INDICA (Bechstein) [Rodentia: Muridae]
    Rec. zool. Slirv. India, 97 (Part-2) : 45-72, 1999 FEEDING BERA VIOUR OF THE LARGE BANDICOOT RAT BANDICOTA INDICA (Bechstein) [Rodentia: Muridae] R. CHAKRABORTY and S. CHAKRABORTY Zoological Survey of India, M-Block, New Alipore, Calcutta-700 053 INTRODUCTION Rodents are versatile in feeding behaviour and in· the choice of food. Thus, separate studies on each individual species are necessary. However, except for the stray reports of lerdon (1874), Blanford (1891), Sridhara and Srihari (1978,1979), Chakraborty and Chakraborty (1.982) and Chakraborty (1992)practically no base line data exist on the feeding behaviour and food preference of Balldicota indica. A study was therefore conductep on this aspect, in nature as well .as in the laboratory. STUDY AREA The study was conducted mainly at Sagar Island, the largest delta in the western sector of the Sundarbans and surrounded by the rivers Hugli in the northern and Western sides and river Muriganga in the eastern side. The southern part of the island faces the open sea, the Bay of Bengal. Additional studies were made at Thakurpukur and Behala areas of Western Calcutta. METHODOLOGY Specimens were collected by single door wire traps, measuring 40 cm x 20 cm x 12cm. Traps were set in the evening.(17.00 hrs. to 19.00 hrs.) and collected in the different hours of night till morning. Observations on the feeding behaviour were made particularly during moonlit nights in nature. Some observations were also made in captivity. Stomachs of 42 adult specimens (both males and females) collected duri~g different months of the year and preserved in 70 per ce.nt Ethyl alcohol.
    [Show full text]
  • Rodent Control in India
    Integrated Pest Management Reviews 4: 97–126, 1999. © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Rodent control in India V.R. Parshad Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India (Tel.: 91-0161-401960, ext. 382; Fax: 91-0161-400945) Received 3 September 1996; accepted 3 November 1998 Key words: agriculture, biological control, campaign, chemosterilent, commensal, control methods, economics, environmental and cultural methods, horticulture, India, pest management, pre- and post-harvest crop losses, poultry farms, rodent, rodenticide, South Asia, trapping Abstract Eighteen species of rodents are pests in agriculture, horticulture, forestry, animal and human dwellings and rural and urban storage facilities in India. Their habitat, distribution, abundance and economic significance varies in different crops, seasons and geographical regions of the country. Of these, Bandicota bengalensis is the most predominant and widespread pest of agriculture in wet and irrigated soils and has also established in houses and godowns in metropolitan cities like Bombay, Delhi and Calcutta. In dryland agriculture Tatera indica and Meriones hurrianae are the predominant rodent pests. Some species like Rattus meltada, Mus musculus and M. booduga occur in both wet and dry lands. Species like R. nitidus in north-eastern hill region and Gerbillus gleadowi in the Indian desert are important locally. The common commensal pests are Rattus rattus and M. musculus throughout the country including the islands. R. rattus along with squirrels Funambulus palmarum and F. tristriatus are serious pests of plantation crops such as coconut and oil palm in the southern peninsula. F. pennanti is abundant in orchards and gardens in the north and central plains and sub-mountain regions.
    [Show full text]