Algebraic Geometric Codes: Basic Notions Mathematical Surveys and Monographs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
O Modular Forms As Clues to the Emergence of Spacetime in String
PHYSICS ::::owan, C., Keehan, S., et al. (2007). Health spending Modular Forms as Clues to the Emergence of Spacetime in String 1anges obscure part D's impact. Health Affairs, 26, Theory Nathan Vander Werf .. , Ayanian, J.Z., Schwabe, A., & Krischer, J.P. Abstract .nd race on early detection of cancer. Journal ofth e 409-1419. In order to be consistent as a quantum theory, string theory requires our universe to have extra dimensions. The extra dimensions form a particu lar type of geometry, called Calabi-Yau manifolds. A fundamental open ions ofNursi ng in the Community: Community question in string theory over the past two decades has been the problem ;, MO: Mosby. of establishing a direct relation between the physics on the worldsheet and the structure of spacetime. The strategy used in our work is to use h year because of lack of insurance. British Medical methods from arithmetic geometry to find a link between the geome try of spacetime and the physical theory on the string worldsheet . The approach involves identifying modular forms that arise from the Omega Fact Finder: Economic motives with modular forms derived from the underlying conformal field letrieved November 20, 2008 from: theory. The aim of this article is to first give a motivation and expla nation of string theory to a general audience. Next, we briefly provide some of the mathematics needed up to modular forms, so that one has es. (2007). National Center for Health the tools to find a string theoretic interpretation of modular forms de : in the Health ofAmericans. Publication rived from K3 surfaces of Brieskorm-Pham type. -
February 19, 2016
February 19, 2016 Professor HELGE HOLDEN SECRETARY OF THE INTERNATIONAL MATHEMATICAL UNION Dear Professor Holden, The Turkish Mathematical Society (TMD) as the Adhering Organization, applies to promote Turkey from Group I to Group II as a member of IMU. We attach an overview of the developments of Mathematics in Turkey during the last 10 years (2005- 2015) preceded by a historical account. With best regards, Betül Tanbay President of the Turkish Mathematical Society Report on the state of mathematics in Turkey (2005-2015) This is an overview of the status of Mathematics in Turkey, prepared for the IMU for promotion from Group I to Group II by the adhering organization, the Turkish Mathematical Society (TMD). 1-HISTORICAL BACKGROUND 2-SOCIETIES AND CENTERS RELATED TO MATHEMATICAL SCIENCES 3-NUMBER OF PUBLICATIONS BY SUBJECT CATEGORIES 4-NATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 5-INTERNATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 6-NUMBERS OF STUDENTS AND TEACHING STAFF IN MATHEMATICAL SCIENCES IN TURKEY FOR THE 2013-2014 ACADEMIC YEAR AND THE 2014-2015 ACADEMIC YEAR 7- RANKING AND DOCUMENTS OF TURKEY IN MATHEMATICAL SCIENCES 8- PERIODICALS AND PUBLICATIONS 1-HISTORICAL BACKGROUND Two universities, the Istanbul University and the Istanbul Technical University have been influential in creating a mathematical community in Turkey. The Royal School of Naval Engineering, "Muhendishane-i Bahr-i Humayun", was established in 1773 with the responsibility to educate chart masters and ship builders. Gaining university status in 1928, the Engineering Academy continued to provide education in the fields of engineering and architecture and, in 1946, Istanbul Technical University became an autonomous university which included the Faculties of Architecture, Civil Engineering, Mechanical Engineering, and Electrical and Electronic Engineering. -
Systolic Inequalities, Discrete Or Not
Systolic inequalities, discrete or not Arnaud de Mesmay Gipsa-lab, CNRS, Université Grenoble Alpes Based on joint work with Éric Colin de Verdière and Alfredo Hubard. 1 / 53 A primer on surfaces We deal with connected, compact and orientable surfaces of genus g without boundary. Discrete metric Riemannian metric Triangulation G. Scalar product m on the Length of a curve jγjG : tangent space. Number of edges. Riemannian length jγjm. 2 / 53 Systoles and pants decompositions We study the length of topologically interesting curves for discrete and continuous metrics. Non-contractible curves Pants decompositions 3 / 53 Motivations Why should we care ? Topological graph theory: If the shortest non-contractible cycle is long, the surface is planar-like. ) Uniqueness of embeddings, colourability, spanning trees. Riemannian geometry: René Thom: “Mais c’est fondamental !”. Links with isoperimetry, topological dimension theory, number theory. Algorithms for surface-embedded graphs: Cookie-cutter algorithm for surface-embedded graphs: Decompose the surface, solve the planar case, recover the solution. More practical sides: texture mapping, parameterization, meshing ... 4 / 53 Part 1: Length of shortest curves 5 / 53 Intuition p p It should have length O( A) or O( n), but what is the dependency on g ? On shortest noncontractible curves Discrete setting Continuous setting What is the length of the red curve? 6 / 53 On shortest noncontractible curves Discrete setting Continuous setting What is the length of the red curve? Intuition p p It should have length O( A) or O( n), but what is the dependency on g ? 7 / 53 Discrete Setting: Topological graph theory The edgewidth of a triangulated surface is the length of the shortest noncontractible cycle. -
Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces
Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces Éric Colin de Verdière 1 Alfredo Hubard 2 Arnaud de Mesmay 3 1École normale supérieure, CNRS 2INRIA, Laboratoire d’Informatique Gaspard Monge, Université Paris-Est Marne-la-Vallée 3IST Austria, Autriche 1 / 62 A primer on surfaces We deal with connected, compact and orientable surfaces of genus g without boundary. Discrete metric Riemannian metric Triangulation G. Scalar product m on the Length of a curve jγjG : tangent space. Number of edges. Riemannian length jγjm. 2 / 62 Systoles and surface decompositions We study the length of topologically interesting curves and graphs, for discrete and continuous metrics. 1.Non-contractible curves 2.Pants decompositions 3.Cut-graphs 3 / 62 Part 0: Why should we care.. 4 / 62 .. about graphs embedded on surfaces ? The easy answer: because they are “natural”. They occur in multiple settings: Graphics, computer-aided design, network design. The algorithmic answer: because they are “general”. Every graph is embeddable on some surface, therefore the genus of this surface is a natural parameter of a graph (similarly as tree-width, etc.). The hard answer: because of Robertson-Seymour theory. Theorem (Graph structure theorem, roughly) Every minor-closed family of graphs can be obtained from graphs k-nearly embedded on a surface S, for some constant k. 5 / 62 ) We need algorithms to do this cutting efficiently. ) We need good bounds on the lengths of the cuttings. ... about cutting surfaces along cycles/graphs ? Algorithms for surface-embedded graphs: Cookie-cutter algorithm for surface-embedded graphs: Cut the surface into the plane. Solve the planar case. -
Filling Area I
Filling Area I M. Heuer ([email protected]) June 14, 2011 In this lecture, we will be learning about the filling volume of a Rieman- nian manifold. For a compact surface embedded in R3, this can easily be imagined as filling up the inside of it with water and hence calculating the volume of the resulting 3-dimensional manifold (but with a different met- ric than the usual one). However, we will use a more general approach by considering n-dimensional manifolds and a so-called filling by a manifold of higher dimension having the surface as its boundary. In particular, we will learn how to calculate the filling volume for spheres. Moreover, we will get to know an estimate of the displacement of a point in relation to the area of the hyperelliptic surface. 1 Preliminaries { As we have seen in the preceding lectures, for a Riemann surface Σ and a hyper- elliptic involution J, we have a conformal branched 2-fold covering Q :Σ ! S2 of the sphere S2 2 π { Pu's inequality: systπ1(G) ≤ 2 area(G) { A closed Riemannian surface Σ is called ovalless real if it possesses a fixed point free, antiholomorphic involution τ. 2 Orbifolds Definition 2.1. { An action of a group G on a topological space X is called faithful if there exists an x 2 X for all g 2 G with g 6= e, e being the neutral element, such that g · x 6= x. { A group action of a group G on a topological space X is cocompact if X=G is compact. -
18.782 Arithmetic Geometry Lecture Note 1
Introduction to Arithmetic Geometry 18.782 Andrew V. Sutherland September 5, 2013 1 What is arithmetic geometry? Arithmetic geometry applies the techniques of algebraic geometry to problems in number theory (a.k.a. arithmetic). Algebraic geometry studies systems of polynomial equations (varieties): f1(x1; : : : ; xn) = 0 . fm(x1; : : : ; xn) = 0; typically over algebraically closed fields of characteristic zero (like C). In arithmetic geometry we usually work over non-algebraically closed fields (like Q), and often in fields of non-zero characteristic (like Fp), and we may even restrict ourselves to rings that are not a field (like Z). 2 Diophantine equations Example (Pythagorean triples { easy) The equation x2 + y2 = 1 has infinitely many rational solutions. Each corresponds to an integer solution to x2 + y2 = z2. Example (Fermat's last theorem { hard) xn + yn = zn has no rational solutions with xyz 6= 0 for integer n > 2. Example (Congruent number problem { unsolved) A congruent number n is the integer area of a right triangle with rational sides. For example, 5 is the area of a (3=2; 20=3; 41=6) triangle. This occurs iff y2 = x3 − n2x has infinitely many rational solutions. Determining when this happens is an open problem (solved if BSD holds). 3 Hilbert's 10th problem Is there a process according to which it can be determined in a finite number of operations whether a given Diophantine equation has any integer solutions? The answer is no; this problem is formally undecidable (proved in 1970 by Matiyasevich, building on the work of Davis, Putnam, and Robinson). It is unknown whether the problem of determining the existence of rational solutions is undecidable or not (it is conjectured to be so). -
Systolic Invariants of Groups and 2-Complexes Via Grushko Decomposition
SYSTOLIC INVARIANTS OF GROUPS AND 2-COMPLEXES VIA GRUSHKO DECOMPOSITION YULI B. RUDYAK∗ AND STEPHANE´ SABOURAU Abstract. We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many pos- sible unfree factors of fundamental groups of 2-complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all 2-complexes with unfree funda- mental group that improves the previously known bounds in this dimension. Resum´ e.´ Nous prouvons un r´esultat de finitude pour l’aire sys- tolique des groupes. Pr´ecis´ement, nous montrons qu’il n’existe qu’un nombre fini de facteurs non-libres dans les groupes fonda- mentaux des 2-complexes d’aire systolique uniform´ement born´ee. Nous montrons aussi que le nombre de tels groupes librement ind´ecomposables croˆıt au moins exponentiellement avec la borne sur l’aire systolique. De plus, nous prouvons une in´egalit´esys- tolique uniforme pour tous les 2-complexes de groupe fondamental non-libre qui am´elioreles bornes pr´ec´edemment connues dans cette dimension. Contents 1. Introduction 2 2. Topological preliminaries 5 3. Complexes of zero Grushko free index 7 4. Existence of ε-regular metrics 9 5. Counting fundamental groups 12 6. Two systolic finiteness results 14 Date: July 17, 2007. 2000 Mathematics Subject Classification. Primary 53C23; Secondary 20E06 . Key words and phrases. systole, systolic area, systolic ratio, 2-complex, Grushko decomposition. -
Tim Daniel Browning –
School of Mathematics University of Bristol Bristol BS8 1TW T +44 (0) 117 331 5242 B [email protected] Tim Daniel Browning Í www.maths.bris.ac.uk/∼matdb Present appointment 2018– Professor, IST Austria. 2012–2019 Professor, University of Bristol. Previous appointments 2016–18 Director of Pure Institute, University of Bristol. 2008–2012 Reader in pure mathematics, University of Bristol. 2005–2008 Lecturer in pure mathematics, University of Bristol. 2002–2005 Postdoctoral researcher, University of Oxford. RA on EPSRC grant number GR/R93155/01 2001–2002 Postdoctoral researcher, Université de Paris-Sud. RA on EU network “Arithmetic Algebraic Geometry” Academic qualifications 2002 D.Phil., Magdalen College, University of Oxford. “Counting rational points on curves and surfaces”, supervised by Prof. Heath-Brown FRS 1998 M.Sci. Mathematics, King’s College London, I class. Special awards, honours and distinctions 2018 Editor-in-chief for Proceedings of the LMS. 2017 EPSRC Standard Grant. 2017 Simons Visiting Professor at MSRI in Berkeley. 2016 Plenary lecturer at Journées Arithmétiques in Debrecen Hungary. 2012 European Research Council Starting Grant. 2010 Leverhulme Trust Phillip Leverhulme Prize. 2009 Institut d’Estudis Catalans Ferran Sunyer i Balaguer Prize. 2008 London Mathematical Society Whitehead prize. 2007 EPSRC Advanced Research Fellowship. 2006 Nuffield Award for newly appointed lecturers. Page 1 of 11 Research Publications: books 2010 Quantitative arithmetic of projective varieties. 172pp.; Progress in Math. 277, Birkhäuser Publications: conference proceedings 2017 How often does the Hasse principle hold?. Algebraic Geometry: Salt Lake City 2015; Proc. Symposia Pure Math. 97.2 (2018), AMS, 89-102. 2015 A survey of applications of the circle method to rational points. -
The Arithmetic of the Spheres
The Arithmetic of the Spheres Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA MAA Mathfest (Washington, D. C.) August 6, 2015 Topics Covered Part 1. The Harmony of the Spheres • Part 2. Lester Ford and Ford Circles • Part 3. The Farey Tree and Minkowski ?-Function • Part 4. Farey Fractions • Part 5. Products of Farey Fractions • 1 Part I. The Harmony of the Spheres Pythagoras (c. 570–c. 495 BCE) To Pythagoras and followers is attributed: pitch of note of • vibrating string related to length and tension of string producing the tone. Small integer ratios give pleasing harmonics. Pythagoras or his mentor Thales had the idea to explain • phenomena by mathematical relationships. “All is number.” A fly in the ointment: Irrational numbers, for example p2. • 2 Harmony of the Spheres-2 Q. “Why did the Gods create us?” • A. “To study the heavens.”. Celestial Sphere: The universe is spherical: Celestial • spheres. There are concentric spheres of objects in the sky; some move, some do not. Harmony of the Spheres. Each planet emits its own unique • (musical) tone based on the period of its orbital revolution. Also: These tones, imperceptible to our hearing, a↵ect the quality of life on earth. 3 Democritus (c. 460–c. 370 BCE) Democritus was a pre-Socratic philosopher, some say a disciple of Leucippus. Born in Abdera, Thrace. Everything consists of moving atoms. These are geometrically• indivisible and indestructible. Between lies empty space: the void. • Evidence for the void: Irreversible decay of things over a long time,• things get mixed up. (But other processes purify things!) “By convention hot, by convention cold, but in reality atoms and• void, and also in reality we know nothing, since the truth is at bottom.” Summary: everything is a dynamical system! • 4 Democritus-2 The earth is round (spherical). -
Systolic Geometry and Topology
SURV Mathematical Surveys and Monographs 137 Volume 137 The systole of a compact metric space X is a metric invariant of X, defined as the least length of a noncontractible loop in X. When X is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by W. Tutte. The first nontrivial results for systoles of surfaces are the two classical inequalities of C. Loewner and P. Pu, relying on integral-geometric identities, in the case of the two-dimensional torus and real projective plane, Systolic Geometry respectively. Currently, systolic geometry is a rapidly developing Topology Systolic Geometry and field, which studies systolic invariants in their relation to other geometric invariants of a manifold. and Topology This book presents the systolic geometry of manifolds and polyhedra, starting with the two classical inequalities, and then proceeding to recent results, including a proof of M. Gromov’s filling area conjecture in a hyperelliptic setting. It then presents Gromov’s inequalities and their generalisations, as well as asymptotic phenomena for systoles of surfaces of large genus, revealing a link both to ergodic theory and to properties of Mikhail G. Katz congruence subgroups of arithmetic groups. The author includes results on the systolic manifestations of Massey products, as well as of the classical Lusternik-Schnirelmann category. With an Appendix by Jake P. Solomon For additional information and updates on this book, visit AMS on the Web www.ams.org/bookpages/surv-137 www.ams.org Katz AMS American Mathematical Society SURV/137 Three color cover: PMS 297-Light Blue, PMS 723-Orange, and PMS 634 and ntone 634 (Blue) 240? pages on 50lb stock • Hardcover • Backspace 1 3/16'' . -
Scribe Notes
6.440 Essential Coding Theory Feb 19, 2008 Lecture 4 Lecturer: Madhu Sudan Scribe: Ning Xie Today we are going to discuss limitations of codes. More specifically, we will see rate upper bounds of codes, including Singleton bound, Hamming bound, Plotkin bound, Elias bound and Johnson bound. 1 Review of last lecture n k Let C Σ be an error correcting code. We say C is an (n, k, d)q code if Σ = q, C q and ∆(C) d, ⊆ | | | | ≥ ≥ where ∆(C) denotes the minimum distance of C. We write C as [n, k, d]q code if furthermore the code is a F k linear subspace over q (i.e., C is a linear code). Define the rate of code C as R := n and relative distance d as δ := n . Usually we fix q and study the asymptotic behaviors of R and δ as n . Recall last time we gave an existence result, namely the Gilbert-Varshamov(GV)→ ∞ bound constructed by greedy codes (Varshamov bound corresponds to greedy linear codes). For q = 2, GV bound gives codes with k n log2 Vol(n, d 2). Asymptotically this shows the existence of codes with R 1 H(δ), which is similar≥ to− Shannon’s result.− Today we are going to see some upper bound results, that≥ is,− code beyond certain bounds does not exist. 2 Singleton bound Theorem 1 (Singleton bound) For any code with any alphabet size q, R + δ 1. ≤ Proof Let C Σn be a code with C Σ k. The main idea is to project the code C on to the first k 1 ⊆ | | ≥ | | n k−1 − coordinates.