Thermal Rearrangements of Linear Carbon Chains: Theoretical and Experimental Studies John Mabry University of New Hampshire, Durham

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Rearrangements of Linear Carbon Chains: Theoretical and Experimental Studies John Mabry University of New Hampshire, Durham University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2003 Thermal rearrangements of linear carbon chains: Theoretical and experimental studies John Mabry University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Mabry, John, "Thermal rearrangements of linear carbon chains: Theoretical and experimental studies" (2003). Doctoral Dissertations. 195. https://scholars.unh.edu/dissertation/195 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. THERMAL REARRANGEMENTS OF LINEAR CARBON CHAINS THEORETICAL AND EXPERIMENTAL STUDIES BY JOHN MABRY B. S. HAMPTON UNIVERSITY, 1997 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry December, 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3111508 Copyright 2004 by Mabry, John All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3111508 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been examined and approved. Dissertation Director Richard P. Johnson Professor of Chemistry ^^-H d w ard R. Jylaynef ProfesscSTrf Chemistry Chairperson of the Department of Chemistry 'Y Gary isman Profe f Chemistry Miller late Professor of Chemistry K Arthur Greenberg Dean of the College of Engineering and Physical Sciences Professor of Chemistry Robert J. Griffin Assistant Professor of Earth Sciences and Institute for the Study of Earth, Ocean, and Space / 0/3 h i Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION I dedicated t h i s dissertation to all single parent African-American mothers, and especially my mother, Barbara J. Mabry. My mother has been my pillar of strength and my source of wisdom. She instilled in my sisters and me, good work ethic, respect for others and ourselves, the importance of education, and to have faith in God. She encouraged us to set high goals and taught us how to effectively pursue them. She also taught us how to overcome barriers encountered in life. Being the ideal role model, she has always led by example. I consider her one of life’s true “warriors.” I thank you and t love you with all my heart. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I would like to thank the people and organizations that have contributed to my success through this endeavor. Certainly, I could have not succeeded without the assistance of others. I have attempted to provide a list of some of those contributors. I would like to acknowledge my advisor, Professor Richard P. Johnson, for his guidance. I appreciate the excellent scientific training fhat I have received and guidance on becoming an effective educator. I consider him an outstanding mentor. i I I also would like to thank: Stefanie T. Mabry, James and Carol Mack, the UNH Chemistry Faculty, Amanda Burton Lapham and Jo Ann Moody of the New England Board of Higher Education, Reverend Robert Earls, Sr. and Saint John’s Baptist Church, Kathleen S. Gallagher and the University Instrumentation Center, Peg Torch and Cindi Rohwer of the Chemistry Office, Dr. Roger Beattie and the Office of the Vice President for Student and Academic Services, Dr. Harry Richards and the Graduate School, Dr. Arthur Greenberg and the College of Engineering and Physical Sciences, Bob Constantine and UNH Library Services, National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE), Christian J. Kastrup, Susanne and David Lewis, Karelle S. Aiken, Wei-jun Niu, Martin G. Kociolek, Dhananjaya Nauduri, Mark Tetreau, Todd Ziemek, Chris and Angela Barnes, D. Nicole “Coley” Edwards. I would like to especially thank the Mabry, Mills, and Tucker families for their love, support, and prayers. iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS DEDICATION ............. iii ACKNOWLEDGEMENTS................. iv LIST OF SCHEMES............................. ix LIST OF FIGURES......................................... .............xiv LIST OF TABLES.............................................................. .....xvi ABSTRACT. ........ .........xvii CHAPTER PAGE GENERAL INTRODUCTION....................................................................................................1 I. PERICYCLIC AND DEHYDROPERICYCLIC REACTIONS................................2 Introduction to Pericyclic Reactions.. ........................................ 2 Electrocyclic Reactions ......................................................................... 6 Sigmatropic Shifts ..................................................................................9 Cycloadditions ......................................................................................13 Groups Transfers .................................... 24 Ene Reaction ........................................................................................ 26 Introduction to Dehydropericyclic Reactions.. ............ ...29 Dehydrobenzene Chemistry .................................... 29 /^-Benzene........................................ 30 m-Benzene ........... 34 o-Benzene ......................................................................... ......35 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. , Dehydro Diels-Alder Reactions, ............................................38 Enyne + Alkene Cycloaddition. .................... 40 Enyne + Alkyne Cycloaddition ........................... 42 Diyne + Alkene and Diyne + Alkyne .............. .49 Results and Discussion. ................. 52 Attempted Detection of Eneyne Cycloaddition ..................52 Conclusion. ............. 54 I II. CHEMISTRY OF C4H 2 .......................................................................................... 56 Introduction to High Temperature Gas Phase Chemistry of Alkynes, Arynes, and Aryl Radicals............................ 56 Secondary Reactions and Rearrangements ...................................... 63 High Temperature Chemistry of Arynes ...........................................6 6 Exocyclic Vinylidene Insertion Across a Bay Region ..... 6 8 Aryl Radicals and Radical Rearrangement .......................................70 Experimental Investigation of Thermal Rearrangements of Butadiynes ...........................................72 C4 H2 Chemistry................................. 78 Results and Discussion ....................................................................... 81 Synthesis and Thermolysis of 1,4-Diphenylbutadiyne (124) ....... 81 Synthesis and Thermolysis of Ditolyl-1,3-butadiyne (141)...................................................82 VI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Synthesis o f13C Labeled Unsymmetrical Butadiyne . 8 8 Alternative Route to C1 -13C labeled j9 -tolylphenylbutadiyne (143) ........ 93 FVP Experiments of Doubly Labeled Diphenylbutadiyne (124) ..................... ....94 FVP Experiments of 13C Labeled p-Tolylphenylbutdiyne (160). .......... 98 Potential Reaction Mechanisms ....... .....102 Computational Studies ......................................................... 103 Conclusion. ............................ 109 III. CHEMISTRY OF C4 H4 .............................................................................................. 110 The Cyclopropylidene to Allene Rearrangement .................. .110 Thermal Rearrangements of Butatriene ....... 113 C4 H 4 Chemistry.................................................................................. 115 Results and Discussion ............................................................ ............ 125 Computational Results ................................. 125 Syntheses of Tetraarylbutatrienes .............. 130 Attempted Alternate Routes of Unsymmetrical Butatrienes 130 FVP Experiments of Allene, Butatriene, and Extended Cumulene Systems ........... 140 Conclusion ................ .144 vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. IV. EXPERIMENTAL 145 V. APPENDICES........................................
Recommended publications
  • A Biomimetic Approach to Okilactomycin and Chrolactomycin and the Hexadehydro-Diels–Alder (HDDA) Reaction
    A Biomimetic Approach to Okilactomycin and Chrolactomycin and The Hexadehydro-Diels–Alder (HDDA) Reaction A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Dawen Niu IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Thomas R. Hoye December 2013 © Dawen Niu 2013 Acknowledgements So many things could have happened differently in the past 27 years and if any of them had, my career would have taken totally different pathways. I am so glad to be where I am today and need to acknowledge many people that made me here. First of all, I thank my parents. Born in remote villages, neither of them was able to receive good school education. They have been making very little money for what they do. To pay my (and my sister’s) tuition, they chose to work extremely hard. While I was in college, my father worked ca. 12 hours a day and >300 days a year even though he was suffering severe back pain. They tried all they could to make ends meet and yet never complained. But they started to complain after I left for US and stopped asking for tuition. They complain because they aren’t sure if I could get used to the American lifestyle and because they fear my feet will be dragged in US. “Mother worries when son travels a thousand miles.” This recent five years passed really fast to me, but it must have been the longest five years to them. I understand all these better after being a parent myself.
    [Show full text]
  • Organic and Biochemistry for Today 8Th Edition Seager Test Bank
    Organic and Biochemistry for Today 8th Edition Seager Test Bank Full Download: http://testbanklive.com/download/organic-and-biochemistry-for-today-8th-edition-seager-test-bank/ Chapter 2—Unsaturated Hydrocarbons MULTIPLE CHOICE 1. Name a difference between a saturated and an unsaturated hydrocarbon. a. Saturated hydrocarbons are composed of only carbon and hydrogen, and unsaturated hydrocarbons include other atoms than just carbon and hydrogen. b. Saturated hydrocarbons do not contain multiple bonds between carbons, but unsaturated hydrocarbons do contain multiple bonds. c. Unsaturated hydrocarbons are flammable but saturated hydrocarbons are not. d. Saturated hydrocarbons are essentially insoluble. Unsaturated hydrocarbons are soluble. ANS: B PTS: 1 2. Which characteristic relates to alkenes but not the other hydrocarbon families? a. saturation c. double bonds b. halogen substitution d. triple bonds ANS: C PTS: 1 3. What number would be used to indicate the double bond position in the IUPAC name for CH3–CH2–CH=CH–CH3 a. 1 b. 2 c. 3 d. 4 ANS: B PTS: 1 4. In the IUPAC name for the following compound, the -Br group is located at what position of the compound shown? CH3CHBrCH=CH2 a. 1 b. 2 c. 3 d. 4 ANS: C PTS: 1 5. What is the IUPAC name for the compound shown below? a. 3-ethyl-1-pentene c. 3-ethyl-3-pentene b. 2-ethyl-2-pentene d. 2-ethyl-1-pentene ANS: D PTS: 1 6. What is the IUPAC name for the compound shown below? a. 2-methyl-1,4-pentadiene c. 4-methyl-1,3-pentadiene b.
    [Show full text]
  • Fluorinated Butatrienes
    Fluorinated Butatrienes Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Dipl.-Chem. Christian Ehm aus Berlin Berlin, April 2010 1. Gutachter: Prof. Dr. Dieter Lentz 2. Gutachter: Prof. Dr. Beate Paulus Disputation am 28.6.2010 I Acknowledgements It would not have been possible to write this doctoral thesis without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here. First and foremost I would like to thank my principal supervisor, Professor Dieter Lentz, for the opportunity of doing research in his group. Without his continuous support and encouragement this thesis would not be in the present state. I highly appreciate that Professor Beate Paulus has agreed to be co-referee of my thesis. I would like to cordially thank Lada for her love and patience as well as her interest in my research. Special thanks to my family for their continuous support and love. I would like to thank Mike Roland, Sten Dathe and Sven Wünsche for their friendship and the fun we have had every Sunday evening. Special thanks to Sebastian Freitag, Boris Bolsinger and Frederic Heinrich for their friendship. They deserve much gratefulness for keeping me on the right way. I would like to thank all my colleagues at the Institut für Chemie und Biochemie, Abteilung Anorganische Chemie. In particular I want to thank all members of the Lentz group, Thomas Hügle, Moritz Kühnel, Dr. Floris Akkerman, Dr.
    [Show full text]
  • Cyclohydrocarbons: Structural Formulas Cyclohydrocarbons: Nomenclature
    Cyclohydrocarbons: Structural Formulas Cyclohydrocarbons are the cyclic, or ring, analogues of the alkanes, alkenes, and alkynes. These hydrocarbons are often referred to as alicyclic compounds, and the simplest class is made up of the cycloalkanes. Their general molecular formula is C n H2 n , where n equals any whole number of 3 or greater. Normally, these compounds are represented by geometric figures. Cyclohydrocarbons: Nomenclature Substituted cycloalkanes are named in a manner similar to the openchain, or aliphatic, alkanes. The following rules summarize the International Union of Pure and Applied Chemistry (IUPAC) nomenclature for substituted cycloalkanes. 1. Determine the number of carbon atoms in the ring and in the largest substituent. If the ring has more carbons than the substituent, the compound is an alkyl-substituted cycloalkane. If the substituent possesses more carbons than the ring, the compound is a cycloalkyl alkane. 2. If an alkyl-substituted cycloalkane has more than one substituent, the ring is numbered so the substituents have the lowest sum of numbers. 3. If the molecule possesses two or more different substituent groups, the number one position is determined by alphabetical priority. Cyclohydrocarbons: Preparations Cycloalkanes can be prepared by ring-cyclization reactions, such as a modified Wurtz reaction or a condensation reaction. Additionally, they can be prepared from cycloalkenes and cycloalkynes (Figure 1 ). Figure 1 Cycloalkenes and cycloalkynes are normally prepared from cycloalkanes by ordinary alkene-forming reactions, such as dehydration, dehalogenation, and dehydrohalogenation. Typical preparations for cyclohexene and cyclohexyne are illustrated in Figure 2 . Figure 2 Cyclohydrocarbons: Reactions Due to angle strain, the bonds in three- and four-membered carbon rings are weak.
    [Show full text]
  • Signature Redacted Signature of Author "___ """'De Patj;
    DIEJ:$-ALDER REACTIONS OF ORGANOTIN ACETYLlDES AND THE CHEMISTRY OF THE ADDUCTS by AN.I'HONI BA.Sil, EVNIN A.B., Princeton University (1962) SUIMITTED IN PARTr.AL FULFILIMEN.I' OF THE REQUIR»mN.I'S FOR THE DEGREE OF DOCTOR OF PHil.00 OPHY at the MASSACHUSETI'S INSTITUTE OF TECHNOLOGY July, 1966 /I - /7 Signature redacted Signature of Author _"___ """'De_patj;...:.. · - . .,.._m-e-~-1--1,..,,.f"""'Ch,,.,..;..emi_.s.,..tr-y-,-J""'"uJ.y~'""'2""'6'""'", ~1"'!096""6.-- Certified by Signature redacted ___, -s--....c- ·--c --. - .--x-,---,.-Th-es-i-s-s,,...u_pe_rv__is_o_r __ Accepted by Sign_atur~ .reda~~ed Chairman, Departmen-f,i. Committee on Graduate Students -4 77 Massachusetts Avenue Cambridge, MA 02139 MITLibrares hftp://Iibraries.mit.edu/ask DISCLAIMER NOTICE Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. Thank you. Despite pagination irregularities, this is the most complete copy available. No page number 9 Page between pages numbered 14 and 15 is unnumbered. A 038 This Doctoral thesis has been examined by a comnittee of the Department of Chemistry as follows: Signature Redacted Prof. Glenn A. Berchtold (Chairman) Signature Redacted Prof. Dietmar Seyferth (Thesis Supervisor) Prof,Po GrgGeorge IM..Witesides_______________________ iSignature Redacted I DIELS-ALDER REACTIONS C RGANOTI ACETYLDES AND TME CHEMISTRY GE THE ADDUCTS by Anthony B. Evnin Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ABSTRACT Chapter I. Diels-Alder Reactions of Organotin Acetylides with Highly Chlorinated Cyclopentadienes and the Chemistry of the Adducts The Diels-Alder reaction of organotin acetylides LRC m-Sn (CH 3 )3 , R (CH 3) 3Sn-, 0-, CH 3-] gives bicyclo[2.2.1]hepta-2,5-dienes, typical- ly in 50-70% yields.
    [Show full text]
  • Summaries of FY 1993 Research in the Chemical Sciences
    1 ~~~~~~~~~~~~~~A W# I I~ I LI~ IL * I 0 0 6S~~~~~~~~~~~~~ 0~~~~l~rr 0~~~~~~~rl~ A S .~~~~~~~11 Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. DOE/ER--0144/11 (DE93011855) August 1993 Distribution Categories UC-400 and UC-401 Summaries of FY 1993 Research in the Chemical Sciences U.S. Department of Energy Office of Energy Research Division.of Chemical Sciences This report was compiled for the Office of Energy Research from project summaries contained in the Research-In-Progress (RIP) database of the Office of Scientific and Technical Information, Oak Ridge, Tennessee. The RIP database describes new and ongoing energy and energy-related research projects carried out or sponsored by the Department of Energy. Contents PREFACE vii Brandeis University 32 CHEMICAL SCIENCES DIVISION viii California Institute of Technology 32 PROGRAM SUMMARIES ix University of California, Berkeley 33 LABORATORY ADMINISTRATION xiii University of California, Irvine 33 University of California, Los Angeles 33 NATIONAL LABORATORIES University of California, Santa Barbara 34 Photochemical and Radiation Sciences Clemson University 34 Ames Laboratory 1 Colorado State University 34 Argonne National Laboratory 1 University of Colorado 35 Brookhaven National Laboratory 2 Columbia University 35 Lawrence Berkeley
    [Show full text]
  • Mechanistic and Exploratory Organic Photochemistry and the Synthesis of Strained Cyclic Cumulenes
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 1992 Mechanistic and exploratory organic photochemistry and the synthesis of strained cyclic cumulenes Mary Morgan Kirchhoff University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Kirchhoff, Mary Morgan, "Mechanistic and exploratory organic photochemistry and the synthesis of strained cyclic cumulenes" (1992). Doctoral Dissertations. 1711. https://scholars.unh.edu/dissertation/1711 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Organic Seminar Abstracts
    HOBWwBfiwBflEt 1 '..., ;;;••.:•• |nraffl{ -;:!; ffiffl < In ffi X I B RARY OF THE U N IVERSITY Of ILLINOIS 8. 547 UGs 965-66 pt.l Return this book on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. University of Illinois Library WftrH 1917 L161— O-1096 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi1965661univ ORGANIC SEMINAR ABSTRACTS I965-66 Semester I Department of Chemistry and Chemical Engineering University of Illinois SEMINAR TOPICS I Semester I965-I966 Preparation and Reactions of Perfluorothiocarbonyl Compounds Lennon H. McKendry 1 Organosilylalkali -Metal Compounds Marvin Coon. 10 Heterocyclic Aromatic Sulfur Compounds Adriane Gurak 17 Recent Advances in Polynucleotide Synthesis D. T. Browne 26 Olefin Induced Initiation of Free Radical Reactions Buren Ree 35 The Photochemical Lability of Aryl and Vinyl Esters . Robert J. Schacht : . 4U Optically Active Sulfoxides Ronald J. Trancik ......... 52 The Mechanism of Symmetrization of Organomercuric Halides Z. M. Holubec . 60 Cycloalkyne Intermediates Manley R. Johnston 69 Tetracyanoethylene Oxide and Related Epoxides Hayden Lipp 78 Hexaalkylbenzenes Mildred McDaniel 86 Reactions and Synthesis With Noble Metals Robert A. Gardiner 9k An Extended Hlickel Theory— Some Applications in the Field of Organic Chemistry Robert E. Cunningham, Jr 103 Study of Free Radicals by Flow Systems and ESR Dennis Chamot 112 Cyclodecapentaene s Kenneth Zahn 121 The Peroxide Oxgenation of Aromatic Compounds by Ionic Pathways Bill Foglesong 129 Structure Correlations by Gas Chromatography (The Kovats Retention Index System) Roy Swaringen 138 -2- Phosphoric Acid Ester Synthesis Carl L.
    [Show full text]
  • Organic Chemistry” (In Class) Lab - Instructions
    CH 222 Winter 2022: “Organic Chemistry” (in class) Lab - Instructions Note: This is the lab for section 01 and H1 of CH 222 only. • If you are taking section W1 of CH 222, please use this link: http://mhchem.org/r/4b.htm Step One: Print this lab! You will need a printed (hard copy) version of pages I-4-2 through I-4-13 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2-point deduction. Step Two: Bring the printed copy of the lab with you on Wednesday, January 26. During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below. Step Three: Complete the lab work and calculations on your own, then turn it in at the beginning of recitation to the instructor on Wednesday, February 2. The graded lab will be returned to you the following week during recitation. If you have any questions regarding this assignment, please email ([email protected]) the instructor! Good luck on this assignment! Page I-4-1 / Organic Chemistry Lab (in class) Organic Chemistry The classification of chemical compounds in to the general areas of organic and inorganic derives from the use of the "mineral, vegetable and animal" designation by the early workers in chemistry. Those compounds derived from living systems were termed organic (about 1777) whereas those derived from mineral sources were termed inorganic. In modern times, organic compounds are classified as compounds of carbon containing either carbon-carbon or carbon-hydrogen bonds or both.
    [Show full text]
  • Michael James Steuart Dewar. 24 September 1918-11 October 1997 Author(S): John
    Michael James Steuart Dewar. 24 September 1918-11 October 1997 Author(s): John. N. Murrell Source: Biographical Memoirs of Fellows of the Royal Society, Vol. 44 (Nov., 1998), pp. 128- 140 Published by: Royal Society Stable URL: http://www.jstor.org/stable/770235 Accessed: 12-10-2016 12:23 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/770235?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Biographical Memoirs of Fellows of the Royal Society This content downloaded from 192.108.70.170 on Wed, 12 Oct 2016 12:23:53 UTC All use subject to http://about.jstor.org/terms MICHAEL JAMES STEUART DEWAR 24 September 1918-11 October 1997 Elected F.R.S. 1960 BY JOHN MURRELL, F.R.S. School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 9QJ, UK Michael Dewar was one of the most colourful characters of modem chemistry, possessing an immediately recognizable profile. He was not outstanding in chemical synthesis, his first love; he admitted to lacking expertise in quantum theory; some have even said his mechanistic proposals were not always sound; but on one thing there is total agreement, he was an outstanding man of ideas.
    [Show full text]
  • Solutions Manual for Organic and Biochemistry for Today 8Th Edition by Seager
    Solutions Manual for Organic and Biochemistry for Today 8th Edition by Seager Full Download: http://downloadlink.org/product/solutions-manual-for-organic-and-biochemistry-for-today-8th-edition-by-seager/ Chapter 2: Unsaturated Hydrocarbons CHAPTER OUTLINE 12.1 The Nomenclature of 12.5 Alkynes Alkenes 12.6 Aromatic Compounds and 12.2 The Geometry of Alkenes the Benzene Structure 12.3 Properties of Alkenes 12.7 The Nomenclature of 12.8 Properties and Uses of 12.4 Addition Polymers Benzene Derivatives Aromatic Compounds LEARNING OBJECTIVES/ASSESSMENT When you have completed your study of this chapter, you should be able to: 1. Classify unsaturated hydrocarbons as alkenes, alkynes, or aromatics. (Section 12.1; Exercise 12.2) 2. Write the IUPAC names of alkenes from their molecular structures. (Section 12.1; Exercise 12.4) 3. Predict the existence of geometric (cis-trans) isomers from formulas of compounds. (Section 12.2; Exercise 12.18) 4. Write the names and structural formulas for geometric isomers. (Section 12.2; Exercise 12.20) 5. Write equations for addition reactions of alkenes, and use Markovnikov’s rule to predict the major products of certain reactions. (Section 12.3; Exercise 12.26) 6. Write equations for addition polymerization, and list uses for addition polymers. (Section 12.4; Exercise 12.36) 7. Write the IUPAC names of alkynes from their molecular structures. (Section 12.5; Exercise 12.44) 8. Classify organic compounds as aliphatic or aromatic. (Section 12.6; Exercise 12.48) 9. Name and draw structural formulas for aromatic compounds. (Section 12.7; Exercises 12.52 and 12.54) 10.
    [Show full text]
  • L-4 Carbon and Its Compounds Formation of Hydrogen Molecule
    L-4 Carbon and its compounds Covalent Bond: The chemical bond formed by the sharing of electrons between two atoms is known as covalent bond The sharing of electrons takes place in such a way that each atom in the resulting molecule gets the stable electron configuration of inert gases. Whenever a non metal combines with another non metal sharing of electrons takes place between their atoms. The bond formed between the atoms of the same element is a covalent bond. The shared electrons are counted with both the atoms due to which each atom in the resulting molecules gets an inert gas electron arrangement of either 8 electrons or 2 electrons in the outermost shell. Types of covalent bond : i. Single covalent bond ii. Double covalent bond iii. Triple covalent bond i. Single covalent bond Single covalent bond or single bond is formed by the sharing of one pair of electrons between two atoms. A single covalent bond is denoted by putting a short line (-) between two atoms. Formation of Hydrogen Molecule Hydrogen atom has only one electron in its outermost shell, and requires one more to acquire the nearest noble gas configuration of helium (He: 1s2). To do so, two hydrogen atoms contribute one electron each to share one pair of electrons between them. This leads to the formation of a single covalent bond between the two hydrogen atoms. Formation of Chlorine Molecule Chlorine atom has seven valence electrons. Thus, each Cl atom requires one more electron to acquire the nearest noble gas configuration (Ar:2, 8, 8).
    [Show full text]